[go: up one dir, main page]

JPS63250498A - Magnesium alloy member with corrosion-resistant structure - Google Patents

Magnesium alloy member with corrosion-resistant structure

Info

Publication number
JPS63250498A
JPS63250498A JP8609787A JP8609787A JPS63250498A JP S63250498 A JPS63250498 A JP S63250498A JP 8609787 A JP8609787 A JP 8609787A JP 8609787 A JP8609787 A JP 8609787A JP S63250498 A JPS63250498 A JP S63250498A
Authority
JP
Japan
Prior art keywords
magnesium alloy
corrosion
weight
base material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8609787A
Other languages
Japanese (ja)
Other versions
JPH07837B2 (en
Inventor
Tatsuya Suzuki
達也 鈴木
Kazunori Fukizawa
吹沢 一徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62086097A priority Critical patent/JPH07837B2/en
Publication of JPS63250498A publication Critical patent/JPS63250498A/en
Publication of JPH07837B2 publication Critical patent/JPH07837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A8発明の目的 (1)産業上の利用分野 本発明は、耐食構造を有するマグネシウム合金部材に関
する。
DETAILED DESCRIPTION OF THE INVENTION A8 Object of the Invention (1) Field of Industrial Application The present invention relates to a magnesium alloy member having a corrosion-resistant structure.

(2)  従来の技術 従来、この種部材として、マグネシウム合金より構成さ
れた基材と、耐食性改善のため基材の全表面に陽極酸化
処理により形成された酸化皮膜と、その酸化皮膜の、基
材に取付けられる異種金属部材との当接面を除いた部分
にスプレー塗装等の一般塗装により形成された合成樹脂
塗膜とを備えたものが知られている。
(2) Conventional technology Conventionally, this type of member has been made of a base material made of a magnesium alloy, an oxide film formed on the entire surface of the base material by anodizing treatment to improve corrosion resistance, and a base material of the oxide film. It is known to have a synthetic resin coating formed by general painting such as spray painting on the parts other than the contact surface with a dissimilar metal member attached to the material.

(3)  発明が解決しようとする問題点しかしながら
、従来のマグネシウム合金、したがって基材は耐食性の
点で、未だ不十分であり、また酸化皮膜は、一般塗装に
よる合成樹脂塗膜との密着性がそれ程良くないので合成
樹脂塗膜の剥離のおそれがあり、さらに異種金属部材と
の当接面において、酸化皮膜は無数の微小孔を有するの
で、その酸化皮膜だけでは基材と異種金属部材との間に
発生する電食を確実に回避することができず、その上陽
極酸化処理を基材全体に施すことはその処理が割高であ
るため部材の製造コストが高くなるといった問題がある
(3) Problems to be solved by the invention However, conventional magnesium alloys, and thus base materials, are still insufficient in terms of corrosion resistance, and the oxide film has poor adhesion to synthetic resin coatings formed by general painting. Since it is not so good, there is a risk of the synthetic resin coating peeling off.Furthermore, since the oxide film has countless micropores on the contact surface with the dissimilar metal component, the oxide film alone is not enough to prevent the base material and the dissimilar metal component from coming into contact with each other. There are problems in that it is not possible to reliably avoid the electrolytic corrosion that occurs during the process, and in addition, anodizing the entire base material is expensive, which increases the manufacturing cost of the member.

本発明は前記問題を解決することのできる、前記耐食構
造を有するマグネシウム合金部材を提供することを目的
とする。
An object of the present invention is to provide a magnesium alloy member having the above-mentioned corrosion-resistant structure, which can solve the above-mentioned problems.

B0発明の構成 (11問題点を解決するための手段 本発明は、耐食性マグネシウム合金より構成された基材
と、該基材の表面に皮膜化成処理により形成された化成
皮膜と、該化成皮膜の表面に電着塗装により形成された
合成樹脂塗膜とを備え、前記マグネシウム合金は、Al
5.7〜6.3重量%、MnO,15〜0.45重量%
、および不可避不純物を含むMgよりなり、前記不可避
不純物のうち、Fes CuおよびNiについて、M 
n / F eの重量比を20以上に、またCuの含有
量を0.025重量%以下に、さらにNiの含有量を0
.004重量%以下にそれぞれ設定したことを特徴とす
る。
B0 Structure of the Invention (11 Means for Solving the Problems) The present invention provides a base material made of a corrosion-resistant magnesium alloy, a chemical conversion film formed on the surface of the base material by film chemical conversion treatment, and a chemical conversion film formed on the surface of the base material. The magnesium alloy has a synthetic resin coating film formed on the surface by electrodeposition coating, and the magnesium alloy is made of aluminum.
5.7-6.3% by weight, MnO, 15-0.45% by weight
, and Mg containing unavoidable impurities. Among the unavoidable impurities, for Fes Cu and Ni, Mg
The weight ratio of n/Fe is 20 or more, the Cu content is 0.025% by weight or less, and the Ni content is 0.
.. 0.004% by weight or less.

