JPS63259023A - Manufacture of grain-oriented silicon steel sheet mimimal in iron loss - Google Patents
Manufacture of grain-oriented silicon steel sheet mimimal in iron lossInfo
- Publication number
- JPS63259023A JPS63259023A JP62090633A JP9063387A JPS63259023A JP S63259023 A JPS63259023 A JP S63259023A JP 62090633 A JP62090633 A JP 62090633A JP 9063387 A JP9063387 A JP 9063387A JP S63259023 A JPS63259023 A JP S63259023A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- grain
- steel sheet
- secondary recrystallization
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 33
- 229910052742 iron Inorganic materials 0.000 title claims description 16
- 238000000137 annealing Methods 0.000 claims abstract description 112
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 67
- 239000010959 steel Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 44
- 238000001953 recrystallisation Methods 0.000 claims abstract description 40
- 238000000746 purification Methods 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 238000005096 rolling process Methods 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000007733 ion plating Methods 0.000 claims description 11
- 238000005261 decarburization Methods 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims 1
- 229910052839 forsterite Inorganic materials 0.000 abstract description 21
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 abstract description 21
- 238000005097 cold rolling Methods 0.000 abstract description 8
- 238000005498 polishing Methods 0.000 description 16
- 238000007796 conventional method Methods 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000005554 pickling Methods 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- -1 Ta C Inorganic materials 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
方向性けい素鋼板の電気・磁気的特性の改善、゛なかで
も鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性けい
素鋼板の使用に当たっての加工、組立てを経たのちいわ
ゆるひずみ取り焼鈍がほどこされた場合に、特性劣化の
随伴を不可避に生じて、使途についての制限を受ける不
利が指摘される。[Detailed Description of the Invention] (Field of Industrial Application) In recent years, remarkable efforts have been made to improve the electrical and magnetic properties of grain-oriented silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. Our development efforts are gradually bearing fruit, but one serious problem associated with their implementation is that when unidirectional silicon steel sheets are processed and assembled and then subjected to so-called strain relief annealing, their properties deteriorate. It has been pointed out that there are disadvantages in that this inevitably involves the use of treasury materials and restrictions on how they can be used.
この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。In this specification, the following is related to the results of research and development that will lead to a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state
さて方向性けい素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110) <001> 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され、電気・磁気的
特性として製品の磁束密度(Bl。As is well known, grain-oriented silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) <001>, or Goss, orientation, and are mainly used in transformers and other electrical equipment. It is used as an iron core, and the product's magnetic flux density (Bl.
で代表される)が高(、鉄損(W I ”I/”A O
値で代表される)の低いことが要求される。) is high (, iron loss (W I ``I/''A O
(represented by the value) is required.
この方向性けい素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明・改善が加えら
れ、今日では板厚0.30mmの製品の磁気特性がBo
o 1.90T以上、匈、ワ7.。1、0麹八gへ下、
また板厚0.23mmの製品の磁気特性が81゜1.8
9T以上、WBzs。0.90匈/kg以下の超低鉄損
一方向性けい素鋼板が製造されるようになって来ている
。This grain-oriented silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today the magnetic properties of a product with a thickness of 0.30 mm have reached Bo
o 1.90T or more, 匈, wa 7. . 1. 0 koji 8g down,
In addition, the magnetic properties of a product with a plate thickness of 0.23 mm are 81°1.8
9T or more, WBzs. Unidirectional silicon steel sheets with ultra-low core loss of 0.90 匈/kg or less are being manufactured.
特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.
(従来の技術)
このような状況下において最近、一方向性けい素鋼板に
おけるフォルステライト被膜の除去あるいはその形成を
阻止しついで鋼板表面を平滑面に仕上げ、張力被膜を被
成することによって極めて鉄損の低い方向性けい素鋼板
を提供する技術が開発されている。(Prior art) Under these circumstances, recently, the removal of the forsterite film on a grain-oriented silicon steel sheet or its formation has been prevented, the surface of the steel sheet has been smoothed, and a tensile strength film has been formed on the steel sheet, thereby making it extremely ferrous. Techniques have been developed to provide grain-oriented silicon steel sheets with low loss.
例えば、特開昭62−1821号公報には、仕上焼鈍後
の鋼板表面のフォルステライト質下地被膜を除去し、つ
いで研磨により0.4μm以下の平滑面にしさらにCV
D法により窒化物、炭化物あるいは酸化物の張力被膜を
形成することにより極めて鉄損の低い方向性けい素鋼板
を提供する技術が開示されている。For example, Japanese Patent Application Laid-Open No. 1821/1983 discloses that the forsterite base film on the surface of a steel plate after finish annealing is removed, and then polished to a smooth surface of 0.4 μm or less, and further CV
A technique has been disclosed for providing a grain-oriented silicon steel sheet with extremely low core loss by forming a tension film of nitride, carbide, or oxide by method D.
また、これに関連して、特開昭62−1882号公報に
おいては脱炭・1次再結晶焼鈍後に、塗布される焼鈍分
離剤の成分組成を限定し、最終仕上げ焼鈍の際のフォル
ステライト生成反応を抑制し、仕上焼純情の方向性けい
素鋼板表面上の非金属物質層を除去した後、研磨処理に
より、平均粗さ0.4μm以下の平滑面に仕上げ、つい
でCVD法、イオンインプランテーション法により、窒
化物や炭化物あるいは酸化物の張力被膜を被着させ、極
めて鉄損の低い方向性けい素鋼板を提供する技術の開示
がある。In addition, in connection with this, in JP-A-62-1882, the composition of the annealing separator applied after decarburization and primary recrystallization annealing is limited, and forsterite is generated during final annealing. After suppressing the reaction and removing the non-metallic material layer on the surface of the directional silicon steel sheet, polishing is performed to create a smooth surface with an average roughness of 0.4 μm or less, followed by CVD and ion implantation. There is a disclosure of a technique for providing a grain-oriented silicon steel sheet with extremely low iron loss by depositing a tension coating of nitride, carbide, or oxide by a method.
後者の手法は前者の手法と比較すると、フォルステライ
ト質下地被膜が鋼板表面を被覆していないため、Ra
:0.4μ−以下の平滑面にするための酸洗や、研磨
工程が大幅に簡便化され、コストダウンを計れるが、平
均粗さRa :0.4μm以下の平滑面化を施した後
、前述の手法によって張力被膜を被着させた際の磁気特
性は、前者の手法に比べ劣る。Compared to the former method, the latter method does not cover the steel plate surface with a forsterite base film, so the Ra
: The pickling and polishing processes to make the surface smooth to 0.4 μm or less are greatly simplified and the cost can be reduced. The magnetic properties when a tension coating is applied by the above-mentioned method are inferior to those of the former method.
