JPS63252645A - Continuous casting mold with heating function and continuous casting method - Google Patents
Continuous casting mold with heating function and continuous casting methodInfo
- Publication number
- JPS63252645A JPS63252645A JP8700987A JP8700987A JPS63252645A JP S63252645 A JPS63252645 A JP S63252645A JP 8700987 A JP8700987 A JP 8700987A JP 8700987 A JP8700987 A JP 8700987A JP S63252645 A JPS63252645 A JP S63252645A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- heating zone
- zone
- molten metal
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、溶解金属の連続鋳造において、M片表面欠陥
、非金属介在物に基づく欠陥などを防1Fせしめる連続
鋳造用鋳型及び連続鋳造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a continuous casting mold and a continuous casting method that prevent M-piece surface defects, defects due to non-metallic inclusions, etc. in continuous casting of molten metal. It is.
従来の技術
溶融金属の連続pI造は1歩留り向上を指向して鉄鋼、
アルミニウム、銅および金など金属材料製造において広
く普及している0本発明の詳細な説明するにあたって最
も普及し大量に生産されている鋼の連続鋳造を例に取り
上げ説明する。Conventional technology Continuous PI manufacturing of molten metal is aimed at improving the yield by 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to provide a detailed explanation of the present invention, which is widely used in the production of metal materials such as aluminum, copper, and gold, continuous casting of steel, which is most popular and produced in large quantities, will be taken as an example.
鋼の連続鋳造(以後、CCと称する)は、太きく分類す
ると次ぎの2通りがある。1つは鋳片とH!1が相対運
動を行なうもので非同期式CCと呼ばれ、溶鋼取鍋から
いったんタンディツシュと称する中間容器に受け、次い
でタンディツシュから鋳型に連続的に注入、冷却しつつ
凝固を完了せしめる方法で、鋳型と溶鋼中間容器とが分
離している垂直型CC1弯曲型CC等が該当する。この
形式が最も生産性が高く普及しているので以後通常CC
と呼ぶ、また、中間容器と鋳型を1〃結した形式の水平
CCもある。Continuous casting of steel (hereinafter referred to as CC) can be roughly classified into the following two types. One is the slab and H! 1 is a type that performs relative motion and is called an asynchronous CC.It is a method in which molten steel is first received from a ladle into an intermediate container called a tundish, and then continuously poured into a mold from the tundish, and solidification is completed while cooling. This applies to vertical CC1 curved CC, etc., which are separated from the molten steel intermediate container. Since this format is the most productive and widespread, it will be commonly used from now on.
There is also a type of horizontal CC that combines an intermediate container and a mold.
もう1つは、同期式CCと呼ばれるもので鋳型がロール
型、ベルト型あるいは車輪状等を呈するもので、鋳型と
鋳片が一体連動を行ないつつ冷却凝固せしめるものであ
る。The other type is called synchronous CC, in which the mold has a roll-shaped, belt-shaped, or wheel-shaped mold, and the mold and slab are cooled and solidified while integrally interlocking with each other.
通常CCのpI型は、凝固殻の生成に主機能があるため
、M型材質として水冷されたCuが使用されている。し
かし、溶鋼と鋳型の付着を防止するためにn1滑剤(パ
ウダー)を用いるのが一般的である。良好な鋳片と安定
した操業のためには、溶鋼の付着防IL:とパウダーの
潤滑膜形成が不可欠とされており鋳造方向に機械的振動
等の鋳型振動装置が必要である。Normally, the main function of pI type CC is to generate a solidified shell, so water-cooled Cu is used as the M type material. However, it is common to use n1 lubricant (powder) to prevent the molten steel from adhering to the mold. For good slabs and stable operation, it is essential to prevent the adhesion of molten steel and to form a lubricating film of powder, and a mold vibration device such as mechanical vibration is required in the casting direction.
しかし、パウダー鋳造と鋳型振動によってオシレーショ
ンマークと称する引抜マーク、気泡および介在物欠陥等
の鋳片表面疵が不cir m的に発生することや鋳造速
度の−F昇によって鋳片欠陥が多発し更にブレークアウ
トと称する鋳造障害に陥るなど問題点が多い。However, due to powder casting and mold vibration, surface defects such as pull-out marks called oscillation marks, bubbles, and inclusion defects occur inadvertently, and slab defects occur frequently due to the -F increase in casting speed. Furthermore, there are many problems such as a casting failure called breakout.
