[go: up one dir, main page]

JPS63262437A - Copper alloy with excellent conductivity and strength - Google Patents

Copper alloy with excellent conductivity and strength

Info

Publication number
JPS63262437A
JPS63262437A JP9815787A JP9815787A JPS63262437A JP S63262437 A JPS63262437 A JP S63262437A JP 9815787 A JP9815787 A JP 9815787A JP 9815787 A JP9815787 A JP 9815787A JP S63262437 A JPS63262437 A JP S63262437A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
weight
copper
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9815787A
Other languages
Japanese (ja)
Other versions
JPH0355529B2 (en
Inventor
Masanori Kato
正憲 加藤
Sakiya Nishiura
西浦 蒼生也
Kanji Tanaka
田中 完児
Takatoki Fukuda
福田 孝祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP9815787A priority Critical patent/JPS63262437A/en
Publication of JPS63262437A publication Critical patent/JPS63262437A/en
Publication of JPH0355529B2 publication Critical patent/JPH0355529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce a copper alloy having high electroconductivity, excellent tensile strength and bending resistance by prepg. the copper alloy contg. specific ratios of Mg, P and Sb. CONSTITUTION:The copper alloy contg., by weight, 0.02-0.5% Mg, 35-100% P for Mg, 0.01-0.5% Sb and the balance consisting substantially of copper is prepd. By this method, the copper alloy which has the excellent bending strength, tensile strength, electroconductivity and various mechanical strength and is suitable as a conductor of an electric wire for wiring in an electronic equipment, etc., is obtd.

Description

【発明の詳細な説明】 皮呈上象科里公立 本発明は、電子機器内配線用電線の導体及び産業ロボッ
ト用ケーブルの導体に利用するのに適した高い導電性を
有するとともに、引張強度及び耐屈曲性の優れた銅合金
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has high conductivity suitable for use as a conductor for wiring in electronic devices and a conductor for cables for industrial robots, and also has high tensile strength and Concerning a copper alloy with excellent bending resistance.

l米及歪 従来、広い温度範囲にわたって導電性、引張強度などの
機械特性の点で優れた性質を示す銅合金、例えばマグネ
シウムとリンを特定範囲量含有する銅合金が知られてい
る(特公昭49−10894号)。
Copper alloys that exhibit excellent mechanical properties such as electrical conductivity and tensile strength over a wide temperature range are known, for example, copper alloys that contain magnesium and phosphorus in specific amounts (Tokuko Showa). No. 49-10894).

また、高導電性、耐熱性銅合金としてジルコニウムを0
.01−0.15重量%含有する銅合金も知られている
In addition, zirconium is used as a highly conductive and heat-resistant copper alloy.
.. Copper alloys containing 0.01-0.15% by weight are also known.

而して、近年、電子機器の発達とともに益々軽薄短小化
が進み、それに伴い電子機器内配線用電線の導体も細径
化の傾向にあるため、従来の導電用高力銅合金では十分
な機能を発揮できなくなってきている0例えば上記の特
公昭49−10894号によるMgとPを含有する銅合
金では0.3ms+φ〜0.0IIIsφ程度の細径の
導体にした場合、電子機器製作工程中に加わる熱に対し
て十分な強度を維持できない。
In recent years, with the development of electronic devices, they have become increasingly lighter, thinner, and shorter, and as a result, the conductors for wiring in electronic devices are also becoming smaller in diameter. For example, in the copper alloy containing Mg and P according to the above-mentioned Japanese Patent Publication No. 49-10894, when the conductor has a small diameter of about 0.3ms+φ to 0.0IIIsφ, Cannot maintain sufficient strength against applied heat.

