JPS63262861A - Cooling body for semiconductor element - Google Patents
Cooling body for semiconductor elementInfo
- Publication number
- JPS63262861A JPS63262861A JP9618287A JP9618287A JPS63262861A JP S63262861 A JPS63262861 A JP S63262861A JP 9618287 A JP9618287 A JP 9618287A JP 9618287 A JP9618287 A JP 9618287A JP S63262861 A JPS63262861 A JP S63262861A
- Authority
- JP
- Japan
- Prior art keywords
- cooling body
- cooling
- spiral
- water channel
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 66
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 239000002826 coolant Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 239000003507 refrigerant Substances 0.000 abstract 4
- 230000003190 augmentative effect Effects 0.000 abstract 1
- 239000000498 cooling water Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は半導体素子、特に両面に接触電極を有する平形
半導体素子の両面に接触させて冷却を行う冷却体におい
て、特に冷却媒体である液体、例えば水が前記冷却体の
内部を貫流することにより冷却を行う半導体素子の冷却
体に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a cooling body that cools a semiconductor device by bringing it into contact with both sides of a flat semiconductor device having contact electrodes on both sides. The present invention relates to a cooling body for a semiconductor device, which cools a semiconductor element by causing a liquid medium, such as water, to flow through the inside of the cooling body.
(従来の技術)
最近の半導体素子の発達はめざましく1年々大電流高電
圧化と大容量化され、現在では光で直接点弧できる40
00V −3000Aあるいはそれ以上の半導体素子が
開発され実用化されている。この様な大容量の半導体素
子では、わずか数10aJの小さな電極面から数K1以
上の熱損失が発生する。(Prior art) The recent development of semiconductor devices has been remarkable, with larger currents, higher voltages, and larger capacities being achieved year by year.Currently, 40
00V-3000A or higher semiconductor devices have been developed and put into practical use. In such a large capacity semiconductor element, a heat loss of several K1 or more occurs from a small electrode surface of only a few tens of aJ.
従って半導体において、この様な小さな電極面から大量
の熱のうばう、より効率の良い冷却体が必要となってい
る。Therefore, in semiconductors, a more efficient cooling body is required to dissipate a large amount of heat from such a small electrode surface.
以下に従来のこの種の液体による内部貫流形冷却体につ
いて第4図、第5図及び第6図により説明する。 ・
第4図に示す様に内部型流形冷却体1は例えばダイオー
ド、サイリスタ、GTO等の平形半導体素子2と交互に
スタック4状に積み重ね前記スタック4の両端より数ト
ンの圧力で圧接され、冷却体1は次の冷却体と絶縁パイ
プ3により接続し構成されている。この様に構成された
スタップ4においで冷却媒体5である例えば水は絶縁主
バイブロを介して冷却体1に供給され、順次絶縁パイプ
3により冷却体を通過することにより、半導体素子2を
冷却し、絶縁主バイブロを経て熱交換器7に至る経路で
循環する。なお8は冷却媒体を循環させる循環ポンプで
ある。A conventional internal flow-through cooling body using a liquid of this type will be explained below with reference to FIGS. 4, 5, and 6. - As shown in FIG. 4, the internal flow type cooling body 1 is alternately stacked with flat semiconductor devices 2 such as diodes, thyristors, GTOs, etc. in the form of a stack 4, and is pressed against both ends of the stack 4 with a pressure of several tons. The cooling body 1 is connected to the next cooling body by an insulating pipe 3. In the tap 4 configured in this manner, the cooling medium 5, for example, water, is supplied to the cooling body 1 via the insulating main vibro, and passes through the cooling body through the insulated pipe 3 in order to cool the semiconductor element 2. , and circulates through the insulated main vibro to the heat exchanger 7. Note that 8 is a circulation pump that circulates the cooling medium.
この様に構成された従来の冷却体1はたとえば第5図に
示す様に熱伝導性の良い銅やアルミニウムのブロックに
貫流通路9を作ることで実現され。The conventional cooling body 1 constructed in this manner is realized, for example, by forming a flow passage 9 in a block of copper or aluminum having good thermal conductivity, as shown in FIG.
冷却媒体5である水を口出し部10より流入し、前記冷
却体1内に設けられた貫流通路9内を通過する間に半導
体素子2から出る熱をうばうことにより冷却し、反対側
の口出し部IOより流出する様に作用している。Water, which is the cooling medium 5, flows in from the opening 10 and is cooled by absorbing the heat emitted from the semiconductor element 2 while passing through the through-flow passage 9 provided in the cooling body 1. It acts as if it flows out from IO.