これらは、潟tがと凝固開始点が原理的に一致すること
に起因している。即ち、鋳片表面あるいは表層に観察さ
れる介在物は、取鍋あるいはタンディツシュから持ち込
まれた介在物が溶鋼吐出流によって鋳型内深部まで侵入
し、吐出流の減少に伴って介在物が浮ヒし鋳片に捕獲さ
れるためである。また、鋳片表面欠陥は鋳造に用いる鋳
型潤滑剤によって湯面近傍における湯面形状変化あるい
は初期凝固殻の変形に起因しており、通常cc法では不
可避的に発生することが明らかになっている。These results are due to the fact that the solidification start point of the lagoon t coincides with the solidification start point in principle. In other words, the inclusions observed on the surface or surface layer of the slab are caused by the inclusions brought in from the ladle or tundish penetrating deep into the mold by the discharge flow of molten steel, and the inclusions float away as the discharge flow decreases. This is because it is captured by the slab. In addition, surface defects on the slab surface are caused by changes in the shape of the melt surface near the melt surface or deformation of the initially solidified shell due to the mold lubricant used in casting, and it has been revealed that these defects normally occur unavoidably in the CC method. .
これに対し水平CCは、湯面と凝固位置が分離している
ことから鋳片介在物など品質が優れている利点を有する
ことが知られているが、ブレークリング等を用いて鋳型
内凝固殻を十分発達させることによってはじめてM 型
’ITT能であるため、間欠引抜や鋳型振動が不可欠で
あり、コールドシャットクラックやコールドシャットマ
ークと称する鋳片表面欠陥が不r+−r a的に発生【
2、その防止方法の確立が未完成である。On the other hand, horizontal CC is known to have the advantage of superior quality such as slab inclusions because the molten metal surface and solidification position are separated, but the solidified shell inside the mold is removed using break rings etc. Since the M-type ITT ability is achieved only by sufficiently developing the M type, intermittent drawing and mold vibration are essential, and surface defects called cold shut cracks and cold shut marks occur inadvertently.
2. The method to prevent it has not yet been established.
こうした背景のもとに種々の改りが試みられている。例
えば、特開昭54−15424号や特開昭80−145
249号は、水fCCに於ける凝固殻の生成を鋳型内で
のみ生成させるための加熱装置が考えられている。すな
わち、
特開昭54−15424号は、鋳型入り側に生じる異常
凝固(ホットマスと称している)を防止し操業の安定を
計るために、鋳型入り側の導管に誘導加熱装置を配した
ものである。しかし、該技術は、鋳型とその直前に位置
する導管との連結部間隙に溶鋼が差し込む点に関して何
ら配慮がなされていないこと及び、導管部分の高温溶鋼
をその直後に配置された冷却鋳型で冷却するため温度差
により急激に冷却され品質上好ましくない。Against this background, various reforms have been attempted. For example, JP-A-54-15424 and JP-A-80-145.
No. 249 considers a heating device for generating solidified shells in water fCC only within the mold. In other words, in JP-A No. 54-15424, an induction heating device is installed in the conduit on the mold entry side in order to prevent abnormal solidification (referred to as hot mass) occurring on the mold entry side and stabilize the operation. be. However, this technology does not take into account the fact that molten steel is inserted into the gap between the joint between the mold and the conduit located immediately before it, and the high temperature molten steel in the conduit is cooled by the cooling mold placed immediately after it. Therefore, the temperature difference causes rapid cooling, which is unfavorable in terms of quality.
特開昭60−145249号については、加熱装置と鋳
型本体を順に配置し、その中間に温度検出器を設けるこ
とで、凝固殻の形成開始を所望の位置に制御するもので
ある。そして、温度検出器の設置位置は、加熱装置の!
6型本体側の端部をスリーブ状としてこの部分に設ける
ものである。In JP-A No. 60-145249, the heating device and the mold body are arranged in this order, and a temperature sensor is provided in between to control the start of solidified shell formation at a desired position. And, the installation position of the temperature sensor is on the heating device!
The end portion on the side of the Type 6 main body is shaped like a sleeve and is provided in this portion.