すなわち、耐熱性が十分でないため、ロウ付は時などに
加熱を受けた箇所が機械的弱点部となって断線を生じ易
くなる。また、上記のジルコニウム銅においては、繰返
し曲げ強さが不足しているため、前記導体の端子圧着接
続箇所などで断線を生じ易い欠点がある。因に、この場
合ジルコニウム含有量を多(して高力化しようとしても
該含有量にバラツキが起るので安定した品質の合金が得
られない。
That is, since the heat resistance is not sufficient, the parts that are sometimes heated during brazing become mechanical weak points and are prone to wire breakage. Furthermore, the above-mentioned zirconium copper has the disadvantage that it is prone to breakage at terminal crimping connection points of the conductor, since it lacks repeated bending strength. Incidentally, in this case, even if an attempt is made to increase the strength by increasing the zirconium content, the content will vary, making it impossible to obtain an alloy of stable quality.

また、産業ロボットにおいても、教示位置まで繰返し動
作を行うため、これに使用されるロボット用ケーブル導
体では、繰返し曲げや引張りを常に受けることになって
断線を生じ易い条件に置かれるようになり、加うるに、
高温雰囲気で使用される産業ロボット用ケーブル導体で
は加熱下での繰返し曲げや引張を受けることになる。
Furthermore, since industrial robots repeatedly operate up to the taught position, the robot cable conductors used in these robots are constantly subjected to repeated bending and tension, making them susceptible to wire breakage. In addition,
Cable conductors for industrial robots used in high-temperature environments are subjected to repeated bending and tension under heating.

したがって、このような条件下では導体の繰返し曲げ強
度や引張強度は−そう低下するようになる。
Therefore, under such conditions, the cyclic bending strength and tensile strength of the conductor are significantly reduced.

畝上のごとく、電子機器内配線用電線の導体の細径下と
産業ロボット用ケーブル導体の−そうの苛酷条件下での
使用に伴い、これら導体に対しては、従来の優れた耐熱
性と良好な導電性に加えて、繰返し曲げ強度及び引張強
度の−そう向上した導体の提供が要望されている。
Due to the use of these conductors under harsh conditions, such as small-diameter conductors for wiring in electronic equipment and cable conductors for industrial robots, these conductors are not as good as conventional ones with excellent heat resistance. In addition to good electrical conductivity, there is a need to provide conductors that have improved cyclic bending strength and tensile strength.

■が ° しようとする蕾 本発明は、畝上の状況に鑑みなされたものであって、小
型化の各種電子機器内配線用電線の細径導体並びに高温
雰囲気下で使用される産業ロボット用ケーブルの導体と
しても有効に利用し得る、優れた曲げ強度と引張強度を
有する、導電性と種々の機械的強度の優れた銅合金を提
供することを課題とする。
The present invention was developed in view of the situation on the ridge, and is suitable for use in small-diameter conductors for wiring in various miniaturized electronic devices and cables for industrial robots used in high-temperature atmospheres. An object of the present invention is to provide a copper alloy having excellent bending strength and tensile strength, excellent conductivity, and various mechanical strengths, which can be effectively used as a conductor.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

又皿■構底 本発明の特徴は、マグネシウムを0.02〜0.5重量
%、リンをマグネシウムに対して35〜100重量%及
びアンチモンを0.01〜0.5重■%含有し、残部が
実質的に銅から成る銅合金にある。
The feature of the present invention is that it contains 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus relative to magnesium, and 0.01 to 0.5% by weight of antimony. is present in a copper alloy consisting essentially of copper.

i+′tを”′するための 本発明に係る銅合金は、主としてその機械的強度を高め
るために、基材としての電気銅にMgを0.02〜0.
5重量%と、更にその強度を向上させるためPをMgに
対して35〜100重量%と、引張強度と繰返し曲げ強
度を向上させるために、sbを0.01〜0.5重量%
添加する。
In the copper alloy according to the present invention for making i+'t, 0.02 to 0.0.
5% by weight, and 35 to 100% by weight of P to Mg to further improve its strength, and 0.01 to 0.5% by weight of sb to improve tensile strength and repeated bending strength.
Added.

上記各元素を上記の各特定範囲に添加する根拠は下記理
由に基づく。
The basis for adding each of the above elements to each of the above specific ranges is based on the following reasons.

