JPS63257223A - Cooling system - Google Patents
Cooling systemInfo
- Publication number
- JPS63257223A JPS63257223A JP62090816A JP9081687A JPS63257223A JP S63257223 A JPS63257223 A JP S63257223A JP 62090816 A JP62090816 A JP 62090816A JP 9081687 A JP9081687 A JP 9081687A JP S63257223 A JPS63257223 A JP S63257223A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- temperature
- generating part
- heat generating
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Atmospheric Sciences (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Sustainable Development (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、精密に移動する装置の冷却装置に係り、特に
半導体製造用露光装置に好適な冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device for precisely moving equipment, and particularly to a cooling device suitable for an exposure device for semiconductor manufacturing.
従来のMr元架装置温度を均一化するには露光装置全体
を均一な温度に制御した空気を循環させた室に入れる方
式が一般に行なわれている、また、露光用ランプハウス
等の大きな発熱源は高精度の必要な機411に対して断
熱して取付け1周辺の空気を排気ダクトにより、上気室
の外へ排出している。In order to equalize the temperature of conventional Mr main frame equipment, the general method is to place the entire exposure equipment in a chamber with circulating air that is controlled to a uniform temperature. The machine 411, which requires high precision, is insulated and the air around the installation 1 is exhausted to the outside of the upper air chamber through an exhaust duct.
しかし、位置決め用ステージの駆動モータや、位置検出
光学系の像センサの様に精度の必要な装置の中に組込ま
れた発熱源に対しては、上記断熱した取付や、排気ダク
トを取付けろスペースが無く、均一温度の空気の循環の
みであるため、温度上昇は避けられない。However, for heat sources that are built into devices that require precision, such as the drive motor of the positioning stage or the image sensor of the position detection optical system, it is necessary to mount them with the above-mentioned insulation or install an exhaust duct. Since there is no heat exchanger and there is only circulation of air at a uniform temperature, a rise in temperature is unavoidable.
発熱部に一定の温度に制御した冷却水を流した熱交換器
を取付けることにより、上記スペースの問題を解決する
ことができるが、温度上昇を僅少にするには冷却水の流
量を相当多(する必要があり、配管の直径を大きく、か
つ耐圧の高いものにする必要があジ、位置決めステージ
の様に発熱部が高精度に移動する必要がある装置に対し
ては取付が困難である。The above space problem can be solved by installing a heat exchanger that flows cooling water controlled at a constant temperature into the heat generating part, but in order to minimize the temperature rise, the flow rate of cooling water must be considerably increased ( The piping must have a large diameter and high pressure resistance, and it is difficult to install it in a device such as a positioning stage where the heat generating part needs to move with high precision.
発熱部から僅かの温度差で熱を排出する装置として熱サ
イフオンとヒートパイプがある。There are thermosiphons and heat pipes as devices that discharge heat from a heat generating part with a slight temperature difference.
第4図に示す様に密閉したパイプ16の内部に作動液1
7y!r、小量入れ、真空にてろ。パイプ16の1端1
Bを加熱すると作動液は蒸気となって矢印20に示す様
に他端19の方へ移動する。他端19を冷却すると蒸気
は凝縮して液体に戻り矢印21に示す様に加熱部に戻る
。凝縮液を加熱部へ戻丁ために熱サイフオンでは重力を
用い、加熱部を最下端に冷却を最上端で行ない、中間は
液がスムースに流れる様につなぐ。ヒートパイプではパ
イプ内にウィツクを入れ、液の表面張力により凝縮液を
加熱部へ移動させるため、熱サイフオンよりは配置の制
約が小ないが、冷却能力は小さい。As shown in Fig. 4, the hydraulic fluid 1 is inside the sealed pipe 16.
7y! r, put a small amount and vacuum it. 1 end 1 of pipe 16
When B is heated, the working fluid becomes vapor and moves toward the other end 19 as shown by arrow 20. When the other end 19 is cooled, the vapor condenses and returns to liquid and returns to the heating section as shown by arrow 21. The thermosiphon uses gravity to return the condensate to the heating section, with the heating section at the bottom and cooling at the top, and the middle section is connected so that the liquid can flow smoothly. In heat pipes, a wick is placed inside the pipe and the surface tension of the liquid moves the condensate to the heating section, so there are fewer restrictions on placement than thermosiphons, but the cooling capacity is smaller.