しかしこの方法においても前記同様の難点がある。即ち
、凝固開始点が何らかの原因でスリーブ先端より鋳型本
体側に移動したとき、スリーブと鋳型本体との連結部か
ら溶鋼の侵入が懸念されることと、高温の加熱装置から
冷却を目的とする鋳型本体に移動する際、急激な温度変
化により鋳片表面に品質ヒの悪影響を与える。However, this method also has the same drawbacks as described above. In other words, if the solidification start point moves from the tip of the sleeve to the mold body side for some reason, there is a concern that molten steel may enter from the connection between the sleeve and the mold body, and the mold is used for cooling from a high-temperature heating device. When moving to the main body, the rapid temperature change adversely affects the quality of the slab surface.
又、加熱部と冷却部である鋳型本体との間に温度検出器
を設けているが、この温度検出位置では既に凝固殻が生
成しているので凝固殻を介して温度測定されることにな
り、凝固殻の伝熱抵抗のため極めて感度が低下するので
凝固位置制御は困難である。更に、゛電熱コイルはその
性格上コイル長手方向中心部が最高温度を示すのが一般
的であるので、′電熱コイルの下流での測温は実際の溶
湯温度より低値を示すことは明らかであり、さらに前述
のごと〈凝固殻を介して測定されることも加えて考慮す
れば、指示温度は著しく異なった値を示すことになり実
用性に乏しい。In addition, a temperature sensor is installed between the heating section and the mold body, which is the cooling section, but since a solidified shell has already formed at this temperature detection position, the temperature is measured through the solidified shell. , the sensitivity is extremely reduced due to the heat transfer resistance of the solidified shell, making it difficult to control the solidified position. Furthermore, due to the nature of the electric heating coil, it is common for the longitudinal center of the coil to exhibit the highest temperature, so it is clear that the temperature measured downstream of the electric heating coil will show a lower value than the actual molten metal temperature. However, if we take into account that the temperature is measured through a solidified shell as mentioned above, the indicated temperature will show a significantly different value, which is impractical.
例えば、鋳片偏析を良好とするためには、溶鋼過熱度を
最小にとどめることが必要であるが、検出感度が悪いこ
とと引抜きによって温度場が動的に変化することによっ
て凝固位置の特定が難しく、必要以−ヒの加熱が行なわ
れ高過熟度鋳造に陥り品質劣化を招き目的を達成できな
いことがある。For example, in order to improve slab segregation, it is necessary to minimize the degree of superheating of molten steel, but it is difficult to identify the solidification position due to poor detection sensitivity and dynamic changes in the temperature field due to drawing. It is difficult to do so, and heating is performed more than necessary, leading to high overmaturity casting, resulting in quality deterioration and making it impossible to achieve the purpose.
更に、特開昭6l−Ei3348り公報には5通常CC
において、鋳41!の[一部にヒーターを備えて、溶鋼
メニスカス部分での凝固を防ぐ手段が開示されている。Furthermore, in Japanese Patent Application Laid-Open No. 61-Ei3348, there are
In, casting 41! Disclosed is a means for preventing solidification in the molten steel meniscus by providing a heater in a part of the molten steel.
しかし本技術についても前2者と全く同様の難点を有す
るものである。However, this technique also has exactly the same difficulties as the former two.
発明が解決しようとする問題点
本発明は、こうした°1情に鑑みなされたものであり、
溶融金属の鋳造過程において鋳片表面欠陥や介在物問題
を抜本的に解決するために、鋳型内における初期凝固殻
の生成を制御し、湯面と凝固開始点を安定的に分離し、
鋳片表面性状及び操業性に優れる連続PI造用鋳型及び
鋳造方法を提供するものである。Problems to be Solved by the Invention The present invention has been made in view of these circumstances.
In order to fundamentally solve the problem of slab surface defects and inclusions in the molten metal casting process, we control the formation of an initial solidification shell in the mold, stably separating the molten metal surface and the solidification start point, and
The purpose of the present invention is to provide a continuous PI casting mold and a casting method that have excellent slab surface properties and operability.