また本発明は、耐食性マグネシウム合金より構成された
基材と、該基材の、それに取付けられる異種金属部材と
の当接面に陽極酸化処理により形成された酸化皮膜と、
該酸化皮膜の表面に電着塗装により形成された合成樹脂
塗膜とを備え、前記マグネシウム合金は、/l!5.7
〜6.3重量%、Mn0.15〜0.45重量%、およ
び不可避不純物を含むMgよりなり、前記不可避不純物
のうち、Fe、CuおよびNiについて、M n / 
F eの重量比を20以上に、またCuの含有量を0.
025重量%以下;こ・さン)にNiの含有量を0.0
04重量%以下にぞれぞ初、設定したことを特徴とする
The present invention also provides a base material made of a corrosion-resistant magnesium alloy, an oxide film formed by anodizing on the contact surface of the base material with a dissimilar metal member attached to the base material,
and a synthetic resin coating film formed by electrodeposition on the surface of the oxide film, and the magnesium alloy has /l! 5.7
6.3% by weight, Mn 0.15-0.45% by weight, and Mg containing unavoidable impurities, and among the unavoidable impurities, for Fe, Cu, and Ni, M n /
The weight ratio of Fe is set to 20 or more, and the content of Cu is set to 0.
025% by weight or less; Ni content is 0.0
04% by weight or less for the first time.

(2)作 用 第1の発明において、前記組成のマグネシウム合金、し
たがって基材は、優れた引張強さと、比較的高い耐力を
有し、また伸び、衝撃値および硬度も適当であり、その
上優れた耐食性を有する。
(2) Effect In the first invention, the magnesium alloy of the above composition, and therefore the base material, has excellent tensile strength and relatively high yield strength, and also has suitable elongation, impact value and hardness, and Has excellent corrosion resistance.

前記合金において、At’は引張強さおよび耐力を向上
させる効果を有する。た\°し、その含有量が5.7重
量%を下回ると、伸び特性は良くなるが、引張強さおよ
び耐力が低下して剛性が低くなり、一方、6.3重量%
を上回ると、伸びの低下が著しく、また衝撃値も低(な
る。
In the alloy, At' has the effect of improving tensile strength and yield strength. However, when its content is less than 5.7% by weight, the elongation properties are improved, but the tensile strength and yield strength are reduced, resulting in lower stiffness;
If it exceeds , the elongation will drop significantly and the impact value will also be low.

またMnは耐食性を改善する効果を有する。たX゛シ、
その含有量が0.15重・量%を下回ると、耐食性改善
効果が少なく、一方、0.45重量%を上回ると、伸び
率が低下する。
Mn also has the effect of improving corrosion resistance. TAX゛shi,
When the content is less than 0.15% by weight, the effect of improving corrosion resistance is small, while when it exceeds 0.45% by weight, the elongation rate decreases.

さらに、FeはMnとの関連において、またCUおよび
Niはそれぞれ単独で耐食性に影響を与える化学成分で
あり、M n / p’ eの重量比が20を下回り、
またCuおよびNiの含有量が0.025重量%、0.
004重量%をそれぞれ上回ると、耐食性が悪化する。
Furthermore, Fe is a chemical component that affects corrosion resistance in relation to Mn, and CU and Ni are chemical components that each independently affect corrosion resistance, and when the weight ratio of M n / p' e is less than 20,
Further, the content of Cu and Ni is 0.025% by weight and 0.025% by weight.
If the content exceeds 0.004% by weight, corrosion resistance deteriorates.

前記基材表面に形成される化成皮膜は、その基材および
合成樹脂塗膜との密着性が良好であり、その上、合成樹
脂塗膜は電気的作用により形成されるので、複雑な形状
部分も均一な厚さを以て確実に隠蔽し、これにより密着
力の強固な耐食性保護膜を構成することができる。しか
も、皮膜化成処理は割安であるから、部材の製造コスト
を安価にすることができる。
The chemical conversion film formed on the surface of the base material has good adhesion to the base material and the synthetic resin coating film, and since the synthetic resin coating film is formed by electrical action, it cannot be used on parts with complex shapes. The corrosion-resistant protective film can be reliably hidden with a uniform thickness, thereby forming a corrosion-resistant protective film with strong adhesion. Moreover, since the film chemical conversion treatment is relatively inexpensive, the manufacturing cost of the member can be reduced.

また第2の発明において、基材は前記同様の物性を有す
る。また酸化皮膜は耐食性だけでなく、比較的高い強度
を有するので、基材の異種金属部材との当接面を強化す
ることができる。さらに電気的作用により形成された合
成樹脂塗膜は酸化皮膜の表面を均一な厚さを以て覆うと
共にその酸化皮膜の無数の微小孔を埋めて封孔を行うの
で、それら微小孔によるアンカー効果によって合成樹脂
塗膜の密着力を強固にすることができ、これにより優れ
た耐食性保護膜を構成して、基材と異種金属部材との間
に発生する電食を長期に亘って確実に回避することがで
きる。その上陽極酸化処理を基材の一部に施すので、部
材の製造コストの上昇を抑制することができる。
Moreover, in the second invention, the base material has the same physical properties as described above. Further, since the oxide film has not only corrosion resistance but also relatively high strength, it is possible to strengthen the contact surface of the base material with a dissimilar metal member. Furthermore, the synthetic resin coating film formed by electrical action covers the surface of the oxide film with a uniform thickness and seals the countless micropores in the oxide film, so the anchoring effect of these micropores creates a synthetic resin coating. It is possible to strengthen the adhesion of the resin coating, thereby forming an excellent corrosion-resistant protective film, and reliably avoiding electrolytic corrosion that occurs between the base material and dissimilar metal parts over a long period of time. Can be done. Furthermore, since a part of the base material is subjected to anodization treatment, an increase in the manufacturing cost of the member can be suppressed.