また第6図に示す様に銅やアルミニウムの管11を蛇行
状に曲げてそれを貫流通路9にして、前記管11全体を
やはり熱伝導性の良い金属で鋳造することにより冷却体
1として実現する場合もあった。Further, as shown in FIG. 6, the cooling body 1 is realized by bending a copper or aluminum tube 11 into a meandering shape to form a through-flow passage 9, and casting the entire tube 11 from a metal with good thermal conductivity. Sometimes I did.
この様に従来の冷却体1は極力その冷却媒体との接触面
積を増やし、その冷却効果を高めるため貫流通路9を極
力長く蛇行状にしている。In this way, in the conventional cooling body 1, the through-flow passage 9 is made as long as possible in a meandering shape in order to increase the contact area with the cooling medium as much as possible and enhance the cooling effect.
(発明が解決しようとする問題点)
以上の様に従来の冷却体1はその貫流通路9を蛇行状に
して長くして接触面積を増やす様にしていたが、貫流通
路を蛇行させて長くするのには限度があり半導体素子と
接触する冷却体の面が有効に冷却されているとは言えな
いのが現状であった。(Problems to be Solved by the Invention) As described above, in the conventional cooling body 1, the through-flow passage 9 is lengthened in a meandering manner to increase the contact area. Currently, there is a limit to the amount of cooling that can be achieved, and it cannot be said that the surface of the cooling body that comes into contact with the semiconductor element is effectively cooled.
また蛇行状にして曲がりを急にすると流体損失が大きく
なるため冷却媒体用循環ポンプの容量を大きくなければ
ならないという欠点もあった。Furthermore, if the winding is made into a meandering shape and the bend is steep, the fluid loss increases, so there is also the drawback that the capacity of the cooling medium circulation pump must be increased.
本発明の目的は上述した問題点に対して、冷却効率の高
い、流体損失の低い貫流通路を備えた、半導体素子用冷
却体を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems by providing a cooling body for semiconductor devices that has a through-flow passageway with high cooling efficiency and low fluid loss.
(問題点を解決するための手段)
貫流通路をうず巻き状に構成し、この貫流通路を冷却体
の両面に設ける。また、冷却媒体は、冷却体の中央から
供給し、前記のうず巻き状の貫流路を通り冷却体の外周
囲から排水される様、冷却媒体用の通路を設ける。(Means for solving the problem) The through-flow passage is configured in a spiral shape, and the through-flow passage is provided on both sides of the cooling body. Further, a passage for the cooling medium is provided so that the cooling medium is supplied from the center of the cooling body and drained from the outer periphery of the cooling body through the spiral flow passage.
(作 用)
貫流通路をうず巻き状としさらに冷却体の両面に設ける
ことで冷却媒体の接触面積を大幅に増加出来る。またう
ず巻き状の貫流通路のため急な曲がりがなく流体損失を
低く出来る。(Function) The contact area of the cooling medium can be greatly increased by forming the through-flow passage in a spiral shape and providing it on both sides of the cooling body. Furthermore, the spiral-shaped through-flow passage eliminates sharp bends and reduces fluid loss.
また、冷却媒体は冷却体の中央から前記のうず巻き状貫
流通路を流れることになり、このことは半導体素子の一
番高温部である素子中央部が接触する冷却体の中央部分
に一番低温の冷却媒体を供給することになり、冷却効率
が高い冷却体となる。In addition, the cooling medium flows from the center of the cooling body through the spiral-shaped through passage, which means that the center of the cooling body, which is in contact with the center of the semiconductor element, which is the hottest part, has the lowest temperature. A cooling medium is supplied, resulting in a cooling body with high cooling efficiency.
(実施例) 以下本発明の詳細を第1図を参照しながら説明する。(Example) The details of the present invention will be explained below with reference to FIG.
第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.
本実施例では半導体素子用冷却体は3つの部分から構成
されている。In this embodiment, the semiconductor element cooling body is composed of three parts.