問題点を解決するための手段
本発明は従来法では困難であった鋳片表面欠陥の完全防
1ヒ、介在物の侵入防市を達成することをlI的として
なされたものであり、その特徴とするところは、連続P
I造用鋳型において溶融金属入り側から難導′1セ件の
加熱帯とこれに続けて冷却帯を構成し、該鋳型の内側全
体に望ましくは、炸導電性材ネ4で製作した溶融金属導
入管を配置して一体構造とし、加熱帯のメニスカスより
下流に温度検出器を11憎したことを特徴とする連続鋳
造用鋳型と、この連続鋳造鋳型の加熱帯のメニスカスよ
りド流に設けた溶融金属温度検出器の検出温度を溶融金
属液相線温度以1−に保持し、凝固開始点を溶鋼温度検
出器の設置位置よりド流に位置させることを特徴とする
連続#JJ造方法とを基本的な発明とするものである。Means for Solving the Problems The present invention has been made with the aim of completely preventing surface defects in slabs and preventing the intrusion of inclusions, which have been difficult with conventional methods. is a continuous P
In a mold for I-making, a heating zone with low conductivity and a cooling zone are formed from the molten metal entry side, and the entire inside of the mold is preferably filled with molten metal made of explosive conductive material 4. A continuous casting mold is characterized in that an inlet pipe is arranged to form an integral structure, and a temperature detector is installed downstream of the meniscus of the heating zone. A continuous #JJ manufacturing method characterized in that the temperature detected by the molten metal temperature detector is maintained at 1 - below the molten metal liquidus temperature, and the solidification start point is located downstream from the installation position of the molten steel temperature detector. is the basic invention.
そして、前記本発明鋳型の加熱帯の加熱源である電81
誘導コイルを複数個設けて、各誘導コイル毎に周波数を
任、aに変更できる構造とすること。The electric power 81 is the heating source for the heating zone of the mold of the present invention.
A structure is provided in which a plurality of induction coils are provided and the frequency can be changed to any value for each induction coil.
及び加熱源である電磁誘導コイルの電源周波数に応じて
変化する加熱力、溶w4攪拌力の特性を適宜選択利用す
ることを含むものである。It also includes appropriately selecting and utilizing the characteristics of the heating power and the melt w4 stirring power, which vary depending on the power frequency of the electromagnetic induction coil that is the heating source.
以ドに図を用いて末完IJIを更に説明する0図面は本
発明の実施例を示すもので、第1図は装置全体構成図、
第2図、第3図は鋳造方法の説明図、第4図は、他の実
施例の説明図、第5図は本発明における電源周波数と溶
鋼にtえる加熱力、及び攪拌力の関係を示す説明図であ
る。The final IJI will be further explained below using figures. The drawings show an embodiment of the present invention, and Fig. 1 is an overall configuration diagram of the device;
Figures 2 and 3 are explanatory diagrams of the casting method, Figure 4 is an explanatory diagram of another embodiment, and Figure 5 is the relationship between the power frequency, heating power applied to molten steel, and stirring power in the present invention. FIG.
第1図において、lは取鍋(又は中間容器)、2は浸漬
ノズル、4は鋳型で、加熱帯5、冷却帯6、溶鋼の導入
管7で構成される。加熱帯5は、内部に電磁誘導コイル
8などの発熱体を内蔵させ、加熱帯5自体の材質は難導
電性として電磁誘導コイル8の電磁力の吸収を防ぐよう
にすることが好ましい。In FIG. 1, l is a ladle (or intermediate container), 2 is an immersion nozzle, 4 is a mold, and is composed of a heating zone 5, a cooling zone 6, and a molten steel introduction pipe 7. Preferably, the heating zone 5 has a heating element such as an electromagnetic induction coil 8 built therein, and the material of the heating zone 5 itself is made of a poorly conductive material to prevent absorption of the electromagnetic force of the electromagnetic induction coil 8.
冷却帯6は、通常多く用いられている内部水冷で鋼装の
ものが好適である。導入管7は加熱帯5、冷却帯6の内
側全長にわたって設けるものとし、その材質をt?!ま
しくは加熱帯5と同様の理由で、fi導電性のものとす
る。具体的には、ジルコニア、アルミナ、シリカ、マグ
ネシア等の酸化物、グラファイト、炭化物、窒化物、ホ
ウ化物などを1種又は2種以上混合したものを用いるこ
とにより、耐食性も兼ね備えることができる。The cooling zone 6 is preferably internally water-cooled and made of steel, which is commonly used. The introduction pipe 7 shall be provided along the entire length inside the heating zone 5 and the cooling zone 6, and its material is t? ! Preferably, for the same reason as the heating zone 5, it should be fi conductive. Specifically, corrosion resistance can also be achieved by using one or a mixture of two or more of oxides such as zirconia, alumina, silica, and magnesia, graphite, carbides, nitrides, borides, and the like.