(3)実施例 第1〜第3図は、耐食構造を有するマグネシウム合金部
材としての、車両用ホイールlを示し、そのホイールl
の中心部において車体内側方へ突出するボス部2の端壁
3外面に、異種金属部材としての鋳鉄製ブレーキディス
ク4の環状取付部5および鋳鉄製ハブ6の取付フランジ
部7がこの順に重合され、取付フランジ部7に突設され
て取付部5および端壁3を貫通する複数のボルト8にナ
フト9を螺着することにより、ホイール1、ブレーキデ
ィスク4およびハブ6が一体に結合される。
(3) Examples 1 to 3 show a vehicle wheel l as a magnesium alloy member having a corrosion-resistant structure.
An annular mounting portion 5 of a cast iron brake disc 4 and a mounting flange portion 7 of a cast iron hub 6, which are dissimilar metal members, are superimposed in this order on the outer surface of an end wall 3 of a boss portion 2 protruding inwardly from the vehicle body at the center of the hub. The wheel 1, the brake disc 4, and the hub 6 are integrally coupled by screwing naphts 9 onto a plurality of bolts 8 that protrude from the mounting flange portion 7 and pass through the mounting portion 5 and the end wall 3.

端壁3の各ボルト挿通孔10にブシュ11が螺着され、
それらボルト挿通孔lOの摩耗を防止するようになって
いる。Sはブシュ11およびボルト挿通孔10間の間隙
をシールするシール剤である。
A bushing 11 is screwed into each bolt insertion hole 10 of the end wall 3,
This is designed to prevent the bolt insertion holes 10 from being worn out. S is a sealing agent that seals the gap between the bushing 11 and the bolt insertion hole 10.

ホイールlは、鋳造法を適用して耐食性マグネシウム合
金より構成された、ホイール1と同一形状の基材12を
有し、その基材12の表面に後述する耐食性保護膜が設
けられる。
The wheel 1 has a base material 12 having the same shape as the wheel 1, which is made of a corrosion-resistant magnesium alloy by applying a casting method, and a corrosion-resistant protective film, which will be described later, is provided on the surface of the base material 12.

耐食性アルミニウム合金は、Al5.7〜6.3重量%
、Mn  0.15〜0.45重量%、および不可避不
純物を含むMgよりなり、前記不可避不純物のうち、F
e、 CuおよびNiについて、Mn/ F eの重量
比は20以上に、またCuの含有量は0.0.25重型
筒以下に、さらにNiの含有量は0、0 O4重量%以
下にそれぞれ設定される。
Corrosion-resistant aluminum alloy contains 5.7 to 6.3% by weight of Al.
, Mn 0.15 to 0.45% by weight, and Mg containing unavoidable impurities. Among the unavoidable impurities, F
For Cu and Ni, the weight ratio of Mn/Fe is 20 or more, the Cu content is 0.0.25% by weight or less, and the Ni content is 0, 0% by weight or less, respectively. Set.

第4図は、0.22重攪%Mnおよび前記不可避不純物
を含有するマグネシウム合金において、Al含有量を種
々変化させた場合を示し、Ae含有量を5.7〜6.3
重量%に設定することにより、前記合金、したがって基
材12は、優れた引張強さと、比較的高い耐力を有し、
また伸び、衝撃値および硬度も適当になる。
FIG. 4 shows the case where the Al content is variously changed in a magnesium alloy containing 0.22% Mn and the above-mentioned unavoidable impurities, and the Ae content is 5.7 to 6.3%.
% by weight, the alloy, and therefore the substrate 12, has excellent tensile strength and relatively high yield strength;
The elongation, impact value and hardness will also be appropriate.

第5図に明示するように、ホイール1の端壁3外面、し
たがって基材12におけるブレーキディスク4との当接
面13(第6図)およびその近傍を除く基材12表面に
、皮膜化成処理により形成された化成皮膜14と、その
化成皮膜14の表面に電着塗装により形成された合成樹
脂塗膜15とが設けられる・また必要に応して合成樹脂
塗膜15′)表面に・ブライマサフェーサ等による中塗
り層16I、メタリック塗料等による上塗り層162お
よび透明塗料等によるJ?516.を備えた装飾塗膜1
6が形成される。
As clearly shown in FIG. 5, the outer surface of the end wall 3 of the wheel 1, that is, the surface of the base material 12 excluding the contact surface 13 (FIG. 6) with the brake disc 4 of the base material 12 and its vicinity, is subjected to a film chemical conversion treatment. A synthetic resin coating 15 is formed on the surface of the chemical conversion coating 14 by electrodeposition coating.If necessary, a synthetic resin coating 15') is coated on the surface of the synthetic resin coating 15'. Intermediate coating layer 16I made of massafacer etc., top coating layer 162 made of metallic paint etc., and J? made of transparent paint etc. 516. Decorative coating film 1 with
6 is formed.

