[go: up one dir, main page]

JPS63261554A - information storage device - Google Patents

information storage device

Info

Publication number
JPS63261554A
JPS63261554A JP9537887A JP9537887A JPS63261554A JP S63261554 A JPS63261554 A JP S63261554A JP 9537887 A JP9537887 A JP 9537887A JP 9537887 A JP9537887 A JP 9537887A JP S63261554 A JPS63261554 A JP S63261554A
Authority
JP
Japan
Prior art keywords
information
information storage
storage device
atomic
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9537887A
Other languages
Japanese (ja)
Inventor
Yoshie Kodera
小寺 喜衛
Nobuhiro Tokujiyuku
徳宿 伸弘
Masaharu Ishigaki
正治 石垣
Norio Goto
典雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9537887A priority Critical patent/JPS63261554A/en
Publication of JPS63261554A publication Critical patent/JPS63261554A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/1472Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the form
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/149Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the memorising material or structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To realize the ultra-high density recording and high speed reproduction of an information by setting a projection part on a memory medium face and providing a sensor of a space current in opposition to the medium face. CONSTITUTION:The atom. lump 2a formed on a substrate 1 is formed in the shape felling down a triangular column so as to enable to absorb its displacement with a probe 3 and the arrangement pitch of the atom. lump 2a line becomes of a signal. The substrate 1 coats a positive photo-resist in about 1,000Angstrom on the GaAs(110) face subjected to cleavage, executes a laser exposure for forming the guide groove 24 for tracking, exposes the GaAs face by subjecting the exposing part to chemical etching and removes the GaAs face by plasma etching to form a groove. Thereafter, the resist on the GaAs face is removed by plasma usher to form the substrate 1 having a groove 24. The atomic lump 2a as the memory unit of an information is obtd. by forming an Ag with its deposition on the GaAs face by the ion beam deposition restricted in a slit shape. Since the shape of the memory unit of the information can reach up to an atomic level, the drastical improvement in recording density is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報の記憶再生に係り、特に情報記憶の超高
密度化、情報伝送の高速化に適した情報記憶装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the storage and reproduction of information, and particularly to an information storage device suitable for ultra-high density information storage and high speed information transmission.

【従来の技術〕[Conventional technology]

磁気ディスク、磁気テープに代わる記録(又は記憶)再
生方式として、光学的に情報の記録再生を行う、いわゆ
る光ディスクが実用化されている。
2. Description of the Related Art As a recording (or storage) and reproducing method replacing magnetic disks and magnetic tapes, so-called optical disks, which optically record and reproduce information, have been put into practical use.

かかる光ディスクは半導体レーザの急速な発展および光
学設計技術の発展に裏づけされ、再生専用、追記可能型
ディスク等が一般に見られるようになった(例えば、岩
村總−鳩著「ビデオディスクとDAD入門」コロナ社発
行、昭和57年11月1日、第6章、第10章を参照の
こと)。
Supported by the rapid development of semiconductor lasers and the development of optical design technology, such optical discs have become commonly available in playback-only and write-once type discs (for example, "Introduction to Video Discs and DAD" written by So-Hato Iwamura). Published by Corona Publishing, November 1, 1981, see Chapters 6 and 10).

一方、これら光ディスクは光の回折限界近くにまで絞ら
れた光束によって情報の記録再生を行うことを基本原理
としているため、情報の単位形状(いわゆるビット)は
少なくとも0.4μmの大きさを必要と゛し、記憶容量
の増加は光デイスク形状の大型化による方法がとられる
On the other hand, since the basic principle of these optical discs is to record and reproduce information using a beam of light focused close to the diffraction limit of light, the unit shape of information (so-called bit) must be at least 0.4 μm in size. However, the storage capacity can be increased by increasing the size of the optical disk.

また、光ディスクに記録された情報を再生するに際して
も、ディスクの回転周波数とピット形状の制約亦ら、ク
ロック周波数としては約10MHzが上限とされている
Furthermore, when reproducing information recorded on an optical disc, the upper limit of the clock frequency is set at about 10 MHz due to restrictions on the rotational frequency of the disc and the pit shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、光デイスクメモリは、いわゆ
る磁気メモリに比べて記録密度が高いにもかかわらず記
録密度の大幅な向上が光の回折限界の制約のため望めな
い(短波長レーザによっても2〜3倍の密度向上)とい
う問題があった。
In the above-mentioned conventional technology, although optical disk memory has a higher recording density than so-called magnetic memory, it is difficult to expect a significant increase in recording density due to the restriction of the diffraction limit of light (even with short wavelength lasers, There was a problem that the density was increased by 3 times.