中央部12は冷却媒体の入口13と出力14の口出し部
を備えており、両表面にはうず巻き状の貫流通路15が
設けられている。このうず巻き状貫流通路15の間かく
は、ゼロ(通路壁の肉厚のみ)から所定の距離またこの
貫流通路15の中心部16には両表面を結ぶ水路17が
設けられており、さらにこの水路17の中央には冷却媒
体入口13からの水路18が設けられている。The central portion 12 has an inlet 13 for the cooling medium and an outlet for the output 14, and a spiral through passage 15 is provided on both surfaces. The space between this spiral-shaped through-flow passage 15 is a predetermined distance from zero (only the wall thickness of the passage), and the center portion 16 of this through-flow passage 15 is provided with a water channel 17 that connects both surfaces. A water channel 18 from the cooling medium inlet 13 is provided in the center of the cooling medium inlet 17 .
さらに、前記うず巻き状貫流通路15の終端部19にも
両うず巻き状貫流通路の両路端部を結ぶための水路20
が設けられており、この水路20の中央には、冷却媒体
出力14への水路21が設けられている。Furthermore, a water channel 20 is also provided at the terminal end 19 of the spiral through passage 15 for connecting both ends of the spiral through passage.
A water channel 21 to the coolant output 14 is provided in the center of the water channel 20 .
そして、上述した中央部12に左右側面板22.23を
ロー付けすることで冷却体を構成する。A cooling body is constructed by brazing the left and right side plates 22 and 23 to the central portion 12 described above.
前述したごとく構成された本発明の冷却体について、そ
の作用を以下に説明する。The operation of the cooling body of the present invention constructed as described above will be explained below.
冷却媒体、例えば水は入口13から供給され、まず水路
18を通って冷却体の中心部に達する。ここで2つに分
れて水路17により両表面のうず巻き状貫流通路15に
供給される。両表面の各々のうず巻き状貫流通路を通り
半導体素子を冷却した水は、終端部19の水路20で再
び集められ水路21を通り出口14より排水される。A cooling medium, for example water, is supplied through the inlet 13 and first reaches the center of the cooling body through a water channel 18. Here, it is divided into two parts and supplied to the spiral through-flow passages 15 on both surfaces by a waterway 17. The water that has cooled the semiconductor device through the spiral flow passages on both surfaces is collected again at the water channel 20 at the terminal end 19, passes through the water channel 21, and is drained from the outlet 14.
本発明を採用した前記実施例では、貫流通路15がうず
巻き状でかつ両表面に設けであるため、冷却媒体の接触
面積を大幅に増加させることが出来る。また必要とされ
る熱抵抗値を満足する為にはうず巻き状貫流通路の周回
数を増加することで対応出来る。またうず巻き状貫流通
路は流体損失が少ないため、ポンプの負担を軽減するこ
とが出来る。In the embodiment employing the present invention, the through-flow passage 15 is spiral-shaped and provided on both surfaces, so that the contact area of the cooling medium can be significantly increased. Moreover, in order to satisfy the required thermal resistance value, it is possible to cope with this by increasing the number of turns of the spiral-shaped through-flow passage. Further, since the spiral flow passage has little fluid loss, the load on the pump can be reduced.
さらに、冷却媒体が冷却体の中央から周囲に向って流れ
るため冷却体の一番温度の高い中心部に一番温度の低い
冷却媒体が供給されることになり。Furthermore, since the cooling medium flows from the center of the cooling body toward the periphery, the coolant with the lowest temperature is supplied to the center of the cooling body, which has the highest temperature.
冷却効率が高い。High cooling efficiency.
第2図は1本発明の他の実施例の1つである。FIG. 2 shows one of the other embodiments of the present invention.
この実施例では、一般に販売されている第3図の断面構
造をもつ、角型の金属管により構成されている。この金
属管は第3図に示す様に平行した水路24.25とを持
っている。従ってこの金属管を第2図のようにうず巻き
状に巻きそのスキマをロー付けする。なおこの金属管の
両端部は水路24゜25にフタをして水路を密閉してお
く。In this embodiment, it is constructed of a rectangular metal tube having the cross-sectional structure shown in FIG. 3, which is commonly sold. This metal tube has parallel water channels 24 and 25 as shown in FIG. Therefore, this metal tube is wound in a spiral shape as shown in FIG. 2, and the gaps are soldered. Note that both ends of this metal tube are capped at the water channels 24 and 25 to seal the water channels.
つぎに水入口部13と出口部14とを設ける。入口部1
3は前記うず巻き状にした角型の外周部から水路24.
25との間に穴をあけ中心部まで通す6次に水路24.