マグネシウム合金の場合、基材12の腐食が始まると、
その腐食部分はアルカリ性になるので、前記電着塗装と
しては、耐アルカリ性の良好なエポキシ系のカチオン電
着塗装が良い。
In the case of magnesium alloy, when the base material 12 begins to corrode,
Since the corroded portion becomes alkaline, the electrodeposition coating is preferably an epoxy-based cationic electrodeposition coating which has good alkali resistance.

前記基材12表面に形成される化成皮膜15は、その基
材12および合成樹脂塗膜15との密着性が良好であり
、その上、合成樹脂塗膜15は電気的作用により形成さ
れるので、複雑な形状部分も均一な厚さを以て確実に隠
蔽し、これにより密着力の強固な耐食性保護膜を構成す
ることができる。
The chemical conversion film 15 formed on the surface of the base material 12 has good adhesion to the base material 12 and the synthetic resin coating film 15, and in addition, the synthetic resin coating film 15 is formed by electrical action. Even complex-shaped parts can be reliably hidden with a uniform thickness, thereby making it possible to construct a corrosion-resistant protective film with strong adhesion.

しかも、皮膜化成処理は割安であるから、ホイールlの
製造コストを安価にすることができる。
Moreover, since the film chemical conversion treatment is relatively inexpensive, the manufacturing cost of the wheel 1 can be reduced.

また第6図に明示するように、基材12におけるブレー
キディスク4との当接面13およびその近傍には陽極酸
化処理により形成された酸化皮膜17と、その酸化度I
I*17の表面に電着塗装により形成された合成樹脂塗
膜15とが設けられる。
Further, as clearly shown in FIG. 6, on the contact surface 13 of the base material 12 with the brake disc 4 and in the vicinity thereof, there is an oxide film 17 formed by anodic oxidation treatment, and its oxidation degree I
A synthetic resin coating film 15 formed by electrodeposition is provided on the surface of I*17.

前記のように、基材12の当接面13に酸化皮膜17を
形成すると、その酸化皮膜17が耐食性だけでなく、化
成皮膜15に比べて高い強度を有するので、当接面!3
を強化することができる。
As mentioned above, when the oxide film 17 is formed on the contact surface 13 of the base material 12, the oxide film 17 not only has corrosion resistance but also has higher strength than the chemical conversion film 15. 3
can be strengthened.

また電気的作用により形成された合成樹脂塗膜15は酸
化皮膜エフの表面を覆うと共にその酸化皮膜17の無数
の微小孔18を埋めて封孔を行うので、それら微小孔I
8によるアンカー効果によって合成樹脂塗膜15の密着
力を強固にすることができ、これにより優れた耐食性保
護膜を構成して、基材12とブレーキディスク4との間
に発生する電食を長期に亘って確実に回避することがで
きる。
Furthermore, the synthetic resin coating film 15 formed by electrical action covers the surface of the oxide film F and fills and seals the countless micropores 18 of the oxide film 17, so that these micropores I
The anchoring effect of 8 can strengthen the adhesion of the synthetic resin coating 15, thereby forming an excellent corrosion-resistant protective film and preventing electrolytic corrosion occurring between the base material 12 and the brake disc 4 over a long period of time. can be reliably avoided.

その上陽極酸化処理を基材12の一部に施すので、ホイ
ール1の製造コストの上昇を抑制することができる。
Furthermore, since a part of the base material 12 is subjected to anodizing treatment, an increase in manufacturing cost of the wheel 1 can be suppressed.

前記ホイール1は以下の工程を経て製造される。The wheel 1 is manufactured through the following steps.

即ち、基材I2の真空ダイカスト工程(必要に応じて鋳
肌の除去)−基材12に対する脱脂工程→基材I2の当
接面13およびその近傍をマスキングして行われる皮膜
化成処理工程−マスキングを外して行われる陽極酸化処
理工程−陽極酸化処理により得られた酸化皮膜17の封
孔処理を兼ねた電着塗装工程−装飾塗膜1Gの形成工程
である。
That is, a vacuum die-casting process for the base material I2 (removal of the casting surface if necessary) - a degreasing process for the base material 12 -> a film chemical conversion process performed by masking the contact surface 13 of the base material I2 and its vicinity - masking An anodizing process performed by removing the anodizing process - an electrodeposition coating process which also serves as a sealing process for the oxide film 17 obtained by the anodizing process - a process for forming the decorative coating film 1G.

前記真空ダイカストは、注湯温度 700°C1圧力 
750 kg/cJl、型予熱温度 150℃の条件の
下に行われる。
The vacuum die casting is performed at a pouring temperature of 700°C and a pressure.
It is carried out under the conditions of 750 kg/cJl and mold preheating temperature of 150°C.

皮膜化成処理は、重クロム酸塩 150〜200 g 
/ l 、硝酸塩 150〜200 g/β、アンモニ
ウム塩 IO〜20 g / 1等を含む、常温の処理
液に基材12を30〜60秒間浸)貞することにより行
われる。
For film conversion treatment, dichromate 150-200 g
The substrate 12 is soaked for 30 to 60 seconds in a room temperature treatment solution containing 150 to 200 g/l of nitrate, 10 to 20 g/1 of ammonium salt, and the like.