また、従来フォルステライト被膜を形成させない手法と
して、最終仕上焼鈍前に使用される焼鈍分離剤の成分に
ついて考察したものがある。すなわち特開昭53−22
113号公報には厚さ4μm以下の脱炭・1次再結晶焼
鈍板に、含水珪酸塩鉱物粉末と微粒子アルミナよりなる
焼鈍分離剤を塗布する方法が、特開昭55−89423
号公報には脱炭・1次再結晶焼鈍板にA1□0.を主成
分としさらにSrまたはBa化合物を含む焼鈍分離剤を
塗布する方法が、及び特開昭59−96278号公報に
は、八l、03を主成分とし、不活性なMgOを配合し
た焼鈍分離剤を塗布する方法がそれぞれ開示されている
。しかし、これらの手法はいずれもA1□03を主成分
として使用しているため、最終仕上げ焼鈍後の鋼板表面
にAI、01が局部的に固着し、その除去に多大の労力
を必要とするぽかりか、平均粗さ0.4 μm以下の平
滑面化を施した後の磁気特性は、フォルステライト被膜
を形成させた後、該被膜を除去した場合と同等であった
が、その後張力被膜を被着させた際の磁気特性は劣るも
のである。In addition, as a conventional method for preventing the formation of a forsterite film, there is a method that considers the components of an annealing separating agent used before final annealing. That is, JP-A-53-22
No. 113 discloses a method of applying an annealing separator consisting of hydrated silicate mineral powder and fine-grained alumina to a decarburized and primary recrystallized annealed plate with a thickness of 4 μm or less, as disclosed in JP-A-55-89423.
In the publication, A1□0. JP-A No. 59-96278 discloses a method of applying an annealing separator containing Sr as the main component and further containing Sr or Ba compound, and JP-A-59-96278 describes an annealing separation agent containing 8l,03 as the main component and blending inert MgO. Each method of applying the agent is disclosed. However, since all of these methods use A1□03 as the main component, AI and 01 stick locally to the surface of the steel sheet after final annealing, and their removal requires a lot of effort. However, the magnetic properties after smoothing the surface to an average roughness of 0.4 μm or less were the same as when a forsterite film was formed and then removed, but when a tension film was subsequently applied. The magnetic properties when worn are poor.
(発明が解決しようとする問題点)
そこでフォルステライト被膜を形成させない手法によっ
ても、フォルステライト被膜を形成させた後該被膜を除
去する手法と同等の磁気特性を実現することが、この発
明の目的である。(Problems to be Solved by the Invention) Therefore, it is an object of the present invention to realize magnetic properties equivalent to a method in which a forsterite film is formed and then removed by a method that does not form a forsterite film. It is.
(問題点を解決するための手段)
発明者らは、平滑面化後フォルステライト被膜を形成さ
せ、ついで該被膜を除去し、Ra :0.3μmに平
滑面化した試料と、フォルステライト被膜の形成を抑制
してRa :0.3μmに平滑面化した試料とにつき
、各試料の鋼板表層の地鉄素地を、化学研磨によってさ
らに数段階の研磨を行って、各研磨段階で張力被膜を被
着させたときの磁気特性及び平均粗さの変化を調べた。(Means for Solving the Problems) The inventors formed a forsterite film after smoothing the surface, then removed the film, and compared the sample with a smooth surface to Ra: 0.3 μm and the forsterite film. For the samples whose surfaces were smoothed to Ra: 0.3 μm by suppressing formation, the base steel on the surface layer of the steel plate of each sample was further polished in several stages by chemical polishing, and a tension coating was applied at each polishing stage. Changes in magnetic properties and average roughness were investigated when it was applied.
その結果を元の地鉄素地面からの研磨厚みの関数として
、第1図に示すように、フォルステライト被膜除去法で
は、鋼板表面の平均粗さが0.4μm以下になるにした
がい良好な磁気特性が得られるのに対し、フォルステラ
イト被膜形成抑制法においては、鋼板表面粗さがRa
:0.4μmとなっても磁気特性は改善されず、良好
な磁気特性を得るためには5μm以上の厚さでの研磨を
必要とする。しかしながら、地鉄素地を研磨することは
、多大の労力ならびにコストを必要とし、工業的規模で
の実施は極めて困難である。The results are shown as a function of the polishing thickness from the original steel base surface. As shown in Figure 1, in the forsterite film removal method, the better the magnetic properties become as the average roughness of the steel plate surface becomes 0.4 μm or less In contrast, in the forsterite film formation suppression method, the steel plate surface roughness is Ra
: Even if the thickness is 0.4 μm, the magnetic properties are not improved, and polishing to a thickness of 5 μm or more is required to obtain good magnetic properties. However, polishing the base iron requires a great deal of labor and cost, and is extremely difficult to implement on an industrial scale.
発明者らは方向性けい素鋼板の一連の製造工程において
最終仕上げ焼鈍を、箱焼鈍で行い、該箱焼鈍を2次再結
晶焼鈍が終了した時点で中断し、引続く鋼板の純化焼鈍
を高温、短時間の連続焼鈍で行うことにより、コストア
ップを伴わない工業的規模での実施が可能であり、該方
法によって磁気特性の優れた鋼板が製造できることを見
出した。In a series of manufacturing processes for grain-oriented silicon steel sheets, the inventors performed final finish annealing by box annealing, interrupted the box annealing when the secondary recrystallization annealing was completed, and performed the subsequent purification annealing of the steel sheet at a high temperature. It has been found that continuous annealing for a short period of time can be carried out on an industrial scale without increasing costs, and that steel sheets with excellent magnetic properties can be manufactured by this method.
即ち2次再結晶焼鈍に1050°C以下の温度で行う箱
焼鈍を適用し、焼鈍分離剤を用いた場合でもフォルステ
ライト被膜の形成抑制が可能となり、また焼鈍分離剤を
用いなかった場合においては鋼板間の融着を避は得るこ
と、ついで高温、短時間の水素焼鈍によって、鋼板表層
の酸化物は速やかに鋼板表層に浮上しかつ鋼中の不純物
も除去されることを知見した。That is, even when box annealing performed at a temperature of 1050 ° C or less is applied to the secondary recrystallization annealing and an annealing separator is used, it is possible to suppress the formation of a forsterite film, and when no annealing separator is used. It was discovered that by avoiding fusion between the steel plates and then hydrogen annealing at high temperature for a short time, oxides on the surface layer of the steel plate quickly floated to the surface layer of the steel plate and impurities in the steel were also removed.