25とを結ぶ水路を形成するため中心部にたて穴26を
あける。水路24.25とを結んだ後、図示の様に金属
製のフタ27で封じて水がもれない様に構成する。同様
に出口部14を構成することが出来る。Next, a water inlet section 13 and an outlet section 14 are provided. Entrance part 1
3 is a water channel 24 from the outer circumference of the spirally shaped square.
Make a hole between 25 and the 6th water channel 24.
A vertical hole 26 is made in the center in order to form a waterway connecting the pipe 25 and the pipe 25. After connecting the water channels 24 and 25, they are sealed with a metal lid 27 as shown in the figure to prevent water from leaking. The outlet section 14 can be constructed in a similar manner.
この実施例では一般に販売されている角形金属管を使用
するため、前記実施例と異り金形式等が不要となるばか
りか、うず巻き回数を自由に出来るので半導体素子の接
触面積に合せて冷却体を製作することが出来るという利
点も生ずる。即ちヒートシンクの経済性と製作性を著し
く改善できる。In this embodiment, a commonly sold square metal tube is used, so unlike the previous embodiment, there is no need for a metal tube, etc., and the number of spirals can be adjusted freely, so the cooling body can be adjusted to match the contact area of the semiconductor element. It also has the advantage that it can be manufactured. In other words, the economic efficiency and manufacturability of the heat sink can be significantly improved.
以上述べて来た様に、本発明を採用した冷却体は、うず
巻き状の貫流通路を両面に持つため、冷却媒体との接触
面積が大きく又流体損失は低い。As described above, since the cooling body employing the present invention has spiral flow passages on both sides, the contact area with the cooling medium is large and the fluid loss is low.
また冷却媒体を冷却体の中央部から供給するため前記接
触面積が大きいことと合せて冷却効率の高い冷却体とす
ることが出来る。Furthermore, since the cooling medium is supplied from the center of the cooling body, in combination with the large contact area, the cooling body can have high cooling efficiency.
【図面の簡単な説明】
第1図は、本発明を採用した冷却体の一実施例の構成図
、第2図は本発明を採用した他の実施例の構成図、第3
図は第2図の実施例に使用する角パイプの断面図、第4
図は冷却体の使用場所を説明するための冷却系統図、第
5図は従来の冷却体の一例を示す構成図、第6図は従来
の冷却体の他の一例を示す構成図である。
1・・・内部貫流形冷却体 2・・・平形半導体素子3
・・・絶縁パイプ 5・・・冷却媒体9・・・貫
流通路 11・・・管12・・・中央部
13・・・入口14・・・出口 1
5・・・うず巻き状貫流通路16・・・中心部
17・・・水路18・・・水路 19
・・・終端部20・・・水路 21・・・
水路22.23・・・水路 24 、25・・
・水路26・・・たて穴 27・・・フタ第
1図
側面図 平面図
第2図
第3図
第4図
第5図[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram of one embodiment of a cooling body adopting the present invention, Fig. 2 is a block diagram of another embodiment adopting the present invention, and Fig. 3 is a block diagram of an embodiment of a cooling body adopting the present invention.
The figure is a cross-sectional view of the square pipe used in the embodiment shown in Fig. 2.
The figure is a cooling system diagram for explaining where the cooling body is used, FIG. 5 is a configuration diagram showing an example of a conventional cooling body, and FIG. 6 is a configuration diagram showing another example of a conventional cooling body. 1... Internal once-through cooling body 2... Flat semiconductor element 3
... Insulated pipe 5 ... Cooling medium 9 ... Through-flow passage 11 ... Pipe 12 ... Central part
13...Entrance 14...Exit 1
5... Spiral-shaped through passage 16... Center part
17... Waterway 18... Waterway 19
...Terminal part 20...Waterway 21...
Waterway 22.23... Waterway 24, 25...