陽極酸化処理は、Na0H(またはK OH)100〜
200 g/i 、l塩 20〜50g/j!、Cr塩
 10〜30g/l、カルボン酸塩20〜60g/1等
を含む、常温の処理液に基材12を浸漬し、電流密度1
〜3A/dイ、電圧20Vの条件の下に行われる。
Anodizing treatment is performed using NaOH (or KOH) 100~
200 g/i, l salt 20-50 g/j! The base material 12 is immersed in a treatment solution at room temperature containing 10 to 30 g/l of Cr salt, 20 to 60 g/l of carboxylate, etc., and the current density is 1.
The test is carried out under the conditions of ~3 A/d and a voltage of 20 V.

電@塗装は、エポキシ系樹脂分 19重滑%を含む、約
26℃の弱酸性浴に基材12を浸漬し、電着電圧200
Vの条件の下に行われる。
In the electrodeposition process, the base material 12 is immersed in a weakly acidic bath at about 26°C containing 19% epoxy resin, and the electrodeposition voltage is 200%.
It is carried out under the conditions of V.

前記のように酸化皮膜17の封孔処理を電着塗装工程で
行うと、封孔および塗装を別工程で行う場合に比べて作
業工数を半減することができ、また塗膜が連続するので
耐食性を向上させる上に有効である。
If the sealing treatment of the oxide film 17 is performed in the electrodeposition coating process as described above, the number of work steps can be halved compared to the case where sealing and painting are performed in separate processes, and since the coating film is continuous, corrosion resistance is improved. It is effective in improving

次に、基材12、したがってマグネシウム合金の腐食性
と、その合金に含有される不可避不純物のうちFe、C
uおよびNiの含有量との関係について説明する。なお
、FeはMnとの関連において前記合金の腐食性に影響
を与えるので、Mn/ F eの重量比として考察する
Next, we will discuss the corrosivity of the base material 12, and therefore the magnesium alloy, and the unavoidable impurities contained in the alloy, such as Fe and C.
The relationship between u and the Ni content will be explained. Note that since Fe affects the corrosivity of the alloy in relation to Mn, it will be considered as a weight ratio of Mn/Fe.

試験片としては、各種マグネシウム合金を用いて真空ダ
イカストにより得られた鋳造体の表面に、前記化成皮膜
14および前記合成樹脂塗膜15を順次形成したものを
用いる。
The test pieces used were cast bodies obtained by vacuum die-casting using various magnesium alloys, on which the chemical conversion coating 14 and the synthetic resin coating 15 were sequentially formed.

腐食試験は、試験片の合成樹脂塗膜15にクロスカット
傷を付け、温度35℃の雰囲気下でクロスカット傷に塩
水を噴霧することにより行われる(JIS  2237
1)。
The corrosion test is performed by making cross-cut scratches on the synthetic resin coating 15 of the test piece and spraying salt water on the cross-cut scratches in an atmosphere at a temperature of 35°C (JIS 2237).
1).

第7図は1,11!5.9重量%、Ni  0.001
重量%以下、Cu0.015重景置板下ならびにMnお
よびFeを含有するマグネシウム合金において、Mnお
よびFeの含有量を変化させた場合いて、MnおよびF
eの含有量を変化させた場合を示す。第7図から明らか
なようにM n / F eの重量比を20以上に設定
することによって、良好な耐食性を得ることができる。
Figure 7 shows 1,11!5.9% by weight, Ni 0.001
When the contents of Mn and Fe are changed, Mn and F
The case where the content of e is changed is shown. As is clear from FIG. 7, good corrosion resistance can be obtained by setting the weight ratio of M n /Fe to 20 or more.

前記腐食試験において、クロスカット傷から2鶴の位置
まで腐食が進行する時間を求めたところ、第7図におい
て、点aでは216時間、点すでは456〜768時間
、点Cでは768〜960時間、点dでは1008時間
以上、点eでは792〜1080時間であることが判明
している。
In the corrosion test, the time taken for corrosion to progress from the cross-cut scratch to the position of the second crane was determined, and in Figure 7, it was 216 hours at point a, 456 to 768 hours at point C, and 768 to 960 hours at point C. , it has been found that at point d it is 1008 hours or more and at point e it is 792 to 1080 hours.

第8図は1,15.9重量%、Mn0.22重量%、F
e  O,005重量%(M n / F eの重量比
 44)、Ni  O,001重景量販下およびCUを
含有するマグネシウム合金において、Cuの含有量を変
化させた場合を示す。第8図から明らかなように、Cu
の含有量を0.025重量%以下に設定することによっ
て、良好な耐食性を得ることができる。
Figure 8 shows 1.15.9% by weight, Mn 0.22% by weight, F
The graph shows the case where the Cu content is changed in a magnesium alloy containing e O,005% by weight (M n /F e weight ratio 44), Ni O,001, and CU. As is clear from Fig. 8, Cu
By setting the content to 0.025% by weight or less, good corrosion resistance can be obtained.