このヒートパイプ等に関して伊藤謹司訳ヒートパイプ(
学献社)1〜5ページに記載されている。Regarding this heat pipe etc., the heat pipe (translated by Kinji Ito)
Gakukensha) described on pages 1 to 5.
〔発明が解決しようとする問題点〕
上記ヒートパイプを精密装置の温度均一化のため、発熱
部の冷却に適用するには:まず配置の制約が太き(発熱
部から冷却部へ向けて配管の高さが少しずつ増謔する様
に設置する必要があり、露光装置への適用困難である。[Problems to be solved by the invention] In order to apply the above heat pipe to cooling the heat generating part in order to equalize the temperature of precision equipment: First, there are restrictions on the layout (the piping must be directed from the heat generating part to the cooling part). It is necessary to install the device so that the height of the device increases little by little, making it difficult to apply it to exposure equipment.
また、密閉構造であるため休止時の内部圧力上昇に耐え
る様に強固に製作する必要があるため、位置決めステー
ジの様に発熱部が高精度に移動てろ装置に対しては取付
が困難である。Furthermore, since it has a sealed structure, it must be made strong enough to withstand internal pressure increases during rest, making it difficult to attach to a device such as a positioning stage in which the heat generating part moves with high precision.
本発明の目的は、発熱部の熱を僅ρ・の温度上昇で排出
すると共に排出のためのスペースが少な(、かつ、移動
する装置に対しても取付容易にした冷却装置を提供する
ことにある。An object of the present invention is to provide a cooling device that discharges heat from a heat generating part with a temperature increase of only ρ, requires a small space for discharge (and is easy to install even in a moving device). be.
し問題点を解決するための手段〕
上記目的は、移動する精密装置の外部に設けた凝縮部よ
りポンプにより作動液を発熱部へ送り。[Means for solving the problem] The above purpose is to send working fluid from a condensing section provided outside a moving precision device to a heat generating section using a pump.
蒸気を別のパイプにより大気圧で凝m部へ戻τことによ
り達成される、
〔作用〕
作動液はポンプにより発熱部の発熱量に対応した童たけ
発熱Sに送り込まれ、そこで蒸発することにより発熱部
の熱を吸収する。発熱量と同じ量の熱を吸収する様にポ
ンプの流量を調整することにより発熱部の温度変化を無
くてることができる。This is achieved by returning the steam to the condensing section at atmospheric pressure through another pipe. [Operation] The working fluid is sent by a pump to the heating section S corresponding to the calorific value of the heating section, and is evaporated there. Absorbs heat from heat generating parts. By adjusting the flow rate of the pump so that it absorbs the same amount of heat as the amount of heat generated, temperature changes in the heat generating part can be eliminated.
作動液の潜熱により熱を吸収するので作動液の量は小量
でよく、送液パイプは細(てよいのでフレキシブルに接
続できる。発熱部で発生した作動液の蒸気は別のパイプ
で凝縮部へ戻す。凝縮部では蒸気を大気圧で冷却して液
化する。蒸気のパイプは大気圧で使用するので耐圧が小
さくてよ(、プラスチック製のフレキシブルなホースを
使用できろ。Since the heat is absorbed by the latent heat of the working fluid, only a small amount of working fluid is required, and the liquid sending pipe can be thin and flexible, allowing for flexible connections. In the condensing section, the steam is cooled at atmospheric pressure and liquefied.Since the steam pipe is used at atmospheric pressure, its pressure resistance is low (use a flexible plastic hose).
以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
冷却した微量注入ポンプ1により作動液ヲ細いパイプ2
と膨張弁5を経由して、発熱部4に固定した熱交換器5
に注入する。熱交換器5より太いバイブロと電磁弁7を
経由して凝縮容器8に接続する。容器内部は通常の冷凍
機8により冷却し、作動液の大気圧に′j6げろ沸点に
なる様に温度制御する。容器8の上部より電磁弁10を
介して真空ポンプ11に接続し、蒸気に混入した空気等
を排気する。通常の運転時はt磁弁10を閉じ、容器8
内温度が所定の値となった後に電磁弁7を開く。運転休
止時にはタンクの温度上昇により圧力が上昇し、太いバ
イブロが破裂するのを防止するため、電磁弁7′!!−
閉じる。ポンプコントローラ12により注入ポンプ1の
運転速度を発熱部4へ供給する電力に比例して調J1j
ることにより、発熱量と吸熱量をつりあわせ、精密装置
の温度変化を防止することができる。作動液に冷媒R2
1を使用すると容器温度は7’ C程度にでると蒸気圧
が大気圧に近くなる。The cooled microinjection pump 1 pumps the working fluid into a thin pipe 2.
and a heat exchanger 5 fixed to the heat generating part 4 via the expansion valve 5.
Inject into. It is connected to a condensing vessel 8 via a vibrotube that is thicker than the heat exchanger 5 and a solenoid valve 7. The inside of the container is cooled by an ordinary refrigerator 8, and the temperature is controlled so that the boiling point of the working fluid is equal to the atmospheric pressure. The upper part of the container 8 is connected to a vacuum pump 11 via a solenoid valve 10 to exhaust air mixed in the steam. During normal operation, the magnetic valve 10 is closed and the container 8
After the internal temperature reaches a predetermined value, the solenoid valve 7 is opened. When the operation is stopped, the pressure rises due to the temperature rise in the tank, and to prevent the thick vibro from bursting, solenoid valve 7'! ! −
close. The pump controller 12 adjusts the operating speed of the injection pump 1 in proportion to the electric power supplied to the heat generating part 4.
By doing so, it is possible to balance the amount of heat generated and the amount of heat absorbed, and prevent temperature changes in precision equipment. Refrigerant R2 in the working fluid
When No. 1 is used, when the container temperature reaches about 7'C, the vapor pressure becomes close to atmospheric pressure.
ポンプの温度は別の冷凍機16により0°C程度に冷却
するとよい。蒸気中に空気が混入すると圧力が上昇する
ので圧力計14VCより検知し、電磁弁7を閉じて電磁
弁10を開き、真空ポンプ11により吸引して排気する
。The temperature of the pump is preferably cooled to about 0° C. by another refrigerator 16. When air is mixed into the steam, the pressure increases, which is detected by the pressure gauge 14VC, the solenoid valve 7 is closed, the solenoid valve 10 is opened, and the vacuum pump 11 sucks and exhausts the steam.
空気の混入が多い場合は第2図に示す様に真空ポンプ1
1をやめ、電磁弁10ヲ外気に開放して使用する。この
場合は、容器8の冷却温度をさらに下げて、作動液の漏
出を減らす。If there is a lot of air mixed in, use vacuum pump 1 as shown in Figure 2.
1 and open the solenoid valve 10 to the outside air. In this case, the cooling temperature of the container 8 is further lowered to reduce leakage of the working fluid.
細イバイブ2と太いバイブロの温度は精密装置の目標温
度(23°C程度)より低いので、細いパイプ2は熱交
換器15によV雰囲気温度に上昇させる。また、熱交換
器5の容量を大きくして太いバイブロへ出る蒸気温度を
上昇させる。Since the temperature of the thin vibrator 2 and the thick vibrator is lower than the target temperature of the precision equipment (about 23° C.), the temperature of the thin pipe 2 is raised to the V atmosphere temperature by the heat exchanger 15. Furthermore, the capacity of the heat exchanger 5 is increased to increase the temperature of the steam exiting to the thick vibro.
第6図は発熱部4と熱交換器5の一実施例を示す。モー
タ22が発熱部であり、断熱スペーサ26′(il−介
してブラケット24へ固定されている。熱交換器として
パイプ25ヲモータ22の外周に巻付ける。パイプ25
の入口に膨張弁6を介して、作動液を供給する細いパイ
プ2を接続する。ポンプ1が動作し、細いパイプ2内の
圧力が上昇すると膨張弁内のボール26が押されて、作
動液がパイプ25内に入る。FIG. 6 shows an embodiment of the heat generating section 4 and the heat exchanger 5. The motor 22 is a heat generating part and is fixed to the bracket 24 via a heat insulating spacer 26'.A pipe 25 is wound around the outer circumference of the motor 22 as a heat exchanger.
A thin pipe 2 for supplying working fluid is connected to the inlet of the pump via an expansion valve 6. When the pump 1 operates and the pressure in the thin pipe 2 increases, the ball 26 in the expansion valve is pushed and the working fluid enters the pipe 25.
パイプ内圧力は大気圧に近いので作動液は蒸発し温度が
下る。これによりモータ22を冷却シ、モータ22より
ブラケット24又は周辺空気へ伝達する熱をゼロにする
ことができろ。Since the pressure inside the pipe is close to atmospheric pressure, the working fluid evaporates and its temperature drops. As a result, the motor 22 can be cooled, and the heat transferred from the motor 22 to the bracket 24 or the surrounding air can be reduced to zero.
以上の実施例では1個のポンプと1個の発熱部のみであ
ったが、複数の発熱源に複数のポンプより作動液を供給
し、共通の容器を使用することも可能である。In the above embodiment, there was only one pump and one heat generating part, but it is also possible to supply working fluid to a plurality of heat generating sources from a plurality of pumps and use a common container.
以上述べた様に本発明によれば、蒸発の潜熱により熱を
吸収し、吸収熱量をポンプの回転数の調整により迅速に
発熱量と合致させることができるので、発熱部の温度上
昇を無(することができるまた、蒸発圧力を大気圧にし
たので耐圧の低い蒸気配管を使用でき、移動部分に対し
てもフレキシブルな配管ができ、配管により移動部分の
位置決め精度が低下することがない、As described above, according to the present invention, heat is absorbed by the latent heat of evaporation, and the amount of absorbed heat can be quickly matched with the amount of heat generated by adjusting the rotation speed of the pump, so that the temperature rise in the heat generating part can be avoided ( In addition, since the evaporation pressure is set to atmospheric pressure, steam piping with low pressure resistance can be used, flexible piping can be provided for moving parts, and the positioning accuracy of moving parts does not deteriorate due to piping.
第1図は本発明の一実施例を示す図、第2図は第1図の
凝縮容器部の別の実施例を示す図、第6図は第1図の発
熱部と熱交換器の一実施例を示す図、第4図は従来のヒ
ートパイプによる伝熱を説明するための図である。
1・・・微量注入ポンプ、2.6・・・配管。
4・・・発熱部、 5・・・熱交換器。
8・・・凝縮容器、 9・・・冷凍器。
12・・・ポンプコントローラ。
第 1 国FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the condensing vessel section shown in FIG. 1, and FIG. FIG. 4, a diagram showing an embodiment, is a diagram for explaining heat transfer by a conventional heat pipe. 1...Microinjection pump, 2.6...Piping. 4... Heat generating part, 5... Heat exchanger. 8... Condensation container, 9... Freezer. 12...Pump controller. 1st country
Claims (1)
接した熱交換器と、凝縮容器と、凝縮容器を冷却する冷
凍機とを備え、上記ポンプにより液体を上記熱交換器へ
送り、上記熱交換器で発生した蒸気を上記凝縮容器へ導
き、上記凝縮容器にて上記蒸気を発熱部より低い温度に
冷却して液化し、上記ポンプへ再循環させることを特徴
とする冷却装置。 2、熱交換器及び凝縮容器内の蒸気の圧力が大気圧に近
い(0.5Kg/cm^2〜1.5Kg/cm^2こと
を特徴とする特許請求の範囲第1項記載の冷却装置。[Scope of Claims] 1. A pump, a heat generating part close to a precision device, a heat exchanger in contact with the heat generating part, a condensing container, and a refrigerator for cooling the condensing container; The steam generated in the heat exchanger is sent to the heat exchanger, and the steam generated in the heat exchanger is guided to the condensation vessel, where the steam is cooled to a lower temperature than the heat generating part and liquefied, and then recirculated to the pump. Features a cooling device. 2. The cooling device according to claim 1, wherein the pressure of the steam in the heat exchanger and the condensing container is close to atmospheric pressure (0.5 Kg/cm^2 to 1.5 Kg/cm^2) .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62090816A JPS63257223A (en) | 1987-04-15 | 1987-04-15 | Cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62090816A JPS63257223A (en) | 1987-04-15 | 1987-04-15 | Cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63257223A true JPS63257223A (en) | 1988-10-25 |
Family
ID=14009119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62090816A Pending JPS63257223A (en) | 1987-04-15 | 1987-04-15 | Cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63257223A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0693171A4 (en) * | 1993-03-29 | 1997-03-19 | Melanesia Int Trust | Heat exchanger assembly |
JP2009206112A (en) * | 2008-02-26 | 2009-09-10 | Canon Inc | Cooling device and operating method of cooling device |
JP2012227528A (en) * | 2011-04-20 | 2012-11-15 | Asml Netherlands Bv | Heat adjusting system and heat adjusting method for adjusting one part of lithographic device |
JP2013008723A (en) * | 2011-06-22 | 2013-01-10 | Fujitsu Ltd | Cooling system |
WO2025110117A1 (en) * | 2023-11-24 | 2025-05-30 | キヤノン株式会社 | Cooling device, substrate processing device, and method for manufacturing article |
-
1987
- 1987-04-15 JP JP62090816A patent/JPS63257223A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0693171A4 (en) * | 1993-03-29 | 1997-03-19 | Melanesia Int Trust | Heat exchanger assembly |
JP2009206112A (en) * | 2008-02-26 | 2009-09-10 | Canon Inc | Cooling device and operating method of cooling device |
JP2012227528A (en) * | 2011-04-20 | 2012-11-15 | Asml Netherlands Bv | Heat adjusting system and heat adjusting method for adjusting one part of lithographic device |
EP2515170A3 (en) * | 2011-04-20 | 2017-01-18 | ASML Netherlands BV | Thermal conditioning system for thermal conditioning a part of a lithographic apparatus and a thermal conditioning method |
JP2013008723A (en) * | 2011-06-22 | 2013-01-10 | Fujitsu Ltd | Cooling system |
WO2025110117A1 (en) * | 2023-11-24 | 2025-05-30 | キヤノン株式会社 | Cooling device, substrate processing device, and method for manufacturing article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3346698B2 (en) | High temperature motor pump and its operation method | |
US8141362B2 (en) | Closed cycle heat transfer device and method | |
KR950003785B1 (en) | Air conditioning system | |
JPS63257223A (en) | Cooling system | |
US20100101753A1 (en) | Thermal calibrating system | |
CN116499143B (en) | Condenser cooling device and cooling method, air conditioner and control method thereof, and storage medium | |
US4230173A (en) | Closely coupled two phase heat exchanger | |
CN108495526A (en) | The cold liquid supply system of self-adaptive temperature | |
JPH0338487B2 (en) | ||
US5355846A (en) | Cooling device for use in engine | |
JP3303644B2 (en) | Loop heat transport system | |
JPH05283571A (en) | Heat transfer apparatus | |
KR20190081999A (en) | Loop Type Heat Pipe | |
JP3987245B2 (en) | Liquefied gas vaporizer with cold heat generation function | |
JPS62141398A (en) | Method and device for bringing low-temperature LPG to room temperature | |
CN220710423U (en) | Constant temperature control device for battery and power device | |
CN110500815A (en) | A kind of freezer duct type thermostatic evaporator | |
CN221994234U (en) | Cooling system for superconducting magnet and magnetic resonance device | |
US20240365517A1 (en) | Data center and phase change coolant distribution unit thereof | |
US4350015A (en) | Machine for converting thermal energy into work | |
JPS62134424A (en) | Heat transfer device | |
CN116449887A (en) | A temperature control device and control method for low temperature mechanical test | |
JPH0829080A (en) | Contact type heat transfer device | |
JPS58144613A (en) | Hot well tank in power plant | |
JPS602473Y2 (en) | Heated water transport device |