・Waterway 26... Vertical hole 27... Lid Fig. 1 Side view Plan view Fig. 2 Fig. 3 Fig. 4 Fig. 5
Claims (1)
側面に冷却媒体の入口と出口とを持ち、その冷却媒体入
口から冷却体中央部までの通路と、冷却体中央部で前記
通路に接続されて冷却媒体を冷却体の両表面に分けるた
めの通路と、この通路の冷却体の表面部を始端として冷
却媒体がうず巻き状に流れる様に考慮した貫流通路を冷
却体の両表面に持ち、前記うず巻き状貫流通路の終端で
冷却体両表面の冷却媒体を1つに結ぶための通路と、そ
の通路と冷却媒体出口とを結ぶ通路とを持つことを特徴
とする半導体素子用冷却体。A cooling body that has a structure in which a cooling medium is passed through the cooling body, and has a cooling medium inlet and an outlet on the side of the cooling body, and a passage from the cooling medium inlet to the center of the cooling body, and a connection to the passage at the center of the cooling body. The cooling body has a passageway for dividing the cooling medium between the two surfaces of the cooling body, and a through-flow passageway on both surfaces of the cooling body, which is designed so that the cooling medium flows in a spiral shape starting from the surface of the cooling body of this passage, A cooling body for a semiconductor device, characterized in that it has a passage for connecting the cooling medium on both surfaces of the cooling body into one at the end of the spiral through-flow passage, and a passage connecting the passage and a cooling medium outlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9618287A JPS63262861A (en) | 1987-04-21 | 1987-04-21 | Cooling body for semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9618287A JPS63262861A (en) | 1987-04-21 | 1987-04-21 | Cooling body for semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63262861A true JPS63262861A (en) | 1988-10-31 |
Family
ID=14158173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9618287A Pending JPS63262861A (en) | 1987-04-21 | 1987-04-21 | Cooling body for semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63262861A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995017765A2 (en) * | 1993-12-15 | 1995-06-29 | Aavid Engineering, Inc. | Liquid cooled heat sink for cooling electronic components |
US5829516A (en) * | 1993-12-15 | 1998-11-03 | Aavid Thermal Products, Inc. | Liquid cooled heat sink for cooling electronic components |
US6351381B1 (en) | 2001-06-20 | 2002-02-26 | Thermal Corp. | Heat management system |
JP2002295386A (en) * | 2001-01-26 | 2002-10-09 | Toyota Industries Corp | Scroll compressor |
-
1987
- 1987-04-21 JP JP9618287A patent/JPS63262861A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995017765A2 (en) * | 1993-12-15 | 1995-06-29 | Aavid Engineering, Inc. | Liquid cooled heat sink for cooling electronic components |
WO1995017765A3 (en) * | 1993-12-15 | 1995-08-03 | Aavid Eng Inc | Liquid cooled heat sink for cooling electronic components |
US5829516A (en) * | 1993-12-15 | 1998-11-03 | Aavid Thermal Products, Inc. | Liquid cooled heat sink for cooling electronic components |
JP2002295386A (en) * | 2001-01-26 | 2002-10-09 | Toyota Industries Corp | Scroll compressor |
JP4686919B2 (en) * | 2001-01-26 | 2011-05-25 | 株式会社豊田自動織機 | Scroll compressor |
US6351381B1 (en) | 2001-06-20 | 2002-02-26 | Thermal Corp. | Heat management system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06101524B2 (en) | Cooling element for semiconductor element | |
CN109982543B (en) | Liquid cooling radiator | |
JP2001035981A (en) | Cooler for semiconductor element and power-converting device using it | |
CN108141989A (en) | For cooling down the heat exchanger of electric device | |
JP5394405B2 (en) | Heat exchanger | |
CN101483173A (en) | Semiconductor cooling structure | |
US11971224B2 (en) | Plate-fin heat exchanger | |
JPS63262861A (en) | Cooling body for semiconductor element | |
US3323587A (en) | Rolled plate type cooler | |
CN206525066U (en) | Cooling water drainage device and its water cooling module | |
JP4080479B2 (en) | Liquid cooler cooler | |
CN115966533B (en) | A Manifold Microchannel Radiator with Counterflow Zone | |
JP2000243886A (en) | Cooling body for power semiconductor element | |
JP3210199B2 (en) | Cooling body for flat semiconductor devices | |
TWI619918B (en) | Cooling water drain device and water cooling module thereof | |
CN215955006U (en) | An efficient heat dissipation chip radiator for transformers | |
JP2009194038A (en) | Cooler and power converting device using the same | |
EP0401743A1 (en) | Electrically insulated heat pipe type cooling apparatus for semiconductor | |
KR102069804B1 (en) | Heat exchanger and heat exchanging device comprising the same | |
US20160161190A1 (en) | Collector pipe for a heat exchanger device, a heat exchanger device and a method for emptying a heat exchanger device | |
RU2201014C2 (en) | Cooling apparatus for semiconductor power devices | |
CN107192284B (en) | Compact heat exchange device | |
JPS62207172A (en) | Cooling body for semiconductor element | |
CN209263755U (en) | Strip-fin oil cooler Novel fin and fin channels structure | |
RU1800504C (en) | Semiconductor converter |