第9図は、AIl 5.9重量%、Mn0.22重量%
、Fe3 0.003重景重債Mn/Feの重量比 約
73.3) 、Cu  O,015重量%以下およびN
iを含有するマグネシウム合金において、Niの含有量
を変化させた場合を示す。第9図から明らかなように、
Niの含有量をO,004重量%以下に設定することに
よって、良好な耐食性を得ることができる。
Figure 9 shows AIl 5.9% by weight and Mn 0.22% by weight.
, Fe3 0.003 weight ratio Mn/Fe approximately 73.3), Cu O, 015% by weight or less and N
In the magnesium alloy containing i, the case where the Ni content is changed is shown. As is clear from Figure 9,
Good corrosion resistance can be obtained by setting the Ni content to 0.004% by weight or less.

電着塗装および陽極酸化処理において、基材12のエツ
ジ部では合成樹脂塗膜15および酸化皮膜17の厚さが
薄くなる傾向がある。これはエツジ部の円弧面の半径R
と密接な関係があり、そこで種々検討したところ、半径
Rを0,5鶴以上、好ましくは0.8鶴以上に設定する
ことによって耐食性を確保し得る厚さの合成樹脂塗[1
5および酸化皮膜17を形成することができることを究
明した。
In the electrodeposition coating and anodizing treatment, the synthetic resin coating film 15 and the oxide film 17 tend to be thinner at the edge portions of the base material 12. This is the radius R of the arc surface of the edge part
Therefore, after various studies, we found that by setting the radius R to 0.5 or more, preferably 0.8 or more, a synthetic resin coating with a thickness that can ensure corrosion resistance [1
5 and an oxide film 17 can be formed.

第10図はエツジ部における円弧面の半径Rと・合成樹
脂塗膜15の厚さとの関係を示し、半径Rが0.5 t
m以上であれば、基材12の平坦面部と略同等の厚さの
合成樹脂塗膜15を得ることができる。たyし半径Rが
0.5 amを下回ると、合成樹脂塗膜15の厚さが薄
くなって基材12の腐食が進行し、その腐食部分のアル
カリ性に起因して多数の茶請が発生する。
FIG. 10 shows the relationship between the radius R of the circular arc surface at the edge and the thickness of the synthetic resin coating 15, where the radius R is 0.5 t.
m or more, it is possible to obtain a synthetic resin coating film 15 having a thickness substantially equivalent to that of the flat surface portion of the base material 12. However, when the radius R is less than 0.5 am, the thickness of the synthetic resin coating 15 becomes thinner, corrosion of the base material 12 progresses, and many cracks occur due to the alkalinity of the corroded part. do.

円弧面の形成は、金型に円弧面を付して行う、機械加工
により行う、またはスコッチプライト、サンドペーパ等
を用いて手作業により行う。
The arcuate surface is formed by attaching an arcuate surface to a mold, by machining, or by hand using Scotch prite, sandpaper, or the like.

なお、前記ホイールにおいて、異種金属部材がハブであ
る場合もある。また本発明はホイールに限らず、他の部
材にも通用される。
In addition, in the said wheel, a dissimilar metal member may be a hub. Further, the present invention is applicable not only to wheels but also to other members.

C6発明の効果 第1の発明によれば、優れた機械的強度および耐食性を
有する基材と、その基材の表面を確実に覆い、また密着
力の強固な耐食性保護膜、即ち化成皮膜および合成樹脂
塗膜とを備えた、耐食構造を有するマグネシウム合金部
材を提供することができる。また皮膜化成処理は割安で
あるから、前記部材の製造コストを安価にすることがで
きる。
Effects of the C6 Invention According to the first invention, a base material having excellent mechanical strength and corrosion resistance, and a corrosion-resistant protective film that reliably covers the surface of the base material and has strong adhesion, that is, a chemical conversion coating and a synthetic coating. It is possible to provide a magnesium alloy member having a corrosion-resistant structure and having a resin coating film. Furthermore, since the film conversion treatment is relatively inexpensive, the manufacturing cost of the member can be reduced.

第2の発明によれば、前記同様に優れた機械的強度およ
び耐食性を有する基材と、その基材の表面を確実に覆い
、また密着力の強固な耐食性保護膜、即ち、酸化皮膜お
よび合成樹脂塗膜とを備え、基材とそれに取付けられる
異種金属部材との間に発生する電食を確実に回避するこ
とのできる、耐食構造を備えたマグネシウム合金部材を
提供することができる。また陽極酸化処理は基材の一部
に施されるだけであるから、前記部材の製造コストの上
昇を抑制することができる。
According to the second invention, a base material having excellent mechanical strength and corrosion resistance as described above, and a corrosion-resistant protective film that reliably covers the surface of the base material and has strong adhesion, that is, an oxide film and a synthetic It is possible to provide a magnesium alloy member including a resin coating film and having a corrosion-resistant structure that can reliably avoid electrolytic corrosion occurring between a base material and a dissimilar metal member attached thereto. Further, since the anodizing treatment is performed only on a part of the base material, an increase in the manufacturing cost of the member can be suppressed.