又、導入管7の加熱帯5に接する部分を難導電性とし、
冷却帯6に接する部分を導電性のものとするのが最も好
ましい。導入t′rf7を加熱帯5.冷却帯6の全長に
わたって設けることにより、加熱帯5と冷却帯6との間
隙へ溶鋼が侵入することを防ぐこと及び加熱帯5から冷
却帯6へ鋳片、又は溶鋼が移行する際の急激な温度変化
(急冷)を防止でき、鋳片表面欠陥防1にに有効である
。In addition, the part of the introduction pipe 7 that comes into contact with the heating zone 5 is made to have poor conductivity.
Most preferably, the portion in contact with the cooling zone 6 is electrically conductive. Introducing t'rf7 into heating zone 5. By providing the cooling zone 6 over the entire length, it is possible to prevent molten steel from entering the gap between the heating zone 5 and the cooling zone 6 and to prevent sudden transition of slabs or molten steel from the heating zone 5 to the cooling zone 6. It can prevent temperature changes (rapid cooling) and is effective in preventing surface defects in slabs.
9は温度検出器で、加熱帯と導入管を貫通させ、溶鋼メ
ニスカスより下流(図において下位)に設ける。Reference numeral 9 denotes a temperature detector, which penetrates the heating zone and the introduction pipe and is installed downstream of the molten steel meniscus (lower in the figure).
IOはガイドローラー、11は冷却水スプレー、12は
凝固鋳片を表わす。IO represents a guide roller, 11 represents a cooling water spray, and 12 represents a solidified slab.
第2図、第3図は本発明の連続鋳造方法の説り1図で、
第2図に示す温度検出器9により検出した温度を比較器
13で、[1標設定温度と比較し、その差に応じて周波
数制御器又は、電力制御器14により適正周波数又1よ
投入電力を求め、電源15の周波数又は電力を変更し、
7ft磁誘導コイル8に入力する。即ち、温度検出器9
の検出点の温度を溶鋼の融点以上とする。Figures 2 and 3 are illustrations of the continuous casting method of the present invention.
A comparator 13 compares the temperature detected by the temperature detector 9 shown in FIG. , change the frequency or power of the power source 15,
Input to 7ft magnetic induction coil 8. That is, the temperature sensor 9
The temperature at the detection point shall be higher than the melting point of molten steel.
これにより、鋳片の凝固開始点を温度検出器9の設こ位
置より図においてド位に位置するよう制御できる。即ち
、メニスカスより一ド位に凝固開始点を位置させること
ができ、鋳片表面疵の発生を防ぐものである。As a result, the solidification start point of the slab can be controlled to be located at the position shown in the figure from the position where the temperature detector 9 is installed. In other words, the solidification start point can be positioned at one point from the meniscus, thereby preventing the occurrence of defects on the surface of the slab.
第3図は、1i1記方法の一実施例を1時間経過に併せ
て図に表わしたもので、加熱帯予熱後、溶鋼鋳造巾検出
温度に応じて投入電力を変え、溶鋼温度を常に液相線温
度(融点)以上に制御するものである。Fig. 3 shows an example of the method described in 1i1 over the course of one hour. After preheating the heating zone, the input power is changed according to the detected temperature of the molten steel casting width, and the molten steel temperature is constantly maintained in the liquid phase. The temperature is controlled to be above the linear temperature (melting point).
第4図は、加熱帯5に内蔵したit電磁誘導コイル複数
組設け、夫々別の電源に接続することで、コイル毎の発
熱駿を制御するものである。In FIG. 4, a plurality of sets of IT electromagnetic induction coils built into the heating zone 5 are provided, and the heat generation of each coil is controlled by connecting each set to a different power source.
即ち、−h部コイル8−1の近傍にヒ部温度検出器9−
1を設け、これに接続してL部比較′jA13−1と、
[一部局波数制御器14−1、」一部電源15−1を設
ける。That is, the -h part temperature detector 9-1 is installed near the -h part coil 8-1.