Mgについては、その添加量が0.5重量%を超えると
得られる銅合金の導電性の低下が大きくなり、加うるに
Mgの銅合金における含有量の制御が難しいので、銅合
金の品質が不安定となる。一方、Mgが0.02重量%
未満では繰返し曲げ強度及び引張強度の改善効果が少(
なる。また、Pについては、その添加量が特定範囲の下
限未満ではPの添加効果が発揮されず、一方上限を超え
ると銅合金の導電性を却って損うようになる。
Regarding Mg, if the amount added exceeds 0.5% by weight, the conductivity of the resulting copper alloy will decrease significantly, and in addition, it is difficult to control the Mg content in the copper alloy, so the quality of the copper alloy will deteriorate. Becomes unstable. On the other hand, Mg is 0.02% by weight
If it is less than
Become. Regarding P, if the amount added is less than the lower limit of the specific range, the effect of adding P will not be exhibited, while if it exceeds the upper limit, the conductivity of the copper alloy will be impaired.

次に、sbの添加量については、0.01重量%未満で
は、繰返し曲げ強度及び引張強度の向上効果が十分でな
く、一方0.5重量%を超えると銅合金の高導電性を維
持できなくなる。
Next, regarding the amount of sb added, if it is less than 0.01% by weight, the effect of improving cyclic bending strength and tensile strength will not be sufficient, while if it exceeds 0.5% by weight, the high conductivity of the copper alloy cannot be maintained. It disappears.

本発明に従って、Mgを0.02〜0.5重量%、Pを
Mgに対して35〜100重量%、及び5b−t−o、
ot〜0.5重量%添加して含有させた銅合金の導電性
、引張強度、伸び及び繰返し曲げ強度を常法により測定
した結果を示すと表1のとおりである。
According to the invention, Mg is 0.02-0.5% by weight, P is 35-100% by weight relative to Mg, and 5b-t-o,
Table 1 shows the results of measuring the conductivity, tensile strength, elongation, and repeated bending strength of the copper alloy containing 0.5% by weight using conventional methods.

なお、比較として上記各元素を上記の特定範囲外の量含
有させた銅合金についても同様にして測定した結果を併
せて表1に示した。
For comparison, the results of similar measurements for copper alloys containing the above-mentioned elements in amounts outside the specified ranges are also shown in Table 1.

表1にみられるとおり、本発明による組成の銅合金は、
上記各物性のいずれも平均して良好であるのに対し、本
発明の組成範囲外の比較例では各物性のいずれかが劣っ
ていることがわかる。
As seen in Table 1, the copper alloy with the composition according to the present invention is
It can be seen that while all of the above physical properties are good on average, the comparative examples outside the composition range of the present invention are poor in any of the physical properties.

したがって、本発明による銅合金は、従来の電子機器内
配線用電線の導体や産業ロボット用ケーブルの導体とし
て好適であるのみならず、電子機器の小型化に伴う0.
3mmφ〜0.01+w−φ程度の極めて細線な導体及
び繰返し動作を行うロボット用ケーブル導体としても有
効に利用し得る性能を有する。
Therefore, the copper alloy according to the present invention is not only suitable as a conductor for conventional wiring wires in electronic equipment or as a conductor for cables for industrial robots, but also as a conductor for cables for industrial robots.
It has the ability to be effectively used as an extremely thin conductor of about 3 mmφ to 0.01+w−φ and as a cable conductor for robots that perform repetitive operations.

以下実施例により、本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例 電気銅を高周波溶解炉でアルゴン雰囲気下に溶解したも
のに、Mgfo、41重量%、Pを0.37重量%及び
sbを0.31重量%の組成になるようにCu−Mg。
EXAMPLE Electrolytic copper was melted in an argon atmosphere in a high-frequency melting furnace, and Cu-Mg was added so as to have a composition of 41% by weight of Mgfo, 0.37% by weight of P, and 0.31% by weight of sb.