また、記憶密度の大幅な向上が配慮されておらず、情報
の再生速度の点からも問題があった。
Furthermore, no consideration was given to a significant increase in storage density, and there were also problems in terms of information reproduction speed.

本発明は、光ディスクの限界を越える情報の超高密度記
録、高速再生(転送速度の大幅向上)を行う情報記憶装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an information storage device that performs ultra-high-density recording and high-speed reproduction (significantly improved transfer speed) of information that exceeds the limits of optical discs.

(問題点を解決するための手段〕 上記目的は、メモリ媒体面上に微少原子塊等による突起
部を設定し、この媒体面に対向して空間電流(トンネル
電流)のセンサ(検体)を設けることにより達成される
(Means for solving the problem) The above purpose is to set a protrusion made of minute atomic masses etc. on the surface of the memory medium, and install a space current (tunnel current) sensor (sample) opposite to this medium surface. This is achieved by

(作用〕 情報の記録再生の基本的な認識形態は、物質がそこに存
在するか否かであり、物質、物質構成結晶、原子、電子
等々の微細化まで許される。
(Operation) The basic form of recognition for recording and reproducing information is whether a substance exists or not, and even miniaturization of substances, substance constituent crystals, atoms, electrons, etc. is allowed.

従って、原子の存在の有無をある平面上に設定すること
によって、情報の基本的な単位の縮小(即ち、記録密度
の向上)が達成される。
Therefore, by setting the presence or absence of atoms on a certain plane, the basic unit of information can be reduced (that is, the recording density can be improved).

光ディスクの情報の記憶単位が約0.4μm(4000
人)の円形とすれば、原子の存在(約2人径)の情報の
記憶単位では光ディスクに比べて、原理的に4X10’
倍の高密度化が可能となる。
The storage unit of information on an optical disk is approximately 0.4 μm (4000 μm).
In principle, the storage unit of information of the existence of atoms (approximately 2 human diameter) is 4X10' compared to an optical disk.
It is possible to double the density.

従って、超高密度記憶装置として数個もしくは数百個の
原子塊を情報の記憶単位としたメモリ媒体が可能である
Therefore, a memory medium in which several or hundreds of atomic blocks are used as information storage units can be used as an ultra-high-density storage device.

第9図は本発明の原理説明図であって、単結晶へき開面
1上に形成させた原子塊2を基板平面1から外空間に凸
状に設け、原子塊2からの高さZと基板平面1からの高
さZoを検出する探針3を原子塊上空(約数10人の距
離)に対向させる。
FIG. 9 is a diagram explaining the principle of the present invention, in which an atomic mass 2 formed on a single crystal cleavage plane 1 is provided in a convex shape from the substrate plane 1 to the outer space, and the height Z from the atomic mass 2 and the substrate are A probe 3 for detecting the height Zo from the plane 1 is placed above the atomic mass (at a distance of approximately several tens of people).

今、原子塊として導電性物質の金属、例えばNi、Ag
を用いると、金属中の電導電子は電気的に引力によって
金属内に束縛されている。
Now, as an atomic mass, conductive metals such as Ni and Ag
When using , the conducting electrons in the metal are electrically bound within the metal by attractive force.

この引力を振り切って、上記電子を外部に取り出すには
、ある値以上のエネルギー(仕事関数)を与えなければ
ならない。
In order to overcome this attractive force and extract the electrons to the outside, energy (work function) exceeding a certain value must be applied.

ここで、距離Zだけ離れた金属の間に仕事関数φより低
いエネルギーの電圧Vを加えて流れるトンネル電流密度
JTは自ゐ電子近似で、J、−(aβφ壷 V/ Z)
exp  (−a Zφ番 )と表すことができ、J7
は距NZの指数関数となる。ここで、a−4π(2m)
番/h=10.25nm−’(eV)曇、β−8”/4
rth(eは電荷、mは電子質量、hはブランク定数)
であり、金属の種類にはほとんど左右されない定数であ
る。また、Zoは探針3と基板1との距離で、Zo >
zである。
Here, the tunnel current density JT that flows between metals separated by a distance Z by applying a voltage V with energy lower than the work function φ is the self-electron approximation, J, - (aβφ pot V/Z)
It can be expressed as exp (-a Zφ number), and J7
is an exponential function of the distance NZ. Here, a-4π(2m)
No./h=10.25nm-' (eV) cloudy, β-8"/4
rth (e is electric charge, m is electron mass, h is blank constant)
is a constant that is almost unaffected by the type of metal. In addition, Zo is the distance between the probe 3 and the substrate 1, and Zo >
It is z.

従って、金属表面ではφは1〜5eVであるから、距離
Zを1〜3人変えるとトンネル電流(空間内電気信号)
は1指度わる。
Therefore, since φ is 1 to 5 eV on the metal surface, changing the distance Z by 1 to 3 people will increase the tunnel current (electrical signal in space).
The difference is one finger.

第10図は第9図の構成により検出されたトンネル電流
を示すグラフ図であって、このように原子塊と基板表面
の高さが1Å以上の変化(原子塊の存在の有無)がトン
ネル電流密度J、の指数関数的変化となって得られる。
FIG. 10 is a graph showing the tunneling current detected by the configuration shown in FIG. It is obtained as an exponential change in density J.

この基本原理は例えば、日経マイクロデバイス。This basic principle is used, for example, in Nikkei Microdevices.

1986年、11月号、P、81〜97に記載されてい
るトンネル顕微鏡(S T M : S cannin
gTunneling  Microscopy )の
原理に等しい、STMではトンネル電流が常に一定にな
るように、探針と原子間の距離を調整することによって
原子配列の情報を得るが、本発明では一定閾値を越える
トンネル電流によって、情報の有無を認識することがで
きる。
Tunneling microscope (STM) described in November issue, 1986, P, 81-97.
In STM, information on the atomic arrangement is obtained by adjusting the distance between the tip and the atoms so that the tunneling current is always constant, but in the present invention, the tunneling current exceeding a certain threshold is , can recognize the presence or absence of information.

また、情報の記憶単位と探針の位置を合わせるためには
光学ディスクの情報再生と同様に、同心円もしくはスパ
イラル状の溝もしくはピット列のトラックを設け、この
トラック間もしくはトラック内に情報の記憶単位を形成
するとよい。
In addition, in order to align the information storage unit with the position of the probe, concentric circles or spiral grooves or pit row tracks are provided, and the information storage unit is placed between or within the tracks, similar to when reproducing information from an optical disk. It is recommended to form a

このようにすることによって、センサと連結した光学式
トラッキング方式(溝もしくはピット列による回折効果
利用)が容易に採用できる。
By doing so, it is possible to easily employ an optical tracking method (utilizing the diffraction effect by grooves or pit rows) connected to the sensor.

ただし、この場合には記録面密度が光ディスクに比べて
103倍程度に留まるが、トンネル電流を利用したトラ
ッキング方式も容易に達成できる。
However, in this case, the recording surface density remains about 103 times that of an optical disk, but a tracking method using tunnel current can also be easily achieved.

さらに、トラッキング精度を高めるためには情報の記憶
単位を幅広の突起とすることによって、センサ位置との
ズレを解消することができる。
Furthermore, in order to improve tracking accuracy, the information storage unit is made into a wide protrusion, thereby eliminating the misalignment with the sensor position.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による情報記憶装置を用いた情報記憶再
生装置の一実施例を示すブロック図であって、1は情報
の記憶単位(原子塊列)が形成されている基板(被検体
またはメモリ媒体)、3はトンネル電流(空間内電気信
号)の探針(検体またはセンサ)、4は探針3の駆動装
置、5はトンネル電流の検出増幅回路、6は基板(メモ
リ媒体)回転駆動装置、7は信号記録再生回路、8は探
針3と基板1とのZ軸粗調整に用いるレーザ光源、9は
ハーフミラ−110は集光レンズ、11はフォーカス・
トラッキング調整器である。
FIG. 1 is a block diagram showing an embodiment of an information storage/reproduction device using an information storage device according to the present invention, in which 1 is a substrate (substrate or 3 is a probe (sample or sensor) for tunneling current (electrical signal in space), 4 is a driving device for the probe 3, 5 is a detection amplifier circuit for tunneling current, 6 is a substrate (memory medium) rotation drive 7 is a signal recording/reproducing circuit; 8 is a laser light source used for coarse Z-axis adjustment between the probe 3 and the substrate 1; 9 is a half mirror; 110 is a condensing lens; 11 is a focusing lens;
It is a tracking adjuster.

同図において、レーザ光源8からのレーザ光をハーフミ
ラ−9,集光レンズ10を介して、基板1に形成した溝
に集光させ、フォーカス・トラッキング制御信号となる
その回折光強度を光学センサを有するフォーカス・トラ
ッキング調整器11にて得る。
In the figure, laser light from a laser light source 8 is focused on a groove formed in a substrate 1 via a half mirror 9 and a condensing lens 10, and the intensity of the diffracted light, which becomes a focus/tracking control signal, is detected by an optical sensor. The focus and tracking adjuster 11 has the following functions.

フォーカス・トラッキング調整器11は探針3の駆動装
置4と連動し、基板1面に粗調整で2軸合わせが行える
。ここで、フォーカス・トラッキング調整器11と探針
3の位置関係はほぼ同一トラック上に設定するのが好ま
しい。
The focus/tracking adjuster 11 works in conjunction with the driving device 4 for the probe 3, and can perform two-axis alignment on the surface of the substrate by rough adjustment. Here, it is preferable that the focus/tracking adjuster 11 and the probe 3 be set on substantially the same track.

この後、基板1を回転させ駆動装置4に組み込んだ圧電
素子(図示を省略)に微少電圧を印加して、原子塊から
のトンネル電流(単位信号源)が検出できるよう微調整
を行い、Z軸合わせを完了する。
After that, the substrate 1 is rotated and a minute voltage is applied to the piezoelectric element (not shown) incorporated in the drive device 4 to make fine adjustments so that the tunnel current (unit signal source) from the atomic mass can be detected. Complete alignment.

第2図は情報記録媒体の一実施例を示す斜視図であって
、1は基板(メモリ媒体)、2aは原子塊、3は探針、
24は案内溝、25は光スポツト領域である。
FIG. 2 is a perspective view showing an embodiment of an information recording medium, in which 1 is a substrate (memory medium), 2a is an atomic mass, 3 is a probe,
24 is a guide groove, and 25 is a light spot area.

同図において、基Fil上に形成された原子塊2aは探
針3との位置ズレを吸収できるよう三角柱を倒した形状
に形成し、原子塊2a列の配列ピッチが信号となる。
In the figure, the atomic masses 2a formed on the base Fil are formed in the shape of a tilted triangular prism so as to absorb the positional deviation with respect to the probe 3, and the arrangement pitch of the atomic masses 2a rows serves as a signal.

基板1はへき関したGaAs  (110)面にポジ型
のフォトレジストを約1000人塗布し、トラッキング
のための案内溝(幅約0.4μm)24形成のためレー
ザ露光(He−Cd、N−A−0,9)L、露光部を化
学エツチングしてGaAs面を露出させ、プラズマエツ
チングによってGaAs面を除去し、溝形成する。
For the substrate 1, approximately 1000 positive photoresists were coated on the isolated GaAs (110) surface, and laser exposure (He-Cd, N- A-0, 9) L, the exposed portion is chemically etched to expose the GaAs surface, and the GaAs surface is removed by plasma etching to form a groove.

この後、プラズマアッシャにてGaAs面上のレジスト
を除去し、溝24のある基板1を形成した。
Thereafter, the resist on the GaAs surface was removed using a plasma asher to form the substrate 1 with grooves 24.

情報の記憶単位としての原子塊2aはスリット状に絞ら
れたイオンビーム蒸着によって、GaA3面上にAgを
蒸着形成して得た。その膜厚は厚くするとスリット状の
形状が(ずれ、連続平面的になるので10〜500人の
範囲が好ましい。
The atomic mass 2a as the information storage unit was obtained by depositing Ag on the GaA3 surface by ion beam deposition focused in a slit shape. The thickness of the film is preferably in the range of 10 to 500 because the thicker the film, the more the slit-like shape (displacement) becomes continuous and planar.

第3図は微小原子塊の形成装置の一例を示すブロック図
であって、原子イオン源12から発したイオンビーム1
3は信号源14により制御されたシャッター15により
オン、オフする。
FIG. 3 is a block diagram showing an example of a device for forming micro atomic masses, in which an ion beam 1 emitted from an atomic ion source 12 is shown.
3 is turned on and off by a shutter 15 controlled by a signal source 14.

シャッター15を介してきたイオンビームは多段構成さ
れたコリメータ16により所定の形状に整形され、メモ
リ基板1上に微小原子塊2を形成する。
The ion beam that has passed through the shutter 15 is shaped into a predetermined shape by a multistage collimator 16 to form a micro atomic mass 2 on the memory substrate 1 .

メモリ基板1のステージ17は圧電素子18゜圧電モー
タ19により矢印方向に移動制御される。
The stage 17 of the memory board 1 is controlled to move in the direction of the arrow by a piezoelectric element 18 and a piezoelectric motor 19.

ここで、記録密度を高めるためにはイオンビームの幅を
5Å以下と小さくすることが必要である。
Here, in order to increase the recording density, it is necessary to reduce the width of the ion beam to 5 Å or less.

第4図は多段構成のコリメータ16の一例を示す構成図
である。
FIG. 4 is a configuration diagram showing an example of the collimator 16 having a multi-stage configuration.

同図において、固定されたスリット群20aと20bと
の間に圧電素子21により微少に変位可能なスリット2
0cを設け、さらにスリット2゜Cに原子イオンの探針
22を設け、探針22部に飛来する原子数を常に一定と
するように制御回路23で制御する。
In the figure, a slit 2 that can be slightly displaced by a piezoelectric element 21 is located between fixed slit groups 20a and 20b.
0c, and a probe 22 for atomic ions is provided in the slit 2°C, and a control circuit 23 controls so that the number of atoms flying to the probe 22 is always constant.

イオンビームはスリット20aから20b方向に飛来す
る。ビームを絞るために矢印方向に電界。
The ion beam flies in the direction from the slit 20a to 20b. Electric field in the direction of the arrow to focus the beam.

磁界を印加することが有効である。Applying a magnetic field is effective.

スリット群のスリットの重なりを段違いに設定すること
と、微少変位してコリメータから出る原子数を一定に制
御することにより、イオンビームを十分に絞り、かつ一
定量に制御出来るので、メモリ基体上に微小の原子塊を
形成できる。
By setting the overlap of the slits in the slit group at different levels and by controlling the number of atoms that are slightly displaced and emitted from the collimator to a constant value, the ion beam can be sufficiently focused and controlled to a constant amount. Can form tiny atomic clusters.

また、さらに第3図において、メモリ基体1は圧電モー
タ19により移動させており、10人程度の送りも可能
であり、極めて微少ピットでの原子塊列の形成が可能で
ある。
Further, in FIG. 3, the memory substrate 1 is moved by a piezoelectric motor 19, and it is possible to move about 10 people, and it is possible to form an array of atomic clusters with extremely small pits.

さらに、メモリ基体lは圧電素子18により、多段コリ
メータ16との間隔りを変位センサ(図示を省略)によ
り一定に保つように構成しているので高精度に原子塊列
を形成することができる。
Further, since the memory base l is configured to maintain a constant distance from the multi-stage collimator 16 using a displacement sensor (not shown) using the piezoelectric element 18, it is possible to form an atomic cluster array with high precision.

ここで、原子塊の高さは10〜500人が好ましい、何
故なら、■基板表面の凹凸が2原子厚さ分(約2人)の
ときのノイズレベルはアンプノイズレベルと同様(1,
7X 10−” A/30 KHzバンド幅)であるこ
と、0500Å以上の原子塊形成では原子塊の形成歪に
伴う形状異常(例えば、エレクトロマイグレーション)
が発生しやすいからである。
Here, the height of the atomic mass is preferably 10 to 500 people, because: ■ When the unevenness of the substrate surface is two atoms thick (approximately 2 people), the noise level is similar to the amplifier noise level (1,
7X 10-” A/30 KHz bandwidth), and the formation of atomic clusters of 0500 Å or more may cause shape abnormalities due to formation distortion of the atomic clusters (e.g., electromigration).
This is because it is easy to occur.

以上の様にして基体1を前述した情報記録再生装!にて
再生した結果、光ディスクに比べて約103倍の記憶密
度を有したメモリを得ることができた。
The information recording and reproducing device described above has the base 1 as described above! As a result of playback, it was possible to obtain a memory with a storage density approximately 103 times that of an optical disk.

また、情報の書き込みに際しては探針3と原子塊2a間
に仕事関数φより大きいエネルギーφ4に相当する電圧
■を加えて、原子塊2aの数10人を電界蒸発させるこ
とによって容易に信号書き込みができる。
In addition, when writing information, a voltage corresponding to energy φ4 larger than the work function φ is applied between the probe 3 and the atomic lump 2a, and several tens of atoms in the atomic lump 2a are evaporated in an electric field, thereby easily writing a signal. can.

以上、本発明によれば、いわゆ条光学式ディスクに比べ
て高密度の情報記録が可能で、実施例で述べた光学式ト
ラッキング方式を他の方式、例えば本発明によるトンネ
ル電流を利用したトラッキング方式を採用することによ
って、さらに高密度化が可能であることは云うまでもな
い。
As described above, according to the present invention, it is possible to record information at a higher density than the so-called striped optical disk, and the optical tracking method described in the embodiment can be replaced with other methods, such as tracking using tunnel current according to the present invention. It goes without saying that by adopting this method, even higher density is possible.

また、本発明の一実施例では基板材料としてGaAsを
用いたが、他の導電材料、例えばAg。
Further, although GaAs was used as the substrate material in one embodiment of the present invention, other conductive materials such as Ag may also be used.

Ni、AJ!および半導体材料、例えばSt、カルコゲ
ナイド化合物などを用いることができる。
Ni, AJ! and semiconductor materials such as St, chalcogenide compounds, etc. can be used.

さらに、情報の記憶単位としての原子塊形状は本実施例
の三角柱を横にしたもの謡制約されず、例えば円錐状で
あってもよい、この場合には探針の先端形状が三角柱形
状であればよい。
Furthermore, the shape of the atomic mass as a unit of information storage is not limited to the horizontal triangular prism of this embodiment, and may be, for example, conical. In this case, the shape of the tip of the probe may be a triangular prism. Bye.

また、トンネル電流は水中、大気中でも起きることから
、情報記憶媒体の交換も容易である。
Furthermore, since tunnel current occurs both underwater and in the atmosphere, it is easy to replace the information storage medium.

第5図は原子塊2aと探針3のフォーカス調整法を示す
斜視図であって、情報の記憶単位である原子塊2aに隣
接する平面上に原子塊2aと探針3の位置を一定に保つ
制御信号を得るために、他の原子塊列2bを設けておい
てもよい、27はフォーカス微調整用トンネル電流探針
である。
FIG. 5 is a perspective view showing a method of adjusting the focus of the atomic mass 2a and the probe 3, in which the positions of the atomic mass 2a and the probe 3 are kept constant on a plane adjacent to the atomic mass 2a, which is a unit of information storage. In order to obtain a control signal to maintain, another atomic mass array 2b may be provided. Reference numeral 27 is a tunnel current probe for fine focus adjustment.

第6.7.8図はトラッキング手段の他列を示す概念図
であって、複数の探針の3a、3b、3Cを用いて3a
と30のトンネル電流の差信号を利用してトラッキング
制御を行うことができる。
FIG. 6.7.8 is a conceptual diagram showing another row of tracking means, in which a plurality of probes 3a, 3b, and 3C are used to
Tracking control can be performed using the difference signal between the tunnel currents and 30.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、情報の記憶単位
の形状が原子レベルまで到達できるので、記録密度の大
幅な向上が可能で、記録装置の小型化など、上記従来技
術の問題点を除いて、優れた機能の情報記憶装置を提供
することができる。
As explained above, according to the present invention, the shape of the information storage unit can reach the atomic level, so it is possible to significantly improve the recording density and solve the problems of the above-mentioned conventional technology, such as miniaturization of the recording device. However, it is possible to provide an information storage device with excellent functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による情報記憶装置を用いた情報記録再
生装置の一実施例を示すブロック図、第2図は情報記憶
媒体の一実施例を示す斜視図、第3図は微小原子塊の形
成装置の一実施例を示すブロック図、第4図は多段構成
のコリメータ16の一例を示す構成図、第5図はフォー
カス調整法を示す斜視図、第6.7.8図はトラッキン
グ手段の他側を各々示す概念図、第9図は本発明の原理
説明図、第10図は検出されたトンネル電流を示すグラ
フ図である。 1・・・・・・・・・被検体(メモリ媒体)、2・・・
・・・・・・原子塊、3・・・・・・・・・検体(セン
サ又は探針)、4・・・・・・・・・探針駆動装置、5
・・・・・・・・・トンネル電流検出回路、8・・・・
・・・・・レーザ光源、10・・・・・・・・・集光レ
ンズ、12・・・・・・・・・原子イオン源、16・・
・・・・・・・コリメータ、24・・・・・・・・・案
内溝。 第1図 第2図 第3図 第4図 第5図 第6図 第7図     第8図 第9図 第10図
FIG. 1 is a block diagram showing an embodiment of an information recording/reproducing device using an information storage device according to the present invention, FIG. 2 is a perspective view showing an embodiment of an information storage medium, and FIG. FIG. 4 is a block diagram showing an example of a forming device, FIG. 4 is a configuration diagram showing an example of a multi-stage collimator 16, FIG. 5 is a perspective view showing a focus adjustment method, and FIG. 6.7.8 is a diagram showing a tracking means. FIG. 9 is a conceptual diagram showing the other side, FIG. 9 is a diagram explaining the principle of the present invention, and FIG. 10 is a graph diagram showing detected tunnel current. 1... Subject (memory medium), 2...
... Atomic mass, 3 ... Specimen (sensor or probe), 4 ... Probe drive device, 5
......Tunnel current detection circuit, 8...
...Laser light source, 10...Condensing lens, 12...Atomic ion source, 16...
・・・・・・Collimator, 24・・・・・・Guide groove. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1、検体と被検体の空間的な距離の違いによって情報を
記録する情報記憶装置において、前記検体と被検体の空
間的な距離の違いによって生ずる空間内電気信号の密度
を単位信号源とし、上記被検体面上に予め設定された突
起部分もしくは予め設定された突起部分の物理的除去に
よって情報の記録再生を行い、原子レベルの超高密度記
憶を可能としたことを特徴とする情報記憶装置。 2、特許請求の範囲第1項記載の情報記憶装置において
、前記被検体の情報の記憶単位が該被検体の平面上にあ
り、かつ高さが10〜500Åの範囲に凸状に形成され
た原子塊であることを特徴とする情報記憶装置。 3、特許請求の範囲第2項記載の情報記憶装置において
、前記情報の記憶単位である前記原子塊を走査する手段
として、前記被検体に同心円もしくはスパイラル状の溝
もしくはピット列を設け、光学的にトラッキングをかけ
て、情報の記録再生を行うようにしたことを特徴とする
情報記憶装置。 4、特許請求の範囲第2項記載の情報記憶装置において
、前記情報の記憶単位である前記原子塊に隣接する平面
上に該原子塊と前記検体の位置を一定に保つように制御
する信号源として他の原子塊を設けたことを特徴とする
情報記憶装置。 5、特許請求の範囲第2項記載の情報記憶装置において
、前記情報の記憶単位の前記原子塊にφw以上の電界を
加えて上記原子塊の一部を電界蒸発させて記録状態とし
、φw以下の電界でトンネル電流変化を求めることによ
り情報の記録再生を行うようにしたことを特徴とする情
報記憶装置。
[Claims] 1. In an information storage device that records information based on a difference in spatial distance between a specimen and a subject, the density of an electrical signal in space caused by a difference in the spatial distance between the specimen and the subject is A unit signal source is used, and information is recorded and reproduced by pre-set protrusions on the surface of the subject or by physically removing pre-set protrusions, thereby enabling ultra-high-density storage at the atomic level. information storage device. 2. In the information storage device according to claim 1, the storage unit of the information of the object is located on the plane of the object and is formed in a convex shape with a height in the range of 10 to 500 Å. An information storage device characterized by being an atomic mass. 3. In the information storage device according to claim 2, concentric or spiral grooves or pit rows are provided in the object as a means for scanning the atomic mass, which is the unit of storage of the information, and an optical An information storage device characterized in that information is recorded and reproduced by tracking. 4. In the information storage device according to claim 2, a signal source controls the atomic mass and the specimen to maintain constant positions on a plane adjacent to the atomic mass, which is the storage unit of the information. An information storage device characterized in that another atomic mass is provided as a. 5. In the information storage device according to claim 2, an electric field of φw or more is applied to the atomic lump of the information storage unit to evaporate a part of the atomic lump in the electric field to bring it into a recording state, An information storage device characterized in that information is recorded and reproduced by determining changes in tunnel current in an electric field.
JP9537887A 1987-04-20 1987-04-20 information storage device Pending JPS63261554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9537887A JPS63261554A (en) 1987-04-20 1987-04-20 information storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9537887A JPS63261554A (en) 1987-04-20 1987-04-20 information storage device

Publications (1)

Publication Number Publication Date
JPS63261554A true JPS63261554A (en) 1988-10-28

Family

ID=14135982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9537887A Pending JPS63261554A (en) 1987-04-20 1987-04-20 information storage device

Country Status (1)

Country Link
JP (1) JPS63261554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453363A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPH03156749A (en) * 1989-08-10 1991-07-04 Canon Inc Substrate and electrode substrate for recording medium, recording medium, production thereof, recording device, reproducing device, recording and reproducing device, recording method, recording and reproducing method, reproducing and erasing method
JPH03173956A (en) * 1989-09-07 1991-07-29 Canon Inc Recording and reproducing method
JPH041947A (en) * 1990-04-18 1992-01-07 Canon Inc Recording medium and access method thereof
JPH0490151A (en) * 1990-08-03 1992-03-24 Canon Inc Information processing method and information processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453363A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPH03156749A (en) * 1989-08-10 1991-07-04 Canon Inc Substrate and electrode substrate for recording medium, recording medium, production thereof, recording device, reproducing device, recording and reproducing device, recording method, recording and reproducing method, reproducing and erasing method
JPH03173956A (en) * 1989-09-07 1991-07-29 Canon Inc Recording and reproducing method
JPH041947A (en) * 1990-04-18 1992-01-07 Canon Inc Recording medium and access method thereof
JPH0490151A (en) * 1990-08-03 1992-03-24 Canon Inc Information processing method and information processor

Similar Documents

Publication Publication Date Title
US6304527B1 (en) Near-field optical head and manufacturing method thereof and optical recording/readout system using near-field optical head
US5084860A (en) Apparatus for optical disc memory with correction pattern and master disc cutting apparatus
DE69838968T2 (en) Optical pickup and optical disk scanner
JPH05234118A (en) Optical storage device and optical head device
EP0360144A2 (en) Optical memory device and information processing apparatus
JPS6214889B2 (en)
JPS63261554A (en) information storage device
JP2000207738A (en) Method for manufacturing information carrier
EP1570469B1 (en) Apparatus and method for recording an information on a recordable optical record carrier using oval spot profile
JP2832666B2 (en) Equipment for manufacturing read-only laser disks
KR100357103B1 (en) optical pick up device and method for fabricating the same
KR100324268B1 (en) Reproductive Apparatus OF High Density Recording Medium
EP1150286B1 (en) Near-field optical head
JP2774506B2 (en) High density information recording medium and recording / reproducing apparatus therefor
JP4325283B2 (en) RECORDING / REPRODUCING MEDIUM, RECORDING MEDIUM SIGNAL RECORDING DEVICE, AND SIGNAL RECORDING METHOD
KR20010104018A (en) optical pick-up head and method for fabricating the same and apparatus for record/playback of optical information using those
KR20010103476A (en) optical pick-up device and method for fabricating the same and apparatus for record/playback of optical information using those
JPH0462138B2 (en)
JPH1139738A (en) Magneto-optical disk and storage device using the same
JP2003272176A (en) Optical recording medium, recording and reproducing device, and manufacturing method of the optical recording medium
JPS63288436A (en) Optical head
JPH11283283A (en) Production of master disk for producing recording medium, master disk for producing recording medium, substrate for recording medium, and recording medium
JP2517088B2 (en) Optical disc master, optical disc recording apparatus, and optical disc recording method
KR100248219B1 (en) Optical pickup device
JPH0896365A (en) Optical disk system and its design method