即ちこの発明は、含けい素鋼スラブを熱間圧延し、つい
で1回又は中間焼鈍をはさむ2回以上の冷間圧延を施し
たのち、脱炭・1次再結晶焼鈍を施し、引続いて2次再
結晶焼鈍及び純4ヒ焼鈍を含む最終仕上げ焼鈍を施す一
連の工程によって方向性けい素鋼板を製造するに当り、
2次再結晶焼鈍をコイル状態での箱焼鈍にて及び純化焼
鈍を高温、短時間での連続焼鈍にて行い、その後絶縁被
膜を被成することを特徴とする鉄損の極めて低い方向性
けい素鋼板の製造方法及び含けい素鋼スラブを熱間圧延
し、ついで1回又は中間焼鈍をはさむ2回以上の冷間圧
延を施したのち、脱炭・1次再結晶焼鈍を施し、引続い
て2次再結晶焼鈍及び純化焼鈍を含む最終仕上げ焼鈍を
施す一連の工程によって方向性けい素鋼板を製造するに
当り、2次再結晶焼鈍をコイル状態での箱焼鈍にて及び
純化焼鈍を高温、短時間での連続焼鈍にて行い、ついで
鋼板表面を平均粗さRaで0.4μm以下の平滑面に仕
上げ、該表面上にCVD法、イオンプレーティング法イ
オンインプランテーション法により金属又はセラミック
の張力被膜を被成することを特徴とする鉄損の極めて低
い方向性けい素鋼板の製造方法である。That is, this invention hot-rolls a silicon-containing steel slab, then cold-rolls it once or twice or more with intermediate annealing, and then decarburizes and primary recrystallization annealing, and then In manufacturing a grain-oriented silicon steel sheet through a series of final annealing processes including secondary recrystallization annealing and pure 4H annealing,
A directional steel with extremely low iron loss characterized by performing secondary recrystallization annealing by box annealing in a coiled state, purification annealing by continuous annealing at high temperature for a short time, and then forming an insulating coating. Method for producing raw steel plate and hot rolling of a silicon-containing steel slab, followed by cold rolling once or twice or more with intermediate annealing, followed by decarburization and primary recrystallization annealing, followed by In manufacturing grain-oriented silicon steel sheets through a series of final finishing annealing processes including secondary recrystallization annealing and purification annealing, the secondary recrystallization annealing is performed by box annealing in a coiled state, and the purification annealing is performed at high temperature. Then, the surface of the steel plate is finished to a smooth surface with an average roughness Ra of 0.4 μm or less, and metal or ceramic is coated on the surface by CVD, ion plating, and ion implantation. This is a method for producing a grain-oriented silicon steel sheet with extremely low core loss, which is characterized by forming a tension coating.
又実施に当り、鋼板表面を圧延法によって平滑面に仕上
げることが有利である。Further, in carrying out the invention, it is advantageous to finish the surface of the steel plate into a smooth surface by rolling.
次に、上記各発明の成功が導かれた具体的な実験に従っ
て説明を進める。Next, the explanation will proceed according to specific experiments that led to the success of each of the above inventions.
C0,055讐t%(以下単に%で示す) 、Si 3
.35%、Mn O,075%、S O,025%、A
ffi O,025%及びNO,0062%を含有する
熱延板を、1150°Cで3分間の均−化焼鈍後急冷処
理を行い、その後300°Cの温間圧延を施して0.2
3mm厚の最終冷延板とした。C0,055% (hereinafter simply expressed as %), Si 3
.. 35%, MnO, 075%, SO, 025%, A
A hot rolled sheet containing ffi O, 025% and NO, 0,062% was uniformly annealed at 1150°C for 3 minutes and then rapidly cooled, and then warm rolled at 300°C to obtain a
A final cold-rolled sheet with a thickness of 3 mm was obtained.
その後日20°Cの湿水素雰囲気中で脱炭・1次再結晶
焼鈍を施した。該焼鈍板を3分割し、一部はMgOを主
成分とする焼鈍分離剤を塗布し、他の一部は何も塗布し
ないこととし、各々をさらに8分割して、コイル状に巻
きとった。そして各コイルを箱焼鈍炉に挿入し、10’
C/hrの昇温速度で、到達温度をそれぞれ850″C
,900°C,950°C,1000”C,1050°
C,1100°C,1150°C及び1200°Cに変
えて昇温し、各々の到達温度に達した後は炉冷した。Thereafter, decarburization and primary recrystallization annealing were performed in a wet hydrogen atmosphere at 20°C. The annealed plate was divided into three parts, one part was coated with an annealing separator mainly composed of MgO, the other part was not coated with anything, and each part was further divided into eight parts and wound into a coil shape. . Then, insert each coil into the box annealing furnace and
At a heating rate of C/hr, the reached temperature was 850″C, respectively.
, 900°C, 950°C, 1000"C, 1050°
C, 1100°C, 1150°C, and 1200°C, and after reaching each temperature, the furnace was cooled.
得られた鋼板の性状を表1に示す。Table 1 shows the properties of the obtained steel plate.
さらにフォルステライト被膜が形成せずかつ鋼板の融着
もなかったコイルについて、連続焼鈍炉でH2雰囲気中
、1100″Cで2分間の短時間焼鈍を施したときの鉄
損値(W+7/So )を表2に示す。Furthermore, the iron loss value (W+7/So) when a coil in which a forsterite film was not formed and the steel plate was not fused was annealed for 2 minutes at 1100"C in an H2 atmosphere in a continuous annealing furnace. are shown in Table 2.
又脱炭・1次再結晶焼鈍板を3分割した残りの一部につ
いては、従来の手法を適用した。即ちAhO+ (70
%)とMgO(30%)ととからなる焼鈍分離剤を塗布
した後、コイル状に巻きとり、箱焼鈍炉に挿入し、lθ
℃/hrの昇温速度で1200℃まで昇温し、1200
℃で10時間保持した後炉冷した。得られた鋼板の表面
にはフォルステライト被膜の形成はなく、又綱板の磁気
特性はW+?/S。=0.92w/kgであった。Furthermore, the conventional method was applied to the remaining part of the decarburized and primary recrystallized annealed plate, which was divided into three parts. That is, AhO+ (70
%) and MgO (30%), it is wound into a coil, inserted into a box annealing furnace, and lθ
The temperature was raised to 1200°C at a heating rate of °C/hr.
After being maintained at ℃ for 10 hours, the mixture was cooled in a furnace. There was no forsterite coating formed on the surface of the steel sheet obtained, and the magnetic properties of the steel sheet were W+? /S. =0.92w/kg.
表1及び表2に示されるように、2次再結晶が完了した
試料については、この発明法によって得られた鋼板が、
従来の焼鈍分離剤の成分を変更し、フォルステライト被
膜を形成させない方法によって得られた鋼板と比較して
低い鉄損値を示す。またこの発明の銅板においては、表
層部の地鉄内には酸化物は認められず、すべて表面にの
み存在しており、鋼板の純化も良好であった。さらに従
来の手法で製造した鋼板と表2に示した到達温度100
0’C,1050°Cの鋼板とについて、その表面を軽
酸洗し、3%HFとlhO□液中で化学研磨してRa0
03μmの中心線平均粗さに平滑面仕上げし、その後C
VD法により膜厚0.4 μmにてTiCの極薄の張力
被膜を形成させた。そのときの鉄損を表3に示すように
、この発明法によって得られた鋼板の鉄損は極めて優れ
ていることがわかった。As shown in Tables 1 and 2, for the samples in which secondary recrystallization has been completed, the steel plate obtained by the method of this invention is
It exhibits a lower iron loss value compared to steel sheets obtained by changing the components of the conventional annealing separator and not forming a forsterite film. Further, in the copper plate of the present invention, no oxides were observed in the base iron in the surface layer, and all oxides were present only on the surface, and the steel plate was well purified. In addition, steel plates manufactured using conventional methods and the attained temperature 100 shown in Table 2
The surface of the steel plate at 0'C and 1050°C was lightly pickled, and chemically polished in 3% HF and lhO□ solution to obtain Ra0.