1, and connect it to L part comparison 'jA13-1,
[Partly station wave number controller 14-1, partly provided with power supply 15-1.
そしてこれらとは別途に下部コイル8−2の近傍に下部
温度検出器9−2を設け、これに接続してド部比較器+
3−2と、下部周波数制御:Al1−2、下部電源15
−2を設ける。Separately from these, a lower temperature detector 9-2 is provided near the lower coil 8-2, and connected to this, the lower part comparator +
3-2, lower frequency control: Al1-2, lower power supply 15
-2 is provided.
このように構成することにより、加熱帯長さ方向温度分
布を所望の値とすることができる。特に前述第2図の如
く1組の電磁誘導コイル8の場合、コイルの特性として
中央部がより高温となり両端(図においてL端、下端)
部は、比較的低温となる。With this configuration, the temperature distribution in the length direction of the heating zone can be set to a desired value. In particular, in the case of a set of electromagnetic induction coils 8 as shown in FIG.
The temperature is relatively low.
これに対して第4図に示す構造とすることにより、加熱
帯長さ方向の温度を均一とすることができ、更に−L部
、下部で任意の温度を得ることもできる。On the other hand, by adopting the structure shown in FIG. 4, it is possible to make the temperature uniform in the longitudinal direction of the heating zone, and it is also possible to obtain an arbitrary temperature at the -L portion and the lower portion.
第5図は、本発明鋳型を用いた時の溶鋼に肇える加熱の
度合を、電磁誘導コイルを用いることで副次的に生ずる
溶鋼の攪拌力を表わしたものである。FIG. 5 shows the degree of heating that can be applied to molten steel when the mold of the present invention is used, and the stirring force of the molten steel that is generated as a secondary effect by using an electromagnetic induction coil.
本発明の難導゛屯性加熱帯、導入管とした場合、加熱力
、攪拌力とも、従来用いられている銅製鋳型に比べ大き
な値を示すとノ(に、電源周波数の変化に伴ない、加熱
力、攪拌力とも特有のカーブを描くものである。従って
、溶鋼温度をより高く上昇させたいときは、電源周波数
を高い値として操業し、溶鋼温度が[1標値をヒ回り加
熱をあまり心安としなくなったときは、電源周波数を低
い値として、PIl拌力を増加させることで、非金属介
在物の浮ヒを促進するよう使い分ける。When used as the low-inductivity heating zone and inlet pipe of the present invention, both heating power and stirring power are larger than those of conventionally used copper molds. Both the heating power and the stirring power draw a unique curve. Therefore, when you want to raise the molten steel temperature higher, operate the power supply frequency at a higher value, so that the molten steel temperature goes below the target value and the heating is not done too much. When you no longer feel safe, set the power frequency to a low value and increase the PIl agitation force to promote floating of nonmetallic inclusions.
発IIの効果
以に説明したように本発明によれば、
(1)加熱1′IFと冷却帯とのfl++隙に溶鋼が侵
入するのを導入管を設けることで防IFシ、又高温の加
8帯から低温の冷却帯への溶鋼、鋳片の移行時急激な温
度変化を導入管により緩和し鋳片表面の品質改りを計る
ことができる。Effects of Problem II As explained above, according to the present invention, (1) Providing an inlet pipe prevents molten steel from entering the fl++ gap between the heating 1' IF and the cooling zone, and also prevents high temperature The rapid temperature change during the transition of molten steel and slabs from the cooling zone to the low-temperature cooling zone can be alleviated by the introduction pipe, and the quality of the slab surface can be improved.
(2)温度検出器をメニスカスより下流で加8イ1)に
設けたことで、凝固前の溶鋼温度を検出でき、凝固開始
点をメニスカスより確実に下流に位置させうる。(2) By providing the temperature detector downstream of the meniscus at the 8-1), the temperature of the molten steel before solidification can be detected, and the solidification start point can be reliably located downstream of the meniscus.
(3)加熱帯、導入管を難導電性としたとき、溶鋼の加
熱力、攪拌力を大きなものとすることができることと、
電源周波数に応じて変化する加熱力、攪拌力の変化特性
を利用でき、必要な加熱、攪拌を所望時に得られる。(3) When the heating zone and the introduction pipe are made to have low conductivity, the heating power and stirring power for molten steel can be increased;
The changing characteristics of heating power and stirring power that change depending on the power supply frequency can be utilized, and the necessary heating and stirring can be obtained when desired.