Go−Pの各母合金及びsbメタルを添加して、15m
s+角X 200a+m長の鋳塊を溶製した。
Add each mother alloy of Go-P and sb metal, 15m
An ingot with a length of s + angle x 200a + m was produced.

を行って611I11φ線となし、850 ’Cで1時
間溶体化処理を行った0次いで、上述のように処理した
線を更に0.08+ssφまで冷間伸線し、400 t
で1時間焼鈍してCu−Mg−P−5bの銅合金を得た
Then, the wire treated as described above was further cold drawn to 0.08+ssφ and 400 t.
The alloy was annealed for 1 hour to obtain a Cu-Mg-P-5b copper alloy.

得られた銅合金の引張強度、伸び、導電率及び繰返し曲
げ強度を常法により測定した。
The tensile strength, elongation, electrical conductivity, and repeated bending strength of the obtained copper alloy were measured by conventional methods.

結果は下記のとおりである。The results are as follows.

Claims (1)

【特許請求の範囲】[Claims]  マグネシウムを0.02〜0.5重量%、リンをマグ
ネシウムに対して35〜100重量%及びアンチモンを
0.01〜0.5重量%含有し、残部が実質的に銅から
成ることを特徴とする高導電性銅合金。
It is characterized by containing 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus based on magnesium, and 0.01 to 0.5% by weight of antimony, with the balance consisting essentially of copper. Highly conductive copper alloy.
JP9815787A 1987-04-21 1987-04-21 Copper alloy with excellent conductivity and strength Granted JPS63262437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9815787A JPS63262437A (en) 1987-04-21 1987-04-21 Copper alloy with excellent conductivity and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9815787A JPS63262437A (en) 1987-04-21 1987-04-21 Copper alloy with excellent conductivity and strength

Publications (2)

Publication Number Publication Date
JPS63262437A true JPS63262437A (en) 1988-10-28
JPH0355529B2 JPH0355529B2 (en) 1991-08-23

Family

ID=14212297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9815787A Granted JPS63262437A (en) 1987-04-21 1987-04-21 Copper alloy with excellent conductivity and strength

Country Status (1)

Country Link
JP (1) JPS63262437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267390A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd flexible printed board
JPH04290285A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0523340U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
US6818991B1 (en) * 1999-06-01 2004-11-16 Nec Electronics Corporation Copper-alloy interconnection layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267390A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd flexible printed board
JPH04290285A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0523340U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
US6818991B1 (en) * 1999-06-01 2004-11-16 Nec Electronics Corporation Copper-alloy interconnection layer

Also Published As

Publication number Publication date
JPH0355529B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JPWO2010082671A1 (en) Aluminum alloy wire
JPS633936B2 (en)
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP4288844B2 (en) Extra fine copper alloy wire
JPS63262435A (en) High strength, high conductivity copper alloy
JPH0352523B2 (en)
JPS63262437A (en) Copper alloy with excellent conductivity and strength
JPS63243239A (en) Highly conductive copper alloy conductor wire with excellent bending resistance and tensile strength
JPS63243240A (en) High conductivity, high strength copper alloy
JPS63243241A (en) Highly conductive heat resistant bending resistant high strength copper alloy
JP2813652B2 (en) High strength copper alloy for conductive
JPS63262436A (en) Copper alloy with high strength and high conductivity
JPS63243242A (en) Copper alloy with excellent conductivity, heat resistance and bending resistance
JPH0246656B2 (en) TAIKUTSUKYOKUKORYOKUKODODENSEIDOGOKIN
JPS62214145A (en) Bending resistant copper alloy having high strength and electric conductivity
JPS6176636A (en) Copper alloy for wire conductor
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH0461055B2 (en)
JPS6256217B2 (en)
JPS6030043B2 (en) Automotive wire conductor
JPH06158201A (en) High strength and high conductivity copper alloy
JPH0348256B2 (en)
JPS6245297B2 (en)
JPS634893B2 (en)