Smooth surface finish to center line average roughness of 03μm, then C
An ultra-thin tension film of TiC was formed with a film thickness of 0.4 μm by the VD method. As shown in Table 3, the iron loss of the steel plate obtained by the method of this invention was found to be extremely excellent.
表3
(作 用)
上記した磁気特性の向上は、最終仕上げ焼鈍において、
1050°C以下温度域での焼鈍を施しかつ2次再結晶
が完了した鋼板にさらに高温短時間での連続焼鈍を施す
ことにより、鋼板表面の酸化物が表面に浮上しかつ鋼板
の純化も促進されることにより実現される。Table 3 (Function) The above-mentioned improvement in magnetic properties is achieved by final annealing.
By subjecting the steel plate that has been annealed at a temperature below 1050°C and completed secondary recrystallization to continuous annealing at high temperatures and short periods of time, oxides on the surface of the steel plate float to the surface and purification of the steel plate is also promoted. This is achieved by
次に一方向性けい素鋼板の一般的な製造工程も含めてよ
り詳しく説明する。Next, a more detailed explanation will be given including the general manufacturing process of the unidirectional silicon steel sheet.
出発素材は従来公知の一方向性けい素鋼素材成分、例え
ば
■C70,01〜0.060%、S i : 2.5
0〜4.5%、Mn : 0.01〜0.2%、Mo
:0.003〜0.1%、Sb :0.005〜0.
2%、SあるいはSeの1種あるいは2種合計で、0.
005〜0.05%を含有する組成
■C: Q、01〜0.08%、Si:2.O〜4.0
%、Sol AL : 0.005 〜0.06%
、 S : 0.005 〜0.05%、N : 0
.001〜0.01%、S n : 0.01〜0.
5%、Cu : 0.01〜0.3%、Mn : 0
.01〜0.2%を含有する組成
■c : o、oi〜0.06%、St :2゜O〜
4.0%、S : 0.005〜0.05%、B :
0.0003〜0.0040%、N : 0.001〜
0.01%、Mn : 0.01〜0.2%を含有する
組成
の如きにおいて適用可能である
次に熱延板は800−1100’Cの均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又は、通
常850°Cから1050°Cの中間焼鈍をはさんでさ
らに冷延する2回冷延法にて、後者の場合最初の圧下率
は50%から80%程度、最終の圧下率は50%から8
5%程度で0.15mmから0.35mm厚の最終冷延
板厚とする。The starting material is a conventionally known unidirectional silicon steel material composition, for example ■C70.01~0.060%, Si: 2.5
0-4.5%, Mn: 0.01-0.2%, Mo
: 0.003-0.1%, Sb: 0.005-0.
2%, one or two types of S or Se, 0.
Composition containing 005-0.05% ■C: Q, 01-0.08%, Si:2. O~4.0
%, Sol AL: 0.005 to 0.06%
, S: 0.005 to 0.05%, N: 0
.. 001-0.01%, Sn: 0.01-0.
5%, Cu: 0.01-0.3%, Mn: 0
.. Composition containing 01~0.2% ■c: o, oi~0.06%, St: 2°O~
4.0%, S: 0.005-0.05%, B:
0.0003~0.0040%, N: 0.001~
0.01%, Mn: 0.01~0.2%. Next, the hot rolled sheet is subjected to homogenization annealing at 800-1100'C and then cold rolled once. One-time cold-rolling to achieve the final plate thickness, or two-time cold-rolling that involves intermediate annealing at 850°C to 1050°C and further cold rolling, in the latter case the initial rolling reduction is 50%. The final reduction rate is from 50% to 80%.
The final cold-rolled plate thickness is 0.15 mm to 0.35 mm at about 5%.
最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750“Cから850°Cの湿水素中で脱炭・1次再
結晶焼鈍処理を施す。After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing in wet hydrogen at 750"C to 850°C after surface degreasing.
次に、コイル状に巻きとるが、この際、焼鈍分離剤を塗
布してもしなくても、この発明の効果には影響を及ぼさ
ない。Next, it is wound into a coil, and whether or not an annealing separator is applied at this time does not affect the effects of the present invention.
そして箱焼鈍は2次再結晶が完了する温度以上でかつ1
050°C以下の温度で行う。2次再結晶が完了する温
度未満の場合は初期の磁気特性が得られず、1050’
Cを越えると鋼板の融着もしくは、フォルステライト被
膜形成が進行してしまう。続く純化焼鈍は、鋼板の融着
を避けるために、高温短時間の連続焼鈍を水素中で行う
ことが必要である。Box annealing is performed at a temperature higher than the temperature at which secondary recrystallization is completed and at 1
Carry out at a temperature of 0.050°C or less. If the temperature is lower than the temperature at which secondary recrystallization is completed, the initial magnetic properties cannot be obtained and the temperature is 1050'.
If it exceeds C, fusion of the steel plates or formation of a forsterite film will proceed. In the subsequent purification annealing, it is necessary to perform continuous annealing at high temperature and for a short time in hydrogen in order to avoid fusion of the steel sheets.
焼鈍温度としては1000℃以上が好ましい。The annealing temperature is preferably 1000°C or higher.
次にこの焼鈍後表面上の非金属物質を公知の酸洗などの
化学除去法や切削、研削などの機械的除去法またはそれ
らの組み合せにより除去する。After this annealing, the nonmetallic substances on the surface are removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.
この除去処理の後、化学研磨、電解研磨などの化学研磨
や、パフ研磨等の機械的研磨あるいはそれらの組合せな
ど従来の手法により鋼板表面を平滑面状態つまり中心線
平均粗さ0.4μm以下に容易に仕上げることができる
。After this removal treatment, the steel plate surface is made smooth by conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as puff polishing, or a combination thereof. Can be easily finished.
また、さらに圧延を行なうことにより、0.4μm以下
に仕上げることも可能である。この場合、次工程の張力
被膜を被着させた後に、再結晶焼鈍を施こすことになる
ので、銅板の結晶粒径が小さく、高周波用のけい素鋼板
として適している。したがって、この圧延における板厚
は、0.020〜0.150 mmが好ましい。すなわ
ち、0.020 nun未満では圧延が困難になり、0
.150埴を越えると高周波の磁気特性上不利となる。Further, by further rolling, it is possible to finish the thickness to 0.4 μm or less. In this case, recrystallization annealing is performed after applying the tension coating in the next step, so the copper plate has a small crystal grain size and is suitable as a silicon steel plate for high frequency use. Therefore, the plate thickness in this rolling is preferably 0.020 to 0.150 mm. In other words, if it is less than 0.020 nun, rolling becomes difficult;
.. If it exceeds 150 clay, it will be disadvantageous in terms of high frequency magnetic properties.
また、平均粗さRa :0.4μmよりも粗い表面状
態であると、張力被膜の効果が得られない。Further, if the surface condition is rougher than average roughness Ra: 0.4 μm, the effect of the tension coating cannot be obtained.
その後に、CVD、 イオンプレーティング若しくはイ
オンインプランテーションにより、平滑面状態の鋼板表
面に張力被膜を形成することが必要である。Thereafter, it is necessary to form a tension coating on the smooth surface of the steel plate by CVD, ion plating, or ion implantation.
このときCVD、イオンプレーティングあるいはイオン
インプランテーションに使用する装置は従来公知のもの
を用いて良い。At this time, conventionally known devices may be used for CVD, ion plating, or ion implantation.
これらの方法による極薄の張力被膜としては、例えばT
i N 、 T i C、V N 、 V C、N
b N 。As ultra-thin tension coatings made by these methods, for example, T
i N , T i C, V N , V C, N
bN.
NbC,SiJ、、 SiC,CrzN、 Cr5
Ct 。NbC, SiJ, SiC, CrzN, Cr5
Ct.
A42N、A1.C,BN、NiC,CoC。A42N, A1. C, BN, NiC, CoC.
CoN、MozC,WC,WzN、 ZrC,HfC
。CoN, MozC, WC, WzN, ZrC, HfC
.
Mnz C、Ta C、TaN、 八1203 +
S iOz * Z n O+Ti1t 、
ZrO2,SnO,、pe203 、 Nip、
Cub。Mnz C, Ta C, TaN, 81203 +
S iOz * Z n O+Ti1t,
ZrO2, SnO,, pe203, Nip,
Cub.
MgOなどが適当である。MgO etc. are suitable.
さらに、CVD、 イオンプレーティングあるイオン
インプランテーションにより極薄の張力被膜を形成した
あと、これに重ねて、りん酸塩とコロイダルシリカとを
主成分とする絶縁被膜の塗布焼付を行なうことが、10
0万にVAにも上る大言iトランスの使途において当然
に必要であり、この絶縁性塗布焼付層の形成の如きは、
従来公知の手法を用いて良い。Furthermore, after forming an ultra-thin tensile coating by CVD, ion plating, and ion implantation, an insulating coating mainly composed of phosphate and colloidal silica is applied and baked on top of this.
Naturally, it is necessary for the use of the i-transformer, which has a VA of 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,”
A conventionally known method may be used.
゛ また、平滑面状態に仕上げた後に、磁区細分化処理
を施こして張力被膜を被着させること及び張力被膜を被
着させた後に、磁区細分化処理を施こすことにより、磁
気特性は加算的に向上する。磁区細分化処理としては、
レーザー照射や、イオンインプランテーション等公知の
手法が適用できる。゛ In addition, by applying magnetic domain refining treatment and applying a tension coating after finishing the surface to a smooth surface state, and applying magnetic domain refining treatment after applying a tension coating, the magnetic properties can be improved. to improve. As for magnetic domain refining processing,
Known methods such as laser irradiation and ion implantation can be applied.
(実施例)
叉施舅上
C: 0.048%、Si :3.2%、酸可溶性A
β:0.025%、N : 0.008%、Mn :
0.060%、S:o、ots%及びSb :0.0
20%を含有するけい素鋼スラブを常法により熱間圧延
し、続いて急速冷却を含む1100℃で1分間の焼なら
し処理を施した後、公知の手法により2回の冷間圧延を
施して0.23mmの最終板厚とした。次いで脱炭雰囲
気中での1次再結晶焼鈍を施した後2分割した。(Example) C: 0.048%, Si: 3.2%, Acid-soluble A
β: 0.025%, N: 0.008%, Mn:
0.060%, S: o, ots% and Sb: 0.0
A silicon steel slab containing 20% was hot rolled by a conventional method, followed by normalizing treatment at 1100°C for 1 minute including rapid cooling, and then cold rolled twice by a known method. The final plate thickness was 0.23 mm. Next, it was subjected to primary recrystallization annealing in a decarburizing atmosphere, and then divided into two parts.
そして一方をコイルに巻きとった後箱焼鈍炉で800℃
から1ooo℃まで10℃/hrの昇温速度で2次再結
晶焼鈍した後、乾水素雰囲気中で1100℃、2分間の
連続焼鈍を施して適合例とした。After winding one end into a coil, it is heated to 800℃ in a box annealing furnace.
After secondary recrystallization annealing was performed at a heating rate of 10° C./hr from 100° C. to 100° C., continuous annealing was performed at 1100° C. for 2 minutes in a dry hydrogen atmosphere to obtain a compatible example.
他方は、粒径10μ階以下の微粒子アルミナ(90%)
と粉砕した蛇絞岩粒子(10%)からなる焼鈍分離剤を
塗布後コイル状に巻きとり、箱焼鈍にて800°Cから
1000°Cまで10℃/hrで昇温し引続き1200
℃まで昇温した後、20時間保持してから降温し比較例
とした。The other is fine particle alumina (90%) with a particle size of 10 μm or less.
After applying an annealing separator consisting of crushed serpentine particles (10%), the coil was wound into a coil, and the temperature was raised from 800°C to 1000°C at a rate of 10°C/hr in box annealing, followed by 1200°C.
After raising the temperature to ℃, it was held for 20 hours, and then the temperature was lowered to obtain a comparative example.
両者とも2次再結晶は完全に終了しており、鋼板表面ば
地鉄面が裸出していた。二〇地鉄表面には、適合例にお
いてはSingの粒子が比較例においてはフォルステラ
イト粒子が、それぞれ散在していた。このときの鋼板の
磁気特性は、適合例がB、、=1.947及びW 、
、、、。=0.92 w/kg、そして比較例がB1
o=1.947及びWl?15G =0.97w/kg
であった。In both cases, the secondary recrystallization was completely completed, and the base iron surface was exposed on the surface of the steel plate. 20 Sing particles were scattered on the surface of the base iron in the conforming example, and forsterite particles were scattered in the comparative example. The magnetic properties of the steel plate at this time are B, , = 1.947 and W,
,,,. =0.92 w/kg, and the comparative example is B1
o=1.947 and Wl? 15G =0.97w/kg
Met.
次に適合例につき10%H!SO,の軽酸洗により、こ
の鋼板表面の酸化物を除去した後、電解研磨により平均
粗さRa :0.35μmの平滑面状態に仕上げ、磁
気特性を測定したところ、B、。=1.957及びWI
7yso =0.91w/kgであった。Next, 10%H for each compatible example! After removing oxides on the surface of this steel plate by light pickling with SO, it was finished to a smooth surface with an average roughness Ra of 0.35 μm by electrolytic polishing, and its magnetic properties were measured. =1.957 and W.I.
7yso=0.91w/kg.
さらにこの表面上にイオンプレーティング法により、T
iNの張力被膜を被着したところ、磁気特性はB+o=
1.957及びWl’F15゜=0.70w/kgであ
った。Furthermore, by ion plating method, T
When a tension film of iN was applied, the magnetic properties were B+o=
1.957 and Wl'F15°=0.70w/kg.
1豊I
C: 0.055%、Si :3.2%、酸可溶性A
l:0.020 %、N : 0.0070%、Mn
: 0.055 %= S 。1 Yutaka IC: 0.055%, Si: 3.2%, acid soluble A
l: 0.020%, N: 0.0070%, Mn
: 0.055%=S.
0.015%及びSn :0.020%を含有するけ
い素鋼スラブを常法により熱間圧延し、続いて酸洗後冷
間圧延を施こし、急速冷却を含む1050’Cで1分間
の中間焼鈍を行った後、公知の手法による温間圧延で0
.23mmの板厚とした。次いで脱炭・1次再結晶焼鈍
を施した後、鋼帯を巻きとりコイル状にした後、箱焼鈍
炉で900°Cまで昇温し60時間保持した後冷却した
。その後1150’Cで30秒間の連続焼鈍を施したと
ころ、2次再結晶は完全に終了し、鋼板表面ば地鉄面が
裸出しており、SiO□粒子が地鉄表面に散在していた
。このときの鋼板の磁気特性は、B1゜=1.94T及
びW、□7.。−0,98w/kgであった。A silicon steel slab containing 0.015% and Sn: 0.020% was hot rolled by a conventional method, followed by pickling and cold rolling, followed by rapid cooling at 1050'C for 1 minute. After intermediate annealing, warm rolling is performed using a known method to reduce the temperature to 0.
.. The plate thickness was 23 mm. After decarburization and primary recrystallization annealing, the steel strip was wound into a coil, heated to 900°C in a box annealing furnace, held for 60 hours, and then cooled. After that, continuous annealing was performed at 1150'C for 30 seconds, and the secondary recrystallization was completely completed, and the steel plate surface was exposed, and SiO□ particles were scattered on the surface of the steel plate. The magnetic properties of the steel plate at this time are B1°=1.94T and W, □7. . -0.98w/kg.
次に10%H2SO4の軽酸洗により鋼板表面の酸化物
を除去し、ついで電解研磨により平均粗さRa: 0.
30μmの平滑面状態に仕上げて磁気特性を測定したと
ころ、B、O=1.95T及びW、、、5. =0.9
2w/kgであった。Next, oxides on the surface of the steel plate were removed by light pickling with 10% H2SO4, and then electrolytic polishing was performed to obtain an average roughness Ra: 0.
When the magnetic properties were measured with a smooth surface of 30 μm, B, O = 1.95T and W, 5. =0.9
It was 2w/kg.
次いでコイルを2分割し、一方はイオンプランテーショ
ン法によってBをコイル長手方向に垂直な方向に4mm
ピッチで鋼板表層に埋込んだ後、この表面上にイオンプ
レーティング法により、TiNの張力被膜を被着したと
ころ、磁気特性はB1゜=1.95T及びW + 71
5 +1 = 0.65 W / kg 11’あった
。Next, the coil was divided into two parts, and one part was divided into 4 mm in the direction perpendicular to the longitudinal direction of the coil by the ion plantation method.
After embedding the pitch into the surface layer of the steel plate, a TiN tension film was deposited on the surface by ion plating, and the magnetic properties were as follows: B1° = 1.95T and W + 71
There were 5 + 1 = 0.65 W/kg 11'.
残る他方のコイル表面に、イオンプレーティング法によ
り、TiNの張力被膜を被着した後、イオンインプラン
テーション法によってBをコイル長手方向に垂直な方向
に411IITlピツチで鋼板に埋込んだところ、磁気
特性はB、、=1.95T及びWH7y、。After a TiN tension coating was applied to the remaining coil surface by ion plating, B was embedded into the steel plate in a direction perpendicular to the longitudinal direction of the coil at a pitch of 411IITl by ion implantation, resulting in magnetic properties. is B, ,=1.95T and WH7y,.
=0.67w/kgであった。=0.67w/kg.
尖施貫主
C: 0.052%、Si :3.0%、酸可溶性A
l二〇、020%、Mn : 0.070%、S :
0.020%及びN: 0.0045%を含有するけ
い素鋼スラブを常法により熱間圧延し、続いて急速冷却
を含む1050″Cで1分間の焼ならし処理後、公知の
手法による2回の冷間圧延を施して0.23mmの板厚
とした。次いで脱炭・1次再結晶焼鈍を施した後、コイ
ル状に巻きとり、箱焼鈍炉にて800″Cから 1oo
o’cまで15°C/hrの昇温速度で2次再結晶焼鈍
した後、乾水素雰囲気中で1050°C13分間の連続
焼鈍を施したところ、2次再結晶は完全に終了しており
、鋼板表面に裸出した地鉄表面にはSin、の粒子が散
在していた。このときの鋼板の磁気特性は、B、。=1
.94T及びWI+7so =0.92w/kg”i:
’あった。Sharpness C: 0.052%, Si: 3.0%, Acid soluble A
l20, 020%, Mn: 0.070%, S:
A silicon steel slab containing 0.020% and N: 0.0045% was hot rolled by a conventional method, followed by normalizing treatment at 1050"C for 1 minute including rapid cooling, and then by a known method. It was cold rolled twice to have a thickness of 0.23 mm. After decarburization and primary recrystallization annealing, it was wound into a coil and heated at 800"C to 1oo in a box annealing furnace.
After secondary recrystallization annealing was performed at a heating rate of 15°C/hr to o'c, continuous annealing was performed at 1050°C for 13 minutes in a dry hydrogen atmosphere, and the secondary recrystallization was completely completed. , Particles of Sin were scattered on the bare steel surface of the steel plate. The magnetic properties of the steel plate at this time are B. =1
.. 94T and WI+7so =0.92w/kg"i:
'there were.
次に10%H2SO,の軽酸洗により鋼板表面の酸化物
を除去し、冷間圧延により0.100 pmの最終板厚
とするとともに平均粗さRa :0.20μmの平滑
面状態に仕上げた。さらにこの表面にイオンプレーティ
ング法によりTtNの張力被膜を被着し、850°Cで
1分間の焼鈍を施したところ、その高周波磁気特性は、
B 、o=1.86T、 WS/1ooo=4.5W
/ kgs WI O/+ +100″20・OW/
kg−W I O/400 =5.2 w/kg及びN
V+5z4oo=10.4W/kgであった・夫庭田工
C: 0.065%、Si :2.9%、酸可溶性へ
〇:0.020%、N : 0.0080%、Cu
:0.05%、Sn 70、10%、Mr+ :0.
075%及びS : 0.023%を含有するけい素鋼
スラブを常法により熱間圧延し、続いて急速冷却を含む
1100°Cで2分間の焼ならし処理後、酸洗し2分割
し、一方は圧下率86%の冷間圧延で0.30mmの最
終板厚とし、他方は急速冷却処理を含む1050°Cで
2分間の中間焼鈍を挟む2回の冷間圧延(第1回圧下率
25%、第2回圧下率86%)で0.23mmの最終板
厚とした。Next, oxides on the surface of the steel plate were removed by light pickling with 10% H2SO, and the final thickness of the steel plate was made 0.100 pm by cold rolling, and the surface was finished into a smooth surface with an average roughness Ra of 0.20 μm. . Furthermore, when a TtN tension film was applied to this surface by ion plating and annealed at 850°C for 1 minute, its high frequency magnetic properties were as follows.
B, o=1.86T, WS/1ooo=4.5W
/ kgs WI O/+ +100″20・OW/
kg-W I O/400 = 5.2 w/kg and N
V+5z4oo=10.4W/kg・Fu Niwata C: 0.065%, Si: 2.9%, acid soluble 〇: 0.020%, N: 0.0080%, Cu
: 0.05%, Sn 70, 10%, Mr+: 0.
A silicon steel slab containing 0.075% and S: 0.023% was hot rolled by a conventional method, then normalized at 1100°C for 2 minutes including rapid cooling, and then pickled and divided into two parts. , one was cold rolled with a reduction rate of 86% to a final thickness of 0.30 mm, and the other was cold rolled twice with a rapid cooling treatment and intermediate annealing for 2 minutes at 1050 °C (first reduction). The final plate thickness was 0.23 mm.
次いで、脱炭・1次再結晶焼鈍を施した後コイル状に巻
きとり、箱焼鈍炉にて、850°Cから1050°Cま
で25°C/hrの昇温速度で2次再結晶焼鈍した後、
乾水素雰囲気中で1100’C13分間の連続焼鈍を施
したところ、2次再結晶は完全に終了しており、鋼板表
面に裸出した地鉄表面には、SiO□とat、O,の粒
子が散在していた。このときの鋼板の磁気特性は、
板厚0.30mm : B +。=1.95T、 WI
T/S。=1.01w/kg板厚0.23mm : B
+o=1.94T、 WIqyso =0.97w/
kgであった。Next, it was subjected to decarburization and primary recrystallization annealing, then wound into a coil, and secondary recrystallization annealing was performed in a box annealing furnace from 850°C to 1050°C at a heating rate of 25°C/hr. rear,
When continuous annealing was performed at 1100'C for 13 minutes in a dry hydrogen atmosphere, the secondary recrystallization was completely completed, and particles of SiO□, at, and O were present on the exposed steel surface. were scattered. The magnetic properties of the steel plate at this time are as follows: Plate thickness: 0.30 mm: B+. =1.95T, WI
T/S. =1.01w/kg plate thickness 0.23mm: B
+o=1.94T, WIqyso=0.97w/
It was kg.
次に10%HzSO4の軽酸洗により鋼板表面の酸化物
を除去し、ついで電解研磨により平均粗さRa: 0.
24μmの平滑面状態に仕上げ、磁気特性を測定したと
ころ
板厚0.30mm : B +o=1.96T、 WI
T/S。=0.94w/kg板厚0.23mm : B
to=1.957 、 Wl、/s。=0.91w/
kgであった。Next, oxides on the surface of the steel plate were removed by light pickling with 10% Hz SO4, and then electrolytic polishing was performed to obtain an average roughness Ra: 0.
Finished to a smooth surface of 24μm, and measured the magnetic properties, the plate thickness was 0.30mm: B + o = 1.96T, WI
T/S. =0.94w/kg plate thickness 0.23mm: B
to=1.957, Wl,/s. =0.91w/
It was kg.
さらにこの表面上にイオンプレーティング法によりTi
Nの張力被膜を被着したところ、磁気特性は、
板厚0.30mm : B +o=1.96T、 Wl
?15゜=0.83w/kg板厚0.23胴: B +
o””1.95T、 W+?15゜=0.70w/kg
であった。Furthermore, Ti was deposited on this surface by ion plating method.
When a tension film of N was applied, the magnetic properties were as follows: Plate thickness 0.30 mm: B + o = 1.96 T, Wl
? 15゜=0.83w/kg plate thickness 0.23 body: B +
o””1.95T, W+? 15°=0.70w/kg
Met.
ス11津i
C: 0.040%、Si :3.3%、Mn :0
.06%、Se :0.018%及びSb :0.
025%を含有するけい素鋼スラブを常法により熱間圧
延し、続いて公知の手法による2回の冷間圧延を施して
、0.23mmの板厚とした。C: 0.040%, Si: 3.3%, Mn: 0
.. 06%, Se: 0.018% and Sb: 0.
A silicon steel slab containing 0.025% was hot rolled by a conventional method, and then cold rolled twice by a known method to obtain a plate thickness of 0.23 mm.
次いで、脱炭・1次再結晶焼鈍を施した後、コイル状に
巻きとり、箱焼鈍炉にて、800°Cから1050℃ま
で15℃/hrの昇温速度で2次再結晶焼鈍した後、乾
水素雰囲気中で1050″C13分間の連続焼鈍を施し
たところ、2次再結晶は完全に終了しており、鋼板表面
に裸出した地鉄表面には、SiO□の粒子が散在してい
た。このときの鋼板の磁気特性は、B、、=1.927
及びWl7/So =0.97w/kgであった。Next, after performing decarburization and primary recrystallization annealing, it was wound into a coil shape and subjected to secondary recrystallization annealing from 800°C to 1050°C at a heating rate of 15°C/hr in a box annealing furnace. When continuous annealing was performed at 1050"C for 13 minutes in a dry hydrogen atmosphere, secondary recrystallization was completely completed, and SiO□ particles were scattered on the bare steel surface. The magnetic properties of the steel plate at this time were B, , = 1.927
and Wl7/So =0.97w/kg.
次に、10%thsO4の軽酸洗により、鋼板表面の酸
化物を除去し、ついで電解研磨により平均粗さRa
:0.18μmの平滑面状態に仕上げ磁気特性を測定し
たところ、B、、=1.93T及びWIT/S。=0.
91w/kgとなった。Next, oxides on the steel plate surface were removed by light pickling with 10% thsO4, and then electrolytic polishing was performed to improve the average roughness Ra.
: When the finished magnetic properties were measured on a smooth surface of 0.18 μm, B = 1.93T and WIT/S. =0.
It became 91w/kg.
さらに、この表面上にイオンプレーティング法により、
TiNの張力被膜を被着したところ、磁気特性はB+o
=1.937及びW 、 、、、。−0,77w/kg
となった。Furthermore, by ion plating method on this surface,
When a TiN tension film was applied, the magnetic properties were B+o.
=1.937 and W , , , . -0,77w/kg
It became.
(発明の効果)
この発明により、良好な磁気特性を有するフォルステラ
イト被膜のない方向性けい素鋼板の製造方法を確立し得
る。(Effects of the Invention) According to the present invention, it is possible to establish a method for manufacturing a grain-oriented silicon steel sheet without a forsterite coating and having good magnetic properties.
第1図は、磁気特性と研磨厚みとの関係を示すグラフで
ある。
同 弁理士 杉 村 興 作第
1図FIG. 1 is a graph showing the relationship between magnetic properties and polishing thickness. Drawing 1 by the same patent attorney, Ko Sugimura
Claims (1)
間焼鈍をはさむ2回以上の冷間圧延を施したのち、脱炭
・1次再結晶焼鈍を施し、引続いて2次再結晶焼鈍及び
純化焼鈍を含む最終仕上げ焼鈍を施す一連の工程によっ
て方向性けい素鋼板を製造するに当り、 2次再結晶焼鈍をコイル状態での箱焼鈍にて及び純化焼
鈍を高温、短時間での連続焼鈍にて行い、その後絶縁被
膜を被成することを特徴とする鉄損の極めて低い方向性
けい素鋼板の製造方法。 2、含けい素鋼スラブを熱間圧延し、ついで1回又は中
間焼鈍をはさむ2回以上の冷間圧延を施したのち、脱炭
・1次再結晶焼鈍を施し、引続いて2次再結晶焼鈍及び
純化焼鈍を含む最終仕上げ焼鈍を施す一連の工程によっ
て方向性けい素鋼板を製造するに当り、 2次再結晶焼鈍をコイル状態での箱焼鈍にて及び純化焼
鈍を高温、短時間での連続焼鈍にて行い、ついで鋼板表
面を平均粗さRaで0.4μm以下の平滑面に仕上げ、
該表面上にCVD法、イオンプレーティング法イオンイ
ンプランテーション法により金属又はセラミックの張力
被膜を被成することを特徴とする鉄損の極めて低い方向
性けい素鋼板の製造方法。 3、平滑面仕上げが、圧延法によるものである特許請求
の範囲第2項記載の製造方法。[Claims] 1. A silicon-containing steel slab is hot rolled, then cold rolled once or twice or more with intermediate annealing, and then subjected to decarburization and primary recrystallization annealing, In manufacturing a grain-oriented silicon steel sheet through a series of subsequent steps of final finish annealing including secondary recrystallization annealing and purification annealing, secondary recrystallization annealing is performed by box annealing in a coiled state and purification annealing. A method for producing grain-oriented silicon steel sheets with extremely low iron loss, characterized by performing continuous annealing at high temperatures and in a short period of time, and then forming an insulating film. 2. A silicon-containing steel slab is hot rolled, then cold rolled once or twice or more with intermediate annealing, then subjected to decarburization and primary recrystallization annealing, followed by secondary recrystallization annealing. In manufacturing grain-oriented silicon steel sheets through a series of final annealing processes including crystal annealing and purification annealing, secondary recrystallization annealing is performed by box annealing in a coiled state, and purification annealing is performed at high temperature and in a short time. Then, the steel plate surface is finished to a smooth surface with an average roughness Ra of 0.4 μm or less,
A method for producing a grain-oriented silicon steel sheet with extremely low iron loss, characterized in that a metal or ceramic tension coating is formed on the surface by a CVD method, an ion plating method, or an ion implantation method. 3. The manufacturing method according to claim 2, wherein the smooth surface finishing is performed by a rolling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62090633A JPH0663034B2 (en) | 1987-04-15 | 1987-04-15 | Method for producing grain-oriented silicon steel sheet with extremely low iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62090633A JPH0663034B2 (en) | 1987-04-15 | 1987-04-15 | Method for producing grain-oriented silicon steel sheet with extremely low iron loss |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63259023A true JPS63259023A (en) | 1988-10-26 |
JPH0663034B2 JPH0663034B2 (en) | 1994-08-17 |
Family
ID=14003893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62090633A Expired - Lifetime JPH0663034B2 (en) | 1987-04-15 | 1987-04-15 | Method for producing grain-oriented silicon steel sheet with extremely low iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0663034B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0480322A (en) * | 1990-07-20 | 1992-03-13 | Nippon Steel Corp | Manufacturing method of low core loss unidirectional silicon steel sheet |
JPH04131326A (en) * | 1990-09-21 | 1992-05-06 | Nippon Steel Corp | Production of low-iron loss grain-oriented silicon steel plate |
JP2002212638A (en) * | 2001-01-23 | 2002-07-31 | Kawasaki Steel Corp | Manufacturing method of grain-oriented electrical steel sheet |
-
1987
- 1987-04-15 JP JP62090633A patent/JPH0663034B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0480322A (en) * | 1990-07-20 | 1992-03-13 | Nippon Steel Corp | Manufacturing method of low core loss unidirectional silicon steel sheet |
JPH04131326A (en) * | 1990-09-21 | 1992-05-06 | Nippon Steel Corp | Production of low-iron loss grain-oriented silicon steel plate |
JP2002212638A (en) * | 2001-01-23 | 2002-07-31 | Kawasaki Steel Corp | Manufacturing method of grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH0663034B2 (en) | 1994-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008001980A (en) | Manufacturing method of mirror-oriented electrical steel sheet | |
JPH0672266B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
CN113302318B (en) | Method for producing grain-oriented electrical steel sheet | |
JPH05263135A (en) | Production of grain-oriented silicon steel sheet having metallic luster and excellent in magnetic property | |
JPS63259023A (en) | Manufacture of grain-oriented silicon steel sheet mimimal in iron loss | |
JP2683036B2 (en) | Annealing agent | |
JPS6332849B2 (en) | ||
KR102576546B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4241268B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPS637333A (en) | Method for manufacturing grain-oriented electrical steel sheet with low core loss and excellent glass film properties | |
JPH0619113B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely low iron loss | |
JPH10245667A (en) | Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet | |
JPH02107722A (en) | Method for manufacturing grain-oriented electrical steel sheet with excellent punchability and metallic luster | |
JPH11310882A (en) | Ultra-low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPH067527B2 (en) | Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same | |
JPH08269560A (en) | Method for producing unidirectional electrical steel sheet with excellent iron loss without glass coating | |
JPH09194948A (en) | Method for producing grain-oriented silicon steel sheet having good insulation coating adhesion | |
JP2719266B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JPH04272166A (en) | Manufacture of ultralow core loss grain-oriented silicon steel sheet | |
JPS62151522A (en) | Manufacturing method of thin grain-oriented electrical steel sheet with stable secondary recrystallization and low core loss | |
CN120225708A (en) | Grain-oriented electrical steel sheet and method for producing same | |
JPH0577749B2 (en) | ||
JPS6318087A (en) | Production of grain-oriented silicon steel sheet having small iron loss | |
JPS6332850B2 (en) | ||
JPH0327633B2 (en) |