4、[く而の筒中な説II
図面は本発明の実施例を示すものであって、第1図は本
発明の装置全体構成図、:fS2図、第3図は本発明鋳
造方法の説明図、第4図は′電磁コイルを複数組用いた
例の説明図、第5図は本発明鋳型使用時の゛it源周波
周波数鋼にグーえる加熱力及び攪拌力の関係を示す説明
図である。4. [The theory behind the scenes II] The drawings show an embodiment of the present invention, and Fig. 1 is an overall configuration diagram of the apparatus of the present invention, Fig. fS2, and Fig. 3 are explanations of the casting method of the present invention. Figure 4 is an explanatory diagram of an example using multiple sets of electromagnetic coils, and Figure 5 is an explanatory diagram showing the relationship between the heating power and stirring power applied to the source frequency steel when the mold of the present invention is used. be.
l・・−取鍋(又は中間容器)、2・・・浸漬ノズル、
4・・拳鋳型、5争争Φ加熱帯、6Φ争・冷却帯、7・
争・導入管、8會・・電磁誘導コイル、8−1・・舎り
部コイル、8−2・・・下部コイル、9・・拳温度検出
器、9−1・・−E布温度検出器、9−2・・・下部温
度検出器、10・+1φガイドローラー、11−−・冷
却水スプレー、12−・・21片、 13−−拳比較・
器、13−1・・・(二部比較器、13−2・・・′F
部比較器、14・・φ周波数制御器、14−1・−・−
1一部局波数制御器、14−2・・・ド部周波数制御器
、15・・・電蝕、15−1−φ・L部電源、15〜2
・・・ド部電源。l... - ladle (or intermediate container), 2... immersion nozzle,
4. Fist mold, 5. Φ heating zone, 6 Φ. cooling zone, 7.
Introductory pipe, 8. Electromagnetic induction coil, 8-1. Shoribe coil, 8-2. Lower coil, 9. Fist temperature detector, 9-1.-E cloth temperature detection. 9-2 Lower temperature detector, 10 +1φ guide roller, 11-- Cooling water spray, 12-- 21 pieces, 13-- Fist comparison.
device, 13-1... (two-part comparator, 13-2...'F
Part comparator, 14...φ frequency controller, 14-1...
1 Part station wave number controller, 14-2...Do part frequency controller, 15...Electrolytic erosion, 15-1-φ/L part power supply, 15-2
...Do part power supply.
代理人弁理1−: 井 上 雅 生 染 1 ■Attorney 1-: Masao Inoue Dye 1 ■
Claims (4)
導電性の加熱帯とこれに続けて導電性の冷却帯を構成し
、加熱帯、冷却帯の内側全長にわたって溶融金属の導入
管を配し、さらに加熱帯のメニスカスより下流に温度検
出器を設けて構成したことを特徴とする加熱機能を有す
る連鋳鋳型。(1) In a continuous casting mold, a poorly conductive heating zone and a conductive cooling zone are formed from the molten metal entry side, and a molten metal introduction pipe is arranged along the entire length inside the heating zone and cooling zone. A continuous casting mold having a heating function, further comprising a temperature detector provided downstream of the meniscus of the heating zone.
電磁誘導コイルを複数個設けて、夫々別個の電源に接続
し、電磁誘導コイル毎に電源周波数を変更可能に構成し
たことを特徴とする特許請求の範囲第1項記載の加熱機
能を有する連鋳鋳型。(2) An electromagnetic induction coil is used as a heating source for the heating zone, and a plurality of electromagnetic induction coils are provided, each connected to a separate power source, and the power frequency can be changed for each electromagnetic induction coil. A continuous casting mold having a heating function according to claim 1.
けて導電性の冷却帯を構成し、加熱帯、冷却帯の内側全
長にわたって溶融金属の導入管を配し、さらに加熱帯の
メニスカスより下流に温度検出器を設けて構成した連続
鋳造鋳型において、溶融金属の温度検出器の検出温度が
常に溶融金属の液相線温度以上となるように加熱帯によ
り溶融金属を加熱することを特徴とする加熱機能を有す
る連続鋳造方法。(3) From the side where the molten metal enters, a poorly conductive heating zone is followed by a conductive cooling zone, and a molten metal introduction pipe is arranged along the entire length inside the heating zone and cooling zone. In a continuous casting mold configured with a temperature detector installed downstream of the meniscus, the molten metal is heated by a heating zone so that the temperature detected by the molten metal temperature detector is always equal to or higher than the liquidus temperature of the molten metal. A continuous casting method with a distinctive heating function.
けて導電性の冷却帯を構成し、加熱帯、冷却帯の内側全
長にわたって溶融金属の導入管を配し、さらに加熱帯の
メニスカスより下流に温度検出器を設けて構成した連続
鋳造鋳型において、加熱帯の加熱源である電磁誘導コイ
ルの電源周波数に応じて変化する溶融金属への加熱力、
攪拌力の変化特性を適宜選択利用することを特徴とする
加熱機能を有する連続鋳造方法。(4) From the molten metal entry side, a poorly conductive heating zone is followed by a conductive cooling zone, and a molten metal introduction pipe is arranged along the entire length inside the heating zone and cooling zone, and the heating zone In a continuous casting mold configured with a temperature detector installed downstream of the meniscus, the heating power to the molten metal changes depending on the power frequency of the electromagnetic induction coil, which is the heating source of the heating zone.
A continuous casting method having a heating function, which is characterized by appropriately selecting and utilizing the changing characteristics of stirring force.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8700987A JPS63252645A (en) | 1987-04-10 | 1987-04-10 | Continuous casting mold with heating function and continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8700987A JPS63252645A (en) | 1987-04-10 | 1987-04-10 | Continuous casting mold with heating function and continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63252645A true JPS63252645A (en) | 1988-10-19 |
JPH0369615B2 JPH0369615B2 (en) | 1991-11-01 |
Family
ID=13902956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8700987A Granted JPS63252645A (en) | 1987-04-10 | 1987-04-10 | Continuous casting mold with heating function and continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63252645A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585946A1 (en) * | 1992-09-04 | 1994-03-09 | Kawasaki Steel Corporation | Apparatus and method for continuous casting of steel |
-
1987
- 1987-04-10 JP JP8700987A patent/JPS63252645A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585946A1 (en) * | 1992-09-04 | 1994-03-09 | Kawasaki Steel Corporation | Apparatus and method for continuous casting of steel |
Also Published As
Publication number | Publication date |
---|---|
JPH0369615B2 (en) | 1991-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3363669A (en) | Arrangement for controlling cooling in continuous casting of metals | |
JPS63252645A (en) | Continuous casting mold with heating function and continuous casting method | |
CN102069162A (en) | Continuous casting forming equipment and process method for electromagnetic ejection filling core of cladding material | |
EP0362983A1 (en) | Method and apparatus for continuously casting strip steel | |
US3734166A (en) | Apparatus for continuously casting tubes | |
JPS5931415B2 (en) | Hollow tube manufacturing method and device | |
JP3393712B2 (en) | Continuous casting method of molten metal | |
JP2611559B2 (en) | Metal continuous casting apparatus and casting method | |
JPH01170551A (en) | Mold for continuously casting steel | |
JPS61266155A (en) | Method and apparatus for continuous casting of clad ingot | |
JPH04138843A (en) | Device and method for continuously casting metal | |
JP2597734B2 (en) | Continuous casting method of semi-solid metal | |
JPH07227653A (en) | Method and apparatus for reducing shrinkage holes in continuous casting | |
JP3068153B2 (en) | Continuous casting equipment for hollow slabs | |
JPH01317670A (en) | Horizontal continuous casting apparatus for metal tube | |
Bhattacharya et al. | Root cause analysis of surface defects in coils produced through thin slab route | |
EP0342020A2 (en) | Method and apparatus for continuous strip casting | |
JPH08187563A (en) | Continuous casting method applying electromagnetic force | |
JPS60191641A (en) | Horizontal and continuous casting method of metal | |
JP2558187B2 (en) | Heating mold for continuous casting | |
JPS628258B2 (en) | ||
JPS60191642A (en) | Horizontal and continuous casting method of metal | |
JPH01284469A (en) | Continuous casting method | |
JP2851909B2 (en) | Continuous casting method of hollow slab | |
JPH0890172A (en) | Manufacturing method of small lot slab in continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |