JPS63260104A - Magnetic powder for magnetic recording - Google Patents
Magnetic powder for magnetic recordingInfo
- Publication number
- JPS63260104A JPS63260104A JP62094802A JP9480287A JPS63260104A JP S63260104 A JPS63260104 A JP S63260104A JP 62094802 A JP62094802 A JP 62094802A JP 9480287 A JP9480287 A JP 9480287A JP S63260104 A JPS63260104 A JP S63260104A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic powder
- powder
- value
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Paints Or Removers (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は磁気記録用磁性粉に関し、更に詳しくは、高密
度磁気記録媒体用に適する微細な粒子からなる六方晶系
フェライト磁性粉に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to magnetic powder for magnetic recording, and more specifically to hexagonal ferrite magnetic powder consisting of fine particles suitable for high-density magnetic recording media. be.
(従来の技術)
近年、磁気記録に対する高密度化の要求に伴い磁気記録
媒体の厚味方向に磁界を記録する垂直位゛気記録方式が
注目されている。このような垂直磁気記録方式において
使用される磁性材料は記録媒体表面に垂直な方向に磁化
容易軸を有することが必要である。(Prior Art) In recent years, with the demand for higher density magnetic recording, a perpendicular magnetic recording method that records a magnetic field in the thickness direction of a magnetic recording medium has been attracting attention. The magnetic material used in such perpendicular magnetic recording systems needs to have an axis of easy magnetization in a direction perpendicular to the surface of the recording medium.
六方晶系で一軸磁化異方性を有するフェライト、例えば
Baフェライト(BaFe+zO+w)は六角板状の結
晶であって、板面に垂直な方向に磁化容易軸を有してお
り、塗布膜タイプの垂直磁気記録用磁性材料として上記
の要件を満足するものである。該磁性材料としては適度
な保磁力(He、通常200〜20000e程度)とで
きるだけ大きな飽和磁化(σ8、少くとも40emu/
g以上)を有している事、及び磁性粉の平均粒子径は記
録波長の関係から0.3μm以下であり、かつ超常磁性
の関係から0.01μm以上の範囲であることが必要で
ある。Ferrite with hexagonal crystal system and uniaxial magnetization anisotropy, such as Ba ferrite (BaFe+zO+w), is a hexagonal plate-shaped crystal with an axis of easy magnetization in the direction perpendicular to the plate surface. This material satisfies the above requirements as a magnetic material for magnetic recording. The magnetic material should have an appropriate coercive force (He, usually about 200 to 20,000e) and as large a saturation magnetization as possible (σ8, at least 40 emu/
g or more), and the average particle size of the magnetic powder must be 0.3 μm or less in terms of recording wavelength, and 0.01 μm or more in terms of superparamagnetism.
この範囲では平均粒子径はノイズの関係から小さい方が
好ましく、さらに081μm以下であることが好ましい
。In this range, the average particle diameter is preferably smaller in terms of noise, and more preferably 081 μm or less.
(発明が解決しようとする問題点)
ところで、Ba−フェライトは保磁力が50000e以
上であり、このままでは磁気記録用磁性材料としては大
きすぎるので、Feの一部を他の各種金属で置換して、
保磁力を低下させる方法が提案されている(例えば特開
昭61−40823号公報など)。(Problems to be Solved by the Invention) By the way, Ba-ferrite has a coercive force of 50,000e or more, which is too large to be used as a magnetic material for magnetic recording as it is, so some of the Fe is replaced with various other metals. ,
A method of lowering the coercive force has been proposed (for example, Japanese Patent Application Laid-Open No. 61-40823).
しかしながら、公知のFeの一部を他の各種金属で置換
しただけの磁性粉は、平均粒径が0.1μm以上と比較
的大きく垂直磁気記録用磁性粉としてはまだ不充分であ
る。また、バリウムフェライトの製造にはガラス結晶化
法、水熱合成法あるいは共沈法などが用いられているが
、共沈法は、保磁力制御やその他の目的で少量添加され
る各種金属との混合が非常に良いため均一なフェライト
が得られること、共沈物が微結晶粉末であるので比較的
低温でフェライト化し得ることなど多くの長所を有して
いる。しかしながら、一般に、共沈法で得られる磁性粉
は、粒径は最小でも、0.15μmと太き((特開昭6
1−174118号公報参照)、凝集した状態の粉末が
生成しやすく、粒径が0.5μm位のものが含まれてお
り形状の均一性も低く (特開昭58−2223号公報
参照)、共沈法による磁気記録用に満足できる磁性粉は
未だ得られていない。However, known magnetic powders in which only a portion of Fe is replaced with various other metals have relatively large average particle diameters of 0.1 μm or more, and are still insufficient as magnetic powders for perpendicular magnetic recording. In addition, glass crystallization, hydrothermal synthesis, coprecipitation, and other methods are used to manufacture barium ferrite, but the coprecipitation method uses various metals added in small amounts for coercive force control and other purposes. It has many advantages, such as being able to mix very well so that uniform ferrite can be obtained, and since the coprecipitate is a microcrystalline powder, it can be turned into ferrite at a relatively low temperature. However, magnetic powder obtained by the coprecipitation method generally has a particle size as thick as 0.15 μm at the minimum
1-174118), agglomerated powder is likely to be produced, and the particle size is around 0.5 μm, and the uniformity of shape is low (see JP-A-58-2223). A magnetic powder satisfactory for magnetic recording by coprecipitation method has not yet been obtained.
本発明者等は、この様な背景に鑑み、従来にも増して平
均粒径の小さい垂直磁気記録用磁性粉を開発すべく鋭意
検討した結果、本発明において新たな磁性粉を開発する
に到った。In view of this background, the present inventors conducted intensive studies to develop a magnetic powder for perpendicular magnetic recording with a smaller average particle diameter than ever before, and as a result, they were able to develop a new magnetic powder in the present invention. It was.
(問題点を解決するための手段)
すなわち、本発明により、一般組成式
%式%
(ここでMIはBa、 Sr、 Ca及びpbから選択
される少なくとも一種の金属元素を表わし、MlはMg
。(Means for Solving the Problems) That is, according to the present invention, the general composition formula % (where MI represents at least one metal element selected from Ba, Sr, Ca and PB, and Ml represents Mg
.
Al、 Cd、 In、 Tl、 Sn及びBiから選
択される少なくとも一種の金属元素を表わし、a、b、
c、d。Represents at least one metal element selected from Al, Cd, In, Tl, Sn and Bi, a, b,
c, d.
e及びfはそれぞれFe、Co+ St+ MI1M”
及び0の原子数であり、aは8〜12、bは0.01〜
3.0、Cは0.05〜2.0、dは0.5〜3.0及
びeは0.O1〜3.0の値をとり、fは他の元素の原
子価を満足する酸素の原子数を表わす、)で表わされる
ことを特徴とする磁気記録用磁性粉が提供される。e and f are respectively Fe, Co+ St+ MI1M”
and the number of atoms of 0, a is 8 to 12, and b is 0.01 to
3.0, C is 0.05-2.0, d is 0.5-3.0 and e is 0. A magnetic powder for magnetic recording is provided, which has a value of O1 to 3.0, and f represents the number of oxygen atoms satisfying the valences of other elements.
本発明においては、磁性粉の各成分元素の原子数a ”
−eが上記の数値範囲内にあることが必要で、この範囲
外では平均粒子径が0.1μm以上となるばかりでなく
磁気記録用磁性粉に適した保磁力や飽和磁化を持った磁
性粉は得られ難い。In the present invention, the number of atoms of each component element of the magnetic powder a ”
-e must be within the above numerical range; outside this range, the average particle diameter will not only be 0.1 μm or more, but also the magnetic powder will have a coercive force and saturation magnetization suitable for magnetic recording magnetic powder. is difficult to obtain.
好ましい磁性粉の各成分割合は、aは8〜12、bは0
.02〜2.4、Cは0.1〜1.0.bは0.8〜2
.0及びeは0.02〜2.4の値をとり、fは他の元
素の原子価を満足する酸素の原子数である。本発明の磁
性粉は、製造条件などによっては得られる磁性粉粒子の
結晶がかならずしも正常な六角板状を呈していない粒子
が混在している、場合もあるが、該原子数が本発明の範
囲内であれば、本発明の目的を充分に達成することがで
きる。The preferable ratio of each component of magnetic powder is a: 8 to 12, b: 0
.. 02-2.4, C is 0.1-1.0. b is 0.8-2
.. 0 and e take values of 0.02 to 2.4, and f is the number of oxygen atoms that satisfies the valences of other elements. In the magnetic powder of the present invention, depending on the manufacturing conditions, the crystals of the magnetic powder particles obtained may not necessarily have a normal hexagonal plate shape, but the number of atoms is within the range of the present invention. Within this range, the object of the present invention can be fully achieved.
本発明の磁性粉は平均粒径が0.1μm以下で、かつ磁
気記録用磁性粉として要求される所定の保磁力及び飽和
磁化を有している。The magnetic powder of the present invention has an average particle diameter of 0.1 μm or less, and has a predetermined coercive force and saturation magnetization required as a magnetic powder for magnetic recording.
本発明の磁性粉はガラス結晶化法、水熱合成法によって
も製造することができるが、共沈法もしくは共沈フラッ
クス法により製造すると粒径及び磁気特性が著しく改善
されたものとなる。以下に共沈法による本発明磁性粉の
製造について説明する。The magnetic powder of the present invention can also be produced by a glass crystallization method or a hydrothermal synthesis method, but when produced by a coprecipitation method or a coprecipitation flux method, the particle size and magnetic properties are significantly improved. The production of the magnetic powder of the present invention by the coprecipitation method will be explained below.
本発明の磁性粉を構成する各金属元素の原料化合物とし
ては酸化物、オキシ水酸化物、水酸化物、アンモニウム
塩、硝酸塩、硫酸塩、炭酸塩、有機酸塩、ハロゲン化物
、アルカリ金属塩等の塩類、遊離酸、酸無水物、縮合酸
等を挙げることができる。特に水溶性化合物が好ましい
。各金属元素の原料化合物は、各金属元素の原子数が前
記の各値となる様に水に混合溶解される。また、アルカ
リ水溶液に混合溶解した方が都合がよい場合には、後述
のアルカリ水溶液中に混合溶解される。The raw material compounds for each metal element constituting the magnetic powder of the present invention include oxides, oxyhydroxides, hydroxides, ammonium salts, nitrates, sulfates, carbonates, organic acid salts, halides, alkali metal salts, etc. Examples include salts, free acids, acid anhydrides, and condensed acids. Particularly preferred are water-soluble compounds. The raw material compounds of each metal element are mixed and dissolved in water so that the number of atoms of each metal element becomes the above-mentioned values. Further, if it is convenient to mix and dissolve in an alkaline aqueous solution, it can be mixed and dissolved in an alkaline aqueous solution, which will be described later.
一方アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであれば特に限定されず、アルカリ金属の水
酸化物や炭酸塩、アンモニア、炭酸アンモニウム等が挙
げられる。例えばNaOH。On the other hand, the alkaline component used in the alkaline aqueous solution is not particularly limited as long as it is water-soluble, and examples thereof include alkali metal hydroxides, carbonates, ammonia, ammonium carbonate, and the like. For example, NaOH.
Na2CO3,NaHCO+、 KOH+ KzCOz
、 Nn4.alll (NH4)zcOs等が用いら
れ、特に水酸化物と炭酸塩の併用が賞月される。Na2CO3, NaHCO+, KOH+ KzCOz
, Nn4. all (NH4)zcOs etc. are used, and the combined use of hydroxide and carbonate is particularly preferred.
しかして、上記金属イオン水溶液とアルカリ水溶液とを
混合し、pH5以上、好ましくはptts以上で共沈物
を生ぜしめる。得られた共沈物は、水洗した後決別する
。この様にして得られたケーキ状ないしスラリー状の共
沈物は、共沈法による場合には、これを乾燥後、600
〜1ioo℃で1θ分〜30時間高温焼成して該当する
六方晶系フェライト磁性粉を得る。また、共沈フラック
ス法による場合には、水洗された共沈物に水溶性フラッ
クス(例えば塩化ナトリウムや塩化カリウム等のハロゲ
ン化アルカリ金属塩、塩化バリウムや塩化ストロンチウ
ム等のハロゲン化アルカリ土類金属塩、硫酸ナトリウム
、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、及び
これ等の混合物等が通常使用される)を適当量加えて、
°あるいは、金属イオン水溶液とアルカリ水溶液との混
合物から得られる共沈物を水洗することなくそのまま水
分を蒸発させてこれを乾燥後、600〜1100℃でI
O分〜30時間高温焼成した後、水溶性フラックスを水
または酸水溶液で洗浄が刑し、必要に応じ、更に水洗し
た後、乾燥して該当する六方晶系フェライト磁性粉を得
る。Then, the metal ion aqueous solution and the alkaline aqueous solution are mixed to produce a coprecipitate at a pH of 5 or more, preferably ptts or more. The obtained coprecipitate is separated after washing with water. When using the coprecipitation method, the cake-like or slurry-like coprecipitate obtained in this way is dried at 600° C.
The corresponding hexagonal ferrite magnetic powder is obtained by high-temperature firing at ~1ioo°C for 1θ minutes ~30 hours. In addition, when using the coprecipitation flux method, a water-soluble flux (for example, an alkali metal halide such as sodium chloride or potassium chloride, or an alkaline earth metal halide such as barium chloride or strontium chloride) is added to the washed coprecipitate. , sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, and mixtures thereof are commonly used).
Alternatively, the coprecipitate obtained from the mixture of the metal ion aqueous solution and the alkaline aqueous solution is directly evaporated without washing with water, dried, and then I
After firing at a high temperature for 0 minutes to 30 hours, the water-soluble flux is washed with water or an acid aqueous solution, if necessary, further washed with water, and then dried to obtain the corresponding hexagonal ferrite magnetic powder.
(発明の効果)
本発明に係る磁性粉は六方晶C面に磁化容易軸を有する
板状粒子であり、平均粒径が0.1μm以下と小さいば
かりでなく、粒径もととのっており、しかも、磁気記録
用に要求される保磁力、飽和磁化を有するので、垂直磁
気記録用磁性材料として好適である。(Effect of the invention) The magnetic powder according to the present invention is a plate-shaped particle having an axis of easy magnetization in the hexagonal C plane, and not only has an average particle size of 0.1 μm or less, but also has a particle size that is the same as the original size. Since it has the coercive force and saturation magnetization required for magnetic recording, it is suitable as a magnetic material for perpendicular magnetic recording.
(実施例)
以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化はVSM (振
動磁気測定装置)を用い、最大印加磁場10 koe、
測定温度28℃で測定した。平均粒子径は、透過型電子
顕微鏡で得られた写真から400個の粒子の最大直径を
測定し算術平均により算出した。(Example) The present invention will be described in more detail with reference to Examples below. The coercive force and saturation magnetization in the examples were measured using a VSM (vibrating magnetometer), with a maximum applied magnetic field of 10 koe,
The measurement was performed at a measurement temperature of 28°C. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic average.
また、実施例中に示す磁性粉の組成式は、原料調製時の
各元素の原子比を用いている。磁性粉成分中の酸素の表
示については、筒略化のため省略した。Further, the compositional formula of the magnetic powder shown in the examples uses the atomic ratio of each element at the time of raw material preparation. The display of oxygen in the magnetic powder components has been omitted for brevity.
実施例I
Bace z ・2th0 0.55モル、CoC1z
−6Hz00.35モル、八1 (NO3h・9Hz
0 0.35モル及びFeCj! z ’ 68z0
5.3モルを1(lの蒸留水にこの順に溶解し、これを
A液とした。NaOH17,5モル、NazCOz
4.72モル及びNazSi(1+ + 9820 0
.25モルを151の室温の蒸留水に溶解し、これをB
液とした。50℃に熱したA液にB液を徐々に加えた後
、50℃で16時間攪拌した。こうして得られた共沈物
を決別し充分水洗した後150℃で乾燥し、900℃で
2時間電気炉で焼成した。こうして得られたBa−フェ
ライトは
Ba11Fe+ o、 6CO(1,?A 1 o、
tsia、 sで示される。Example I Bace z ・2th0 0.55 mol, CoC1z
-6Hz00.35mol, 81 (NO3h・9Hz
0 0.35 mol and FeCj! z' 68z0
5.3 moles were dissolved in 1 (l) of distilled water in this order, and this was used as liquid A. 17.5 moles of NaOH, NazCOz
4.72 mol and NazSi(1+ + 9820 0
.. 25 mol was dissolved in 151 room temperature distilled water, and this was
It was made into a liquid. After gradually adding Solution B to Solution A heated to 50°C, the mixture was stirred at 50°C for 16 hours. The coprecipitate thus obtained was separated, thoroughly washed with water, dried at 150°C, and fired in an electric furnace at 900°C for 2 hours. The Ba-ferrite thus obtained has Ba11Fe+ o,6CO(1,?A1o,
tsia, denoted by s.
この微粒子粉末は、平均粒径0.069μmの板状であ
り、保磁力は7260e、飽和磁化は54.3ea+u
/gであった・
比較例1
硝酸アルミニウムを除いた他は実施例1と全く同様の方
法でBa−フェライトを製゛造した。得られたBa−フ
ェライトはBad、 lFe1(1,&C011,ts
io、 sで示される。この微粒子粉末は平均粒径0.
21μmの警反状であり、Hcは8920e、 ty、
は42.8 emu/gであった。This fine particle powder has a plate shape with an average particle size of 0.069 μm, a coercive force of 7260e, and a saturation magnetization of 54.3ea+u.
/g Comparative Example 1 Ba-ferrite was produced in exactly the same manner as in Example 1 except that aluminum nitrate was removed. The obtained Ba-ferrite is Bad, lFe1(1, &C011,ts
io, denoted by s. This fine particle powder has an average particle size of 0.
It is a 21μm police paper, Hc is 8920e, ty,
was 42.8 emu/g.
実施例2
BaC1! ・2820 0.55モル、CoC1z
・61hOO045モル、MgC/!g O,15モ
ル及びFeC13・68z05.4モルを101の蒸留
水にこの順に溶解し、これをA液とした。NaOH17
,5モル、NazCoz 4.722モル、及びNa2
SiO3・9HtQ 0.2モルを15ffの室温の
蒸留水に溶解し、これをB液とした。50℃に熱したA
液にB液を徐々に加えた後、50℃で16時間攪拌した
。こうして得られた共沈物を決別し水洗して得られたケ
ーキ状の共沈物スラリーにフラックスとしてNaC14
00gを加え、充分に混合した後水分を蒸発乾固せしめ
、これを860℃で1.5時間電気炉で焼成した。この
焼成物を水を用いて可溶物がなくなるまで洗浄した後、
炉別、乾燥した。こうして得られたBa−フェライトは
、Bad、 +Fe1o、 5coo、 Jgo、 5
sio、 aで示される。Example 2 BaC1!・2820 0.55 mol, CoC1z
・61hOO045mol, MgC/! 15 moles of g O and 5.4 moles of FeC13.68z0 were dissolved in 101 distilled water in this order, and this was used as liquid A. NaOH17
, 5 mol, NazCoz 4.722 mol, and Na2
0.2 mol of SiO3.9HtQ was dissolved in 15ff of distilled water at room temperature, and this was used as liquid B. A heated to 50℃
After gradually adding Solution B to the solution, the mixture was stirred at 50° C. for 16 hours. The coprecipitate thus obtained was separated and washed with water, and NaC14 was added as a flux to the cake-like coprecipitate slurry obtained.
00g was added and thoroughly mixed, the moisture was evaporated to dryness, and the mixture was fired in an electric furnace at 860°C for 1.5 hours. After washing this fired product with water until all soluble materials are removed,
Furnace separated and dried. The Ba-ferrite thus obtained has the following properties: Bad, +Fe1o, 5coo, Jgo, 5
sio, denoted by a.
この微粒子粉末は、平均粒径0.073μ−の板状であ
り、Hcは7120e、σ、は55.5 emu/gで
あった。This fine particle powder was plate-shaped with an average particle size of 0.073 μ-, Hc was 7120e, and σ was 55.5 emu/g.
実施例3〜6
Ml成分、組成比、フラックスの種類及び量を変えた他
は実施例2と全く同様の方法で表−1に示すBa−フェ
ライトを製造した。Examples 3 to 6 Ba-ferrite shown in Table 1 was produced in exactly the same manner as in Example 2, except that the Ml component, composition ratio, and type and amount of flux were changed.
実施例1〜6の結果から、本発明に係る磁性粉は、0.
1μ腸以下の平均粒径を有する磁性粉が得られることが
わかる。From the results of Examples 1 to 6, the magnetic powder according to the present invention has a 0.
It can be seen that magnetic powder having an average particle size of 1 μm or less can be obtained.
実施例7〜23
Mx成分Ml成分及び組成比を変えた他は、実施例2と
全く同様の方法によって表−2に示す磁性粉を調製した
。なお、M!酸成分原料は塩化物を使用し、M!酸成分
原料は、Mg、 Cd、 In及びSnは塩化物を使用
し、その他の成分は硝酸塩を使用した。Examples 7 to 23 Magnetic powders shown in Table 2 were prepared in exactly the same manner as in Example 2, except that the Mx component, Ml component, and composition ratio were changed. Furthermore, M! The acid component raw material uses chloride, and M! As acid component raw materials, chlorides were used for Mg, Cd, In, and Sn, and nitrates were used for the other components.
Claims (1)
_f(ここでM^IはBa、Br、Ca及びPbから選
択される少なくとも一種の金属元素を表わし、M^I^
IはMg、Al、Cd、In、Tl、Sn及びBiから
選択される少なくとも一種の金属元素を表わし、a、b
、c、d、e及びfはそれぞれFe、Co、Si、M^
I、M^I^I及びoの原子数であり、aは8〜12、
bは0.01〜3.0、cは0.05〜2.0、dは0
.5〜3.0及びeは0.01〜3.0の値をとり、f
は他の元素の原子価を満足する酸素の原子数である、) で表わされる磁気記録用磁性粉。[Claims] General composition formula Fe_aCo_bSi_cM^I_dM^I^I_eO
_f (here, M^I represents at least one metal element selected from Ba, Br, Ca, and Pb, and M^I^
I represents at least one metal element selected from Mg, Al, Cd, In, Tl, Sn and Bi;
, c, d, e and f are respectively Fe, Co, Si, M^
The number of atoms of I, M^I^I and o, a is 8 to 12,
b is 0.01-3.0, c is 0.05-2.0, d is 0
.. 5 to 3.0 and e takes a value of 0.01 to 3.0, f
is the number of oxygen atoms that satisfies the valence of other elements.) Magnetic powder for magnetic recording.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62094802A JPS63260104A (en) | 1987-04-17 | 1987-04-17 | Magnetic powder for magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62094802A JPS63260104A (en) | 1987-04-17 | 1987-04-17 | Magnetic powder for magnetic recording |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63260104A true JPS63260104A (en) | 1988-10-27 |
Family
ID=14120192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62094802A Pending JPS63260104A (en) | 1987-04-17 | 1987-04-17 | Magnetic powder for magnetic recording |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63260104A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0940823A1 (en) * | 1997-09-19 | 1999-09-08 | TDK Corporation | Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, method of manufacturing the same, and magnetic recording medium |
WO2022030601A1 (en) * | 2020-08-06 | 2022-02-10 | 株式会社村田製作所 | Soft magnetic composition, sintered compact, composite, paste, coil component, and antenna |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140823A (en) * | 1984-07-31 | 1986-02-27 | Dowa Mining Co Ltd | Hydrothermal synthesis of magnetoplumbite type ferrite |
JPS63233017A (en) * | 1986-11-28 | 1988-09-28 | Ube Ind Ltd | Barium ferrite magnetic powder and its manufacturing method |
-
1987
- 1987-04-17 JP JP62094802A patent/JPS63260104A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140823A (en) * | 1984-07-31 | 1986-02-27 | Dowa Mining Co Ltd | Hydrothermal synthesis of magnetoplumbite type ferrite |
JPS63233017A (en) * | 1986-11-28 | 1988-09-28 | Ube Ind Ltd | Barium ferrite magnetic powder and its manufacturing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0940823A1 (en) * | 1997-09-19 | 1999-09-08 | TDK Corporation | Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, method of manufacturing the same, and magnetic recording medium |
EP0940823A4 (en) * | 1997-09-19 | 2001-05-23 | Tdk Corp | Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, method of manufacturing the same, and magnetic recording medium |
US6402980B1 (en) | 1997-09-19 | 2002-06-11 | Tdk Corporation | Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, process for producing the same, and magnetic recording medium |
WO2022030601A1 (en) * | 2020-08-06 | 2022-02-10 | 株式会社村田製作所 | Soft magnetic composition, sintered compact, composite, paste, coil component, and antenna |
JPWO2022030601A1 (en) * | 2020-08-06 | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63277523A (en) | Production of platelike magnetic powder | |
US5075169A (en) | Plate-like composite ferrite particles for magnetic recording and process for producing the same | |
US4820433A (en) | Magnetic powder for magnetic recording | |
JPS63260104A (en) | Magnetic powder for magnetic recording | |
KR960002626B1 (en) | Method for producing plate-like barium ferrite fine powder | |
US5062983A (en) | Magnetic powder for magnetic recording media | |
JPH07172839A (en) | Production of magnetic powder of hexagonal ba ferrite | |
JPH06104574B2 (en) | Coating film type magnetic powder for magnetic recording | |
JPS63260103A (en) | Magnetic powder for magnetic recording | |
JPS63260109A (en) | Magnetic powder for magnetic recording | |
JPS63260107A (en) | Magnetic powder for magnetic recording | |
JPS63260106A (en) | Magnetic powder for magnetic recording | |
JPS63260105A (en) | Magnetic powder for magnetic recording | |
JPH0459620A (en) | Magnetic powder for magnetic recording and magnetic recording medium therefrom | |
JPH01119521A (en) | Magnetic powder for magnetic recording | |
JPH01119517A (en) | Magnetic powder for magnetic recording | |
JPH01119516A (en) | Magnetic powder for magnetic recording | |
US5062982A (en) | Magnetic powder for magnetic recording media | |
JPS63185829A (en) | Magnetic powder for magnetic recording | |
JPS63260110A (en) | Magnetic powder for magnetic recording | |
JPS6377105A (en) | Magnetic powder for magnetic recording | |
JPH0459619A (en) | Magnetic powder for magnetic recording and magnetic recording medium therefrom | |
JPH0712933B2 (en) | Magnetic powder for magnetic recording | |
JPS63260111A (en) | Magnetic powder for magnetic recording | |
JPS63260108A (en) | Magnetic powder for magnetic recording |