【図面の簡単な説明】 第1ないし第3図は車両用ホイールを示し、第1図は縦
断正面図、第2図は第1図■矢視図、第3図は要部拡大
図、第4図はマグネシウム合金のAl含有量と機械的強
度との関係を示すグラフ、第5図は第3図■矢示部の拡
大図、第6図は第3図■矢示部の拡大図、第7図は耐食
性保護膜を有するマグネシウム合金のM n / F 
eの重量比と腐食速度との関係を示すグラフ、第8図は
耐食性保護膜を有するマグネシウム合金のCu含有量と
腐食速度との関係を示すグラフ、第9図は耐食性保護膜
を有するマグネシウム合金のNi含有量と腐食速度との
関係を示すグラフ、第10図は基材のエツジ部における
円弧面の半径と合成樹脂塗膜の厚さとの関係を示すグラ
フである。 4・・・異種金属部材としてのブレーキディスク、12
・・・基材、13・・・当接面、14・・・化成皮膜、
15・・・合成樹脂塗膜、17・・・酸化皮膜第2図 第3= 第4図 Ae含を量(重量%) 第6図 第5図 第7図 M n / F eの重量比 第8図 Cu含有m <T11m%) 第9図 第10図
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 to 3 show a vehicle wheel, where Figure 1 is a longitudinal sectional front view, Figure 2 is a view in the direction of Figure 1, and Figure 3 is an enlarged view of the main parts. Figure 4 is a graph showing the relationship between Al content and mechanical strength of magnesium alloys, Figure 5 is an enlarged view of the part indicated by the arrow in Figure 3, and Figure 6 is an enlarged view of the part indicated by the arrow in Figure 3. Figure 7 shows the Mn/F of a magnesium alloy with a corrosion-resistant protective film.
A graph showing the relationship between the weight ratio of e and the corrosion rate. Figure 8 is a graph showing the relationship between the Cu content and the corrosion rate of magnesium alloys with a corrosion-resistant protective film. Figure 9 is a graph showing the relationship between the Cu content and corrosion rate of magnesium alloys with a corrosion-resistant protective film. FIG. 10 is a graph showing the relationship between the Ni content and the corrosion rate, and FIG. 10 is a graph showing the relationship between the radius of the circular arc surface at the edge of the base material and the thickness of the synthetic resin coating film. 4...Brake disc as a dissimilar metal member, 12
... Base material, 13 ... Contact surface, 14 ... Chemical conversion film,
15... Synthetic resin coating film, 17... Oxide film Figure 2 Figure 3 = Figure 4 Ae content (weight %) Figure 6 Figure 5 Figure 7 Weight ratio of M n / Fe Figure 8 Cu content m<T11m%) Figure 9 Figure 10

Claims (4)

【特許請求の範囲】[Claims] (1)耐食性マグネシウム合金より構成された基材と、
該基材の表面に皮膜化成処理により形成された化成皮膜
と、該化成皮膜の表面に電着塗装により形成された合成
樹脂塗膜とを備え、前記マグネシウム合金は、Al5.
7〜6.3重量%、Mn0.15〜0.45重量%、お
よび不可避不純物を含むMgよりなり、前記不可避不純
物のうち、Fe、CuおよびNiについて、Mn/Fe
の重量比を20以上に、またCuの含有量を0.025
重量%以下に、さらにNiの含有量を0.004重量%
以下にそれぞれ設定したことを特徴とする耐食構造を有
するマグネシウム合金部材。
(1) A base material made of a corrosion-resistant magnesium alloy,
The magnesium alloy includes a chemical conversion film formed on the surface of the base material by a film chemical conversion treatment, and a synthetic resin coating film formed on the surface of the chemical conversion film by electrodeposition coating, and the magnesium alloy is made of Al5.
7 to 6.3% by weight, Mn 0.15 to 0.45% by weight, and Mg containing unavoidable impurities.
The weight ratio of Cu is 20 or more, and the Cu content is 0.025.
% by weight or less, and further increase the Ni content to 0.004% by weight.
A magnesium alloy member having a corrosion-resistant structure characterized by the following settings.
(2)前記マグネシウム合金部材は、車両用ホィールで
ある、特許請求の範囲第(1)項記載の耐食構造を有す
るマグネシウム合金部材。
(2) The magnesium alloy member having a corrosion-resistant structure according to claim (1), wherein the magnesium alloy member is a vehicle wheel.
(3)耐食性マグネシウム合金より構成された基材と、
該基材の、それに取付けられる異種金属部材との当接面
に陽極酸化処理により形成された酸化皮膜と、該酸化皮
膜の表面に電着塗装により形成された合成樹脂塗膜とを
備え、前記マグネシウム合金は、Al5.7〜6.3重
量%、Mn0.15〜0.45重量%、および不可避不
純物を含むMgよりなり、前記不可避不純物のうち、F
e、CuおよびNiについて、Mn/Feの重量比を2
0以上に、またCuの含有量を0.025重量%以下に
、さらにNiの含有量を0.004重量%以下にそれぞ
れ設定したことを特徴とする耐食構造を有するマグネシ
ウム合金部材。
(3) a base material made of a corrosion-resistant magnesium alloy;
The base material includes an oxide film formed by anodization treatment on the contact surface with a dissimilar metal member attached to the base material, and a synthetic resin coating film formed by electrodeposition coating on the surface of the oxide film, The magnesium alloy consists of 5.7 to 6.3% by weight of Al, 0.15 to 0.45% by weight of Mn, and Mg containing unavoidable impurities. Among the unavoidable impurities, F
For e, Cu and Ni, the weight ratio of Mn/Fe is 2.
A magnesium alloy member having a corrosion-resistant structure, characterized in that the content of Cu is set to 0.0 or more, the content of Cu is set to 0.025% by weight or less, and the content of Ni is set to 0.004% by weight or less.
(4)前記マグネシウム合金部材は、車両用ホィールで
ある、特許請求の範囲第(3)項記載の耐食構造を有す
るマグネシウム合金部材。
(4) The magnesium alloy member having a corrosion-resistant structure according to claim (3), wherein the magnesium alloy member is a vehicle wheel.
JP62086097A 1987-04-08 1987-04-08 Magnesium alloy member with corrosion resistant structure Expired - Fee Related JPH07837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086097A JPH07837B2 (en) 1987-04-08 1987-04-08 Magnesium alloy member with corrosion resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086097A JPH07837B2 (en) 1987-04-08 1987-04-08 Magnesium alloy member with corrosion resistant structure

Publications (2)

Publication Number Publication Date
JPS63250498A true JPS63250498A (en) 1988-10-18
JPH07837B2 JPH07837B2 (en) 1995-01-11

Family

ID=13877202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086097A Expired - Fee Related JPH07837B2 (en) 1987-04-08 1987-04-08 Magnesium alloy member with corrosion resistant structure

Country Status (1)

Country Link
JP (1) JPH07837B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038048A1 (en) * 1997-02-26 1998-09-03 Washi Kosan Co., Ltd. Magnesium alloy wheel for vehicle
JPH10236101A (en) * 1997-02-26 1998-09-08 Washi Kosan Kk Assembled magnesium alloy wheel
WO1999042641A1 (en) * 1998-02-23 1999-08-26 Mitsui Mining And Smelting Co., Ltd. Corrosion-resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
JP2003055795A (en) * 2001-08-10 2003-02-26 Niigata Prefecture Method for producing thin product made of magnesium alloy
JP2008144268A (en) * 2006-11-16 2008-06-26 Yamaha Motor Co Ltd Magnesium alloy member and manufacturing method thereof
KR101167155B1 (en) 2004-12-24 2012-07-24 재단법인 포항산업과학연구원 Method for improving the corrosion resistance of magnesium melting crucible

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278396A1 (en) * 2008-05-12 2009-11-12 Gm Global Technology Operations, Inc. Corrosion isolation of magnesium components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253018A (en) * 1985-09-02 1987-03-07 Toshiba Corp Semiconductor protection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253018A (en) * 1985-09-02 1987-03-07 Toshiba Corp Semiconductor protection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038048A1 (en) * 1997-02-26 1998-09-03 Washi Kosan Co., Ltd. Magnesium alloy wheel for vehicle
JPH10236101A (en) * 1997-02-26 1998-09-08 Washi Kosan Kk Assembled magnesium alloy wheel
WO1999042641A1 (en) * 1998-02-23 1999-08-26 Mitsui Mining And Smelting Co., Ltd. Corrosion-resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
US6335099B1 (en) 1998-02-23 2002-01-01 Mitsui Mining And Smelting Co., Ltd. Corrosion resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
JP2003055795A (en) * 2001-08-10 2003-02-26 Niigata Prefecture Method for producing thin product made of magnesium alloy
KR101167155B1 (en) 2004-12-24 2012-07-24 재단법인 포항산업과학연구원 Method for improving the corrosion resistance of magnesium melting crucible
JP2008144268A (en) * 2006-11-16 2008-06-26 Yamaha Motor Co Ltd Magnesium alloy member and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07837B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JP5093797B2 (en) Steel plate for containers with excellent can processability
JPS63250498A (en) Magnesium alloy member with corrosion-resistant structure
CN100577872C (en) Cast product with aluminum base film and production method thereof
CA1300325C (en) Plated steel sheet for a can
JP3742533B2 (en) Steel sheet for laminated containers with excellent can-making processability
JP2767066B2 (en) Surface treated aluminum plate with excellent weldability and zinc phosphate treatment
JPS61246058A (en) High corrosion-resistant coated steel plate for fuel vessel
JPH01108396A (en) Manufacturing method of galvanized steel sheet for cationic electrodeposition coating
JP4239081B2 (en) Magnesium-based member and manufacturing method thereof
JP2823118B2 (en) Conversion coating treatment method for magnesium alloy
JPH0544087A (en) Coating surface preparation method of aluminium die cast product
JPH08225991A (en) Aluminum alloy plate for automobile body and manufacturing method thereof
JPH06297901A (en) Aluminum wheel
CN119343478A (en) Vehicle bracket treated with anti-corrosion and preparation method thereof
JPS6075367A (en) Production of automobile
JPH0765224B2 (en) Steel sheet with multi-layer plating with excellent processing method, corrosion resistance and water-resistant adhesion
JPH03104633A (en) Surface-treated steel stock excellent in corrosion resistance
JPH0617289A (en) Electroplated aluminum plate with excellent adhesion and method for producing the same
JPH0259161A (en) Method for treating surface of aluminum die casting product
JPH04180594A (en) Aluminum alloy sheet
JPS61266596A (en) Steel plate for fuel containers
JPS58210190A (en) Weldable coated steel plate
JPH0241594B2 (en)
JPS6187881A (en) Steel plate for alcohol or alcohol-containing fuel containers
JPH03219950A (en) Organic composite coated steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees