JPS63251810A - Correcting device for horizontal multi-joint robot - Google Patents
Correcting device for horizontal multi-joint robotInfo
- Publication number
- JPS63251810A JPS63251810A JP8480187A JP8480187A JPS63251810A JP S63251810 A JPS63251810 A JP S63251810A JP 8480187 A JP8480187 A JP 8480187A JP 8480187 A JP8480187 A JP 8480187A JP S63251810 A JPS63251810 A JP S63251810A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- tip
- pin
- hole
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000003780 insertion Methods 0.000 abstract description 17
- 230000037431 insertion Effects 0.000 abstract description 17
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は産業用ロボットに係り、特に水率多関節ロボッ
トの較正装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to industrial robots, and more particularly to a calibration device for a water rate articulated robot.
作業計画を上位のコンピュータでやり、その動作データ
をロボットコントローラに送る最近のシステムは、コン
ピュータの機能が高まるにつれ実用性も高くなっている
。しかし、このコンピュータのデータだけでは、ロボッ
トは目標の座標値とずれる。ロボットの座標系を作業環
境の座標系に合わせれば補償できるが、完全ではない、
それは実際のロボットの形がロボットコントローラ内の
計算上の理想形でなく、歪んでいるからである。Recent systems, in which work plans are executed by a host computer and the operational data is sent to a robot controller, are becoming more practical as computers become more sophisticated. However, with only this computer data, the robot will deviate from the target coordinate values. This can be compensated by aligning the robot's coordinate system with the work environment's coordinate system, but it is not perfect.
This is because the actual shape of the robot is not the ideal shape calculated within the robot controller, but is distorted.
たとえロボットの組立て時に治具等を使って機械的に初
期の形状を整えても、アームのたわみもある。そこで、
各部誤差を較正用データとしてもち。Even if the initial shape is mechanically adjusted using a jig when assembling the robot, the arm will still bend. Therefore,
Keep the errors of each part as calibration data.
ロボット先端での座標値誤差(以下、先端誤差)をその
較正用データから出し、その分だけ補正するなど、ソフ
トウェアで形状の誤差を補正する方法が提唱されている
。Methods have been proposed to correct shape errors using software, such as calculating the coordinate value error at the tip of the robot (hereinafter referred to as tip error) from the calibration data and correcting it accordingly.
第4図のロボットの場合を以下に示す。The case of the robot shown in FIG. 4 is shown below.
P+ΔP=Rot、+asi [Rotm+as (R
ot#+A@1 (z◆ΔZ)+L、+ΔL、)+L1
+ΔL、]◆ΔB÷Δ◎ (ト)
二こで、 P:目標座標値
ΔP:先喘誤差
Rot@1:■回転変換(主軸)
Δ■l:旋回回転軸原点誤差および関節軸の傾き(主軸
)
Z:ロボットZ軸
^Z:ツール取付誤差
Ll:アーム長(第iアーム)
ムLl:アーム長誤差(第iアーム)
ΔB=据付誤差
Δ(■):ある姿勢■における先端におけるたわみ
式のは、ある目標値Pに動くときの先端誤差ΔP を計
算する式で、先端誤差分だけ目標値をずらして仮の目標
値P′とする方法である。即ち。P+ΔP=Rot, +asi [Rotm+as (R
ot#+A@1 (z◆ΔZ)+L, +ΔL,)+L1
+ΔL,]◆ΔB÷Δ◎ (G)
Here, P: Target coordinate value ΔP: Leading error Rot@1: ■Rotation conversion (main axis) Δ■l: Swing rotation axis origin error and joint axis inclination (main axis) Z: Robot Z axis ^Z: Tool Installation error Ll: Arm length (i-th arm) M Ll: Arm length error (i-th arm) ΔB = Installation error Δ(■): The deflection type at the tip in a certain posture ■ is the This is a formula for calculating the tip error ΔP, and is a method of shifting the target value by the tip error to obtain a temporary target value P'. That is.
p’ =p−ΔP −■
この方法は各部員差ΔE(ム■l、轟Z、ALL、AB
、Δ(■)など)が微少であれば、精度良く較正できる
。p' = p - ΔP -■ This method calculates the difference between each member ΔE (Mu, Todoroki Z, ALL, AB
, Δ(■), etc.), it is possible to calibrate with high accuracy.
そこで、それぞれ1台1台のロボットに対して各部員差
の較正用データを測ればよい。各部員差それぞれを直接
側るのは手間がかかるので、弐〇)を利用して先端座標
P+ΔP を測ることで、右辺に含まれる未知数(各部
員差)を解くと便利である。右辺に含まれる未知数(各
部員差)が微少であれば、−次近似展開できるので、単
なる連立−次方程式になる。ただし、未知数に対して式
の数が少ないので、先端座標P+APは複数点側る必要
がある。弐〇は弐〇を一次近似展開したものである。Therefore, it is sufficient to measure calibration data for each member difference for each robot. Since it is time-consuming to calculate each member difference directly, it is convenient to solve the unknown quantity (each member difference) included on the right side by measuring the tip coordinate P + ΔP using 20). If the unknown quantity (difference between each member) included in the right-hand side is minute, −th order approximation expansion can be performed, so it becomes a simple simultaneous −th order equation. However, since the number of equations is small relative to the unknown quantity, the tip coordinates P+AP must be set at multiple points. Ni〇 is a first-order approximation expansion of Ni〇.
ΔP−Δ(■)=[A(■)コΔE ■
ここで、[A(■)]:姿勢Φに関する誤差影響マトリ
クス
先端座標の測定は、アームのたわみや軸の傾きを含めて
式■から各部員差ΔE を解析する場合、Z軸方向の測
定も重要であった。ΔP−Δ(■)=[A(■)koΔE■
Here, [A(■)]: When measuring the tip coordinate of the error influence matrix regarding posture Φ, when analyzing the difference ΔE of each member from equation (■) including arm deflection and axis inclination, measurement in the Z-axis direction is also required. It was important.
Z軸方向を含めた先端座標を測るとき、簡易的にZ方向
に関しては単に微少誤差分ΔPだけを測る方法がある。When measuring the tip coordinates including the Z-axis direction, there is a simple method of simply measuring the minute error ΔP in the Z direction.
これは比較的簡単な装置で手速くやれるが、傾きは解析
できない。This can be done quickly with relatively simple equipment, but the slope cannot be analyzed.
Z軸の傾きの誤差も無視できない場合、ロボット先端を
上下させてかつXY平面内での座標値を測る必要がある
。これは三次元測定となるが、非接触の三次元測定は精
度が悪いので接触式が要り、操作もめんどうである。If the error in the Z-axis inclination cannot be ignored, it is necessary to move the robot tip up and down and measure the coordinate values within the XY plane. This is a three-dimensional measurement, but non-contact three-dimensional measurement has poor accuracy, so a contact method is required and the operation is troublesome.
本発明の目的はロボット先端座標の測定を簡素化できる
水平多関節ロボットの較正装置を得るこ三次元的に穴位
置が明確になっている複数のボスがある測定台15を用
い、ロボット先端の挿入ピンユニット2をそこに差し込
むことで、穴の位置データをロボット先端座標の測定に
代用する。An object of the present invention is to obtain a calibration device for a horizontal articulated robot that can simplify the measurement of robot tip coordinates. By inserting the insertion pin unit 2 there, the hole position data can be used as a substitute for measuring the robot tip coordinates.
(作用)
ロボットの先端を測ると作業が、先端のピンユニットを
穴に挿入することでロボット自身でできることになる。(Function) Once the tip of the robot is measured, the robot itself can do the work by inserting the pin unit at the tip into the hole.
(実施例の構成) 以下1本発明の一実施例を図面で説明する。 (Configuration of Example) An embodiment of the present invention will be described below with reference to the drawings.
第1図において、ロボット先端のZ軸に較正時に取付け
る挿入ピンユニット2と、較正対象のロボットlOと、
そのロボットコントローラ11と、挿入完了時に挿入ピ
ンユニット2からケーブル経由で情報を取り込むZ方向
微少誤差測定器本体12と。In FIG. 1, an insertion pin unit 2 to be attached to the Z-axis at the tip of the robot during calibration, a robot lO to be calibrated,
The robot controller 11, and the Z-direction minute error measuring device main body 12 that takes in information from the insertion pin unit 2 via a cable when insertion is completed.
そのケーブル吊り下げ用支柱13と、ロボットコントロ
ーラ11とZ方向微少誤差測定器本体12がらケーブル
経由で情報をやりとりする解析装置14と、対象ロボッ
トlOを較正時に固定し挿入ピンユニット2が位置決め
される複数の穴が予め三次元測定が行なわれていてかつ
開口面の高さが異なるボスのある測定台15とからなる
。挿入ピンユニット2の詳細構成を示す第2図において
、ロボット先端10aに取付けられたAブロック16と
、Aブロック16に取付けられたストッパ付のりニヤガ
イド17と、Aブロック16とはりニヤガイド17で支
持されているBブロック18と、Aブロック16とBブ
ロック18の間のばね19と、Bブロック18に取付け
た先がテーパ状の挿入ピン20と、Bブロック18に取
付けられAブロック16とのりニヤガイド17方向の相
対距離を測定するための2方向微少誤差測定器21(例
えば、ダイヤルゲージ)とからなる。The cable hanging column 13, the analysis device 14 that exchanges information via the cable between the robot controller 11 and the Z-direction minute error measuring instrument body 12, and the target robot IO are fixed during calibration, and the insertion pin unit 2 is positioned. It consists of a measuring table 15 in which a plurality of holes are three-dimensionally measured in advance and have bosses with opening surfaces of different heights. In FIG. 2 showing the detailed configuration of the insertion pin unit 2, an A block 16 is attached to the robot tip 10a, a glue near guide 17 with a stopper is attached to the A block 16, and the A block 16 is supported by the glue near guide 17. a spring 19 between the A block 16 and the B block 18, an insertion pin 20 with a tapered end attached to the B block 18, and a near guide 17 attached to the B block 18 and attached to the A block 16. It consists of a two-directional minute error measuring device 21 (for example, a dial gauge) for measuring relative distances in directions.
(実施例の作用)
以下、ロボット先端10aに取付けた挿入ピンユニット
2を測定台15の穴に挿入する作業の流れを第3図で説
明する。(Operations of the Embodiment) The flow of work for inserting the insertion pin unit 2 attached to the robot tip 10a into the hole of the measuring table 15 will be explained below with reference to FIG.
まず、測定台15の穴の位置データで穴の上方にロボッ
ト先端10aを移動する。もし移動位置が実際の穴位置
とずれていても、ロボットの1軸と2軸のモータトルク
がかからない状態(サーボフリー)にして、ロボット先
端10aを下げてテーパ付きの挿入ピン20を穴に倣っ
て挿入する。ロボット先端10aは、ピンの基準面20
aが穴の開口面に当ってもさらに下げ、Z方向微少誤差
測定器21がAブロック16とBブロック18との相対
距離からロボット先端10aと穴の開口面の高さの相対
距離の縮まり長さを測定できるように、予め2方向の移
動目標値を下方に設定しておく、ロボット先端が位置決
めされた後に、ロボットコントローラIIからロボット
の1軸と2軸と2軸(回転、上下)の現在値を解析装置
14に読み込む、Z軸の上下方向の値は、Z方向微少誤
差測定器21の読みの縮まり分だけ修正した値を現在値
とする。この挿入作業を複数の穴で繰り返して、弐〇の
式の数を未知数(各部誤差ΔE)より増やす、弐〇の式
は一つの穴の測定でX、Y、Zの三つである。First, the robot tip 10a is moved above the hole based on the hole position data of the measuring table 15. Even if the moving position deviates from the actual hole position, set the motor torque of the first and second axes of the robot in a state where no torque is applied (servo free), lower the robot tip 10a, and insert the tapered insertion pin 20 into the hole. and insert it. The robot tip 10a is connected to the pin reference surface 20.
Even when a hits the opening surface of the hole, it is further lowered, and the Z-direction minute error measuring device 21 calculates the shortening length of the relative distance between the height of the robot tip 10a and the height of the opening surface of the hole from the relative distance between the A block 16 and the B block 18. To measure the movement, set the movement target values in two directions downward in advance. After the robot tip is positioned, the robot controller II can set the movement target values for the robot's 1st, 2nd, and 2nd axes (rotation, up and down). The current value is read into the analysis device 14 in the vertical direction of the Z-axis, and the current value is a value corrected by the shortening of the reading of the Z-direction minute error measuring device 21. This insertion work is repeated for multiple holes to increase the number of equations 20 to greater than the unknown (each part error ΔE).The equations 20 are three for X, Y, and Z when measuring one hole.
弐〇に代入する値は9位置が明らかな六へピンを入れる
だけで穴の三次元座標値がロボット先端座標P+ムP
となり、また、ロボットコントローラll内の挿入時の
姿勢値子から目標座標値P(実際には、そこを目標とし
たわけではなく穴で矯正されてずれているのだから計算
上現在座標値)が計算できるので、APはその差である
。弐〇を解いて各部誤差ΔE を計算し、この値はここ
で測定したロボット固有の較正用データとして、測定時
の環境条件(温度等)などと共に保存しておく。The value to be substituted for 2〇 is 9. Just insert the pin into 6 whose position is clear, and the three-dimensional coordinate value of the hole will be the robot tip coordinate P + M P
And, the target coordinate value P (actually, the current coordinate value in the calculation because it is not the target and has been corrected by the hole) is calculated from the posture value at the time of insertion in the robot controller II. Since it can be calculated, AP is the difference. Solve 20 to calculate the error ΔE for each part, and save this value as calibration data specific to the robot measured here, along with the environmental conditions (temperature, etc.) at the time of measurement.
(実施例の効果)
挿入ピン20をロボット先端10aに固定せず、リニヤ
ガイド17で支持して、ばね19を介したことで。(Effects of Example) The insertion pin 20 is not fixed to the robot tip 10a, but is supported by the linear guide 17, and the spring 19 is used.
挿入完了位置でモータのトルクがそれ自身の反力とけん
かしないので、Z軸上下の位置決めサーボを入れた状態
でも挿入できる。この結果ロボットを測定台15にのせ
れば、完全に自動運転で較正用データを取り込める。ま
た、挿入ピン20は着脱可能で、摩擦の少ないテフロン
材などですきまの少ないものを使えば、ロボット先端座
標のガタによる影響を除け、かつ測定台15が摩耗せず
耐用年数も長くなる。Since the motor's torque does not conflict with its own reaction force at the insertion completion position, insertion is possible even with the Z-axis up and down positioning servos turned on. As a result, when the robot is placed on the measurement stand 15, calibration data can be taken in completely automatically. In addition, if the insertion pin 20 is removable and made of a low-friction Teflon material with a small gap, the influence of looseness in the robot tip coordinates can be eliminated, and the measuring table 15 will not wear out, resulting in a long service life.
ロボットが先端のピンを穴に入れ作業で各部誤差の解析
に移れるデータが揃うので、自動的に較正試験を行なえ
る。As the robot inserts the tip of the pin into the hole, data is collected that can be used to analyze errors in each part, making it possible to perform calibration tests automatically.
第1図は本発明の水平多関節ロボットの較正装置の一実
施例を示す斜視図、第2図は第1図の要部詳細図、第3
図は第1図の装置で測定する際の流れ図、第4図は本発
明に関連するロボットの構成を表わす斜視図である。
10・・・水平多関節ロボット
11・・・ロボットコントローラ
14・・・解析装置
12・・・Z方向微少誤差測定器本体
15・・・測定台
16・・・Aブロック
18・・・Bブロック
19・・・ばね
17・・・リニヤガイド
21・・・Z方向微少誤差測定器
20・・・挿入ピン
10a・・・ロボット先端
代理人 弁理士 則 近 憲 佑
□ −1FIG. 1 is a perspective view showing one embodiment of the horizontal articulated robot calibration device of the present invention, FIG. 2 is a detailed view of the main part of FIG. 1, and FIG.
This figure is a flowchart when measuring with the apparatus shown in FIG. 1, and FIG. 4 is a perspective view showing the configuration of a robot related to the present invention. 10...Horizontal articulated robot 11...Robot controller 14...Analyzer 12...Z-direction minute error measuring instrument body 15...Measuring table 16...A block 18...B block 19 ... Spring 17 ... Linear guide 21 ... Z-direction minute error measuring device 20 ... Insertion pin 10a ... Robot tip agent Patent attorney Noriyuki Chika -1
Claims (1)
前記ブロックとは上下方向にのみ自由に支持されたピン
と、前記ロボット先端と前記ピンの相対距離を測定する
測定手段と、前記ロボット先端と上記ピンの相対距離に
関連して反力を生じる弾性体と、前記ロボットが据付け
られ前記ピンが挿入する穴を複数開口面の高さを異にす
るものを含めてあけてある測定台と、前記ロボットの現
在姿勢などの情報を読み込み且つ前記測定手段の値を読
み込み且つ演算処理をする解析装置とを備えたことを特
徴とする水平多関節ロボットの較正装置。A block attached to the Z-axis at the tip of the horizontally articulated robot,
The block includes a pin freely supported only in the vertical direction, a measuring means for measuring the relative distance between the robot tip and the pin, and an elastic body that generates a reaction force in relation to the relative distance between the robot tip and the pin. and a measuring table on which the robot is installed and has a plurality of holes for the pins to be inserted, including ones with different opening heights; A calibration device for a horizontal articulated robot, comprising an analysis device that reads values and performs arithmetic processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8480187A JP2603940B2 (en) | 1987-04-08 | 1987-04-08 | Calibration device for horizontal articulated robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8480187A JP2603940B2 (en) | 1987-04-08 | 1987-04-08 | Calibration device for horizontal articulated robot |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63251810A true JPS63251810A (en) | 1988-10-19 |
JP2603940B2 JP2603940B2 (en) | 1997-04-23 |
Family
ID=13840812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8480187A Expired - Lifetime JP2603940B2 (en) | 1987-04-08 | 1987-04-08 | Calibration device for horizontal articulated robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2603940B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103329A (en) * | 2016-12-27 | 2018-07-05 | トヨタ自動車株式会社 | Calibration jig and calibration method for horizontal articulated robot |
CN112665476A (en) * | 2020-12-29 | 2021-04-16 | 东风模具冲压技术有限公司 | Precision detection device for gripper of welding robot |
-
1987
- 1987-04-08 JP JP8480187A patent/JP2603940B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103329A (en) * | 2016-12-27 | 2018-07-05 | トヨタ自動車株式会社 | Calibration jig and calibration method for horizontal articulated robot |
US10744644B2 (en) | 2016-12-27 | 2020-08-18 | Toyota Jidosha Kabushiki Kaisha | Calibration jig and calibration method for horizontal articulated robot |
CN112665476A (en) * | 2020-12-29 | 2021-04-16 | 东风模具冲压技术有限公司 | Precision detection device for gripper of welding robot |
Also Published As
Publication number | Publication date |
---|---|
JP2603940B2 (en) | 1997-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4945501A (en) | Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor | |
CA1286382C (en) | Method for calibrating a coordinate measuring machine and the like and system therefor | |
US7356937B2 (en) | Method for calibrating parallel kinematic mechanism, method for verifying calibration, program product for verifying calibration, method for taking data, and method for taking correction data for spatial posturing correction | |
KR101200961B1 (en) | Parallel kinematic machine, calibration method of parallel kinematic machine, and calibration program product | |
Jiang et al. | A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar | |
CN109655023B (en) | System for determining the state of a tool positioning machine | |
US6317699B1 (en) | Device and method for calibrating a robot | |
KR910005508B1 (en) | Computerized Kinetic Transducer Link System and Method for Measuring and Analyzing NC Machine Tool Precision Using the System | |
US20030033104A1 (en) | Marking out method and system | |
JPH05250019A (en) | Matching device for computer numerical control machine and method for matching computer numerical control machine | |
EP0149682A1 (en) | Method of determining reference position of industrial robot | |
CN112797931B (en) | Industrial robot pose accuracy and pose repeatability detection device and detection method | |
CA1310092C (en) | Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor | |
JP5425006B2 (en) | Jig used to derive the robot tool vector | |
CN210100054U (en) | Auxiliary calibrator for robot position | |
JPS63251810A (en) | Correcting device for horizontal multi-joint robot | |
KR100214677B1 (en) | Reference position calibration device and method for industrial robots | |
JP2599496B2 (en) | Reference positioning method and apparatus for industrial traveling robot | |
CN110440733B (en) | Method for measuring relative tool position of body-in-white line welding robot | |
US20240346694A1 (en) | Automatic measuring systems and control method for automatic measuring systems | |
WO2024164292A1 (en) | Method and device for a robot, system for calibrating or evaluating a robot and computer readable medium | |
CN118794391A (en) | Automatic measuring system and control method for automatic measuring system | |
JPS6263091A (en) | Origin regulator for horizontal joint type robot | |
JPH0238913A (en) | Dimension inspecting method for work | |
JP2023143277A (en) | Data processing device, data processing method, program and three-dimensional measuring device |