[go: up one dir, main page]

JPS63250020A - Refrigerant self-holding superconductor - Google Patents

Refrigerant self-holding superconductor

Info

Publication number
JPS63250020A
JPS63250020A JP62084194A JP8419487A JPS63250020A JP S63250020 A JPS63250020 A JP S63250020A JP 62084194 A JP62084194 A JP 62084194A JP 8419487 A JP8419487 A JP 8419487A JP S63250020 A JPS63250020 A JP S63250020A
Authority
JP
Japan
Prior art keywords
refrigerant
superconductor
coil
superconducting
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62084194A
Other languages
Japanese (ja)
Inventor
Toshiyuki Amano
天野 俊之
Akinori Ohara
尾原 昭徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62084194A priority Critical patent/JPS63250020A/en
Publication of JPS63250020A publication Critical patent/JPS63250020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To keep a superconductor at the critical temperature or lower even if part of it is exposed from a refrigerant liquid by providing voids holding a refrigerant in the superconductor showing a superconductive state when cooled by the refrigerant liquid. CONSTITUTION:A superconductive coil 6 and a refrigerant 2 are stored in a cooling container 3. The coil 6 contains voids in response to the refrigerant and made of a porous sintered body. When the refrigerant liquid level 5a is lowered by evaporation during the operation of the coil 6 for a long time, the coil 6 itself holds the refrigerant liquid via the capillary tube force even if the upper section of the coil 6 is exposed from the liquid level 5a, and it is cooled by the refrigerant liquid and can be kept at the critical temperature or lower.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は超電導機器に用いられる超電導体に関し、自
身で冷媒を保持し得る能力を有し、より効果的な冷却特
性を持つ冷媒自己保持超電導体に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a superconductor used in superconducting equipment, and relates to a refrigerant self-retaining superconductor that has the ability to retain its own refrigerant and has more effective cooling properties. It's about the body.

[従来の技術] 第3図は例えば特開昭61−217658号公報に示さ
れた従来の超電導機器における冷却装置構成図である。
[Prior Art] FIG. 3 is a block diagram of a cooling device in a conventional superconducting device disclosed in, for example, Japanese Unexamined Patent Publication No. 61-217658.

図において(1)は超電導体からなる超電導コイル、(
2)は超電導コイル(1)を冷却するための冷媒、(3
)は超電導コイル(1)及び冷媒(2)を納める低温容
器である。(4)は外部からの熱侵入あるいは微少な内
部発熱などにより蒸発した冷媒ガスを再凝縮するための
凝縮器である。他の構成品は個々についてはこの発明に
関し直接関連がないので省略するが、凝縮器に冷熱を供
給するための冷凍システムである。
In the figure, (1) is a superconducting coil made of a superconductor, (
2) is a refrigerant for cooling the superconducting coil (1);
) is a low-temperature container containing a superconducting coil (1) and a refrigerant (2). (4) is a condenser for recondensing refrigerant gas that has evaporated due to heat intrusion from the outside or minute internal heat generation. The other components are omitted because they are not directly related to this invention, but they are a refrigeration system for supplying cold heat to the condenser.

次に動作について説明する。通常、超電導コイル(1)
はより高い磁界あるいは高均一な磁界を得るために用い
られるが、超電導状態にするため、ある温度いかに冷却
する必要がある(以下、この温度を臨界温度と記す)。
Next, the operation will be explained. Normally, superconducting coil (1)
is used to obtain a higher magnetic field or a highly uniform magnetic field, but in order to achieve a superconducting state, it is necessary to cool the material to a certain temperature (hereinafter, this temperature will be referred to as the critical temperature).

第3図に従えは、始め冷媒(例えは液体ヘリウム)を低
温容器(3)に注液し超電導コイル(1)を冷却する。
According to FIG. 3, a refrigerant (for example, liquid helium) is first poured into the low temperature container (3) to cool the superconducting coil (1).

そして絶えず超電導状態を維持するため図のごとき冷媒
液(2a)中に浸った状態とし、その上で、励磁電源(
図示しない)を用いて通電しマグネットとして用いられ
る。また、外部からの熱侵入や内部からの発熱により冷
媒液が蒸発した分を再凝縮させるため冷凍機と凝縮器(
4)などの冷凍システムが付加されている。
In order to constantly maintain the superconducting state, it is immersed in the refrigerant liquid (2a) as shown in the figure, and then the excitation power source (
(not shown) to supply electricity and use it as a magnet. In addition, a refrigerator and a condenser (
A refrigeration system such as 4) is added.

ここで超電導コイル(1)と冷媒?!(2a)との関係
を分かりやすくするための模式的な断面図を第4図に示
す。第4図に従えは、超電導機器運転時は超電導コイル
(1)を超電導状態に保つため冷媒液(2a)の液面位
置を(5a)のごとき状態に維持する必要がある。もし
冷媒液(2a)の液面位置が(5b)のごときであり、
超電導コイル(1)の上部が冷媒液(2a)より出て冷
媒ガス(2b)に接すると、冷媒ガス(2b)に接して
いる部分ではわずかの熱擾乱などで超電導コイル(1)
を超電導状態に維持することができなくなり、超電導破
壊(以下、クエンチと記す)を起とし、常電導へ転移す
る可能性が生じてくる。
Superconducting coil (1) and refrigerant here? ! A schematic cross-sectional view is shown in FIG. 4 to make the relationship with (2a) easier to understand. According to FIG. 4, in order to maintain the superconducting coil (1) in a superconducting state during the operation of the superconducting equipment, it is necessary to maintain the liquid level position of the refrigerant liquid (2a) in a state as shown in (5a). If the liquid level position of refrigerant liquid (2a) is like (5b),
When the upper part of the superconducting coil (1) comes out of the refrigerant liquid (2a) and comes into contact with the refrigerant gas (2b), the part that is in contact with the refrigerant gas (2b) is slightly thermally disturbed and the superconducting coil (1)
cannot be maintained in a superconducting state, leading to superconducting breakdown (hereinafter referred to as quench), and the possibility of transition to normal conductivity.

これは流体において液とガスとでは熱伝達特性が異なり
、前者に比べ後者が悪いためである。
This is because liquid and gas have different heat transfer characteristics, and the latter is worse than the former.

万一、クエンチが起きると超電導コイル(1)の損傷を
招き、コイルとしての機能を失う恐れが生じる。そして
それは超電導機器の機能消失となり、ことによっては大
事故にもなりかねない。そこでこれらの事態を引き起こ
すことのないよう通常は超電導コイル(1)が冷媒液(
2a)に充分浸っている状況下で運転されることになる
。そのためには冷媒液(2a)の余裕分を多く取れるよ
うに低温容器(3)を大きくしたり、上部のタンクに設
けたりし、冷媒液(2a)が減少した場合には、その都
度再注液を実施するかあるいは第3図のごとく冷Va(
2a)を減少させないために再液化システムを付加する
ことにより対処している。
In the unlikely event that quenching occurs, the superconducting coil (1) will be damaged and may lose its function as a coil. This could lead to the superconducting equipment losing its functionality, and could even lead to a major accident. Therefore, to prevent these situations from occurring, the superconducting coil (1) is usually heated with a refrigerant liquid (
It will be operated under conditions that are fully immersed in 2a). To achieve this, the cryogenic container (3) should be made larger or placed in the upper tank so that there is more room for the refrigerant liquid (2a), and if the refrigerant liquid (2a) decreases, it must be refilled each time. Either apply the liquid or use cold Va(
In order not to reduce 2a), a reliquefaction system is added.

[発明が解決しようとする間頚点コ 従来の超電導体から成る超電導コイル(1)は、前述の
如き方法を用いて冷却され超電導状態に維持されている
ため、冷媒(2)の貯蔵量を大きくする必要性から、低
温容器(3)が大きくなる問題点があった。そして低温
容器(3)が大きくなるとそれにともない熱輻射による
熱侵入量がおおきくなるため低温容器(2)の外表面積
に比例する)、更に冷媒が蒸発し易くなるという問題点
があった。
[Intervertical point to be solved by the invention] Since the superconducting coil (1) made of a conventional superconductor is cooled and maintained in a superconducting state using the method described above, the amount of stored refrigerant (2) is Due to the necessity of increasing the size, there was a problem in that the cryogenic container (3) became large. As the low-temperature container (3) becomes larger, the amount of heat intrusion due to thermal radiation increases (proportional to the outer surface area of the low-temperature container (2)), and the refrigerant becomes more likely to evaporate.

この発明は、上記のような従来の問題点を除去するため
になされたもので例えば超電導コイルに用いる超電導体
として、従来の密なものではなく、内部に例えば毛細管
現象により吸い上げ、冷媒液を保持し得る空隙を有する
ものを用いることにより、上記冷媒の貯蔵量の低融化、
装置の小型化が図れ、かつ、上記超電導コイルの一部が
冷媒液から露出するような場合でも上記超電導状−に維
持できる超電導体を提供するものである。□[問題点を
解決するための手段] この発明に係ね配冷媒自己保持超電導体は5、所定温度
以下に冷却することにより電気抵抗が零となり超電導状
態を来す超電導体で、冷媒を保持し得る空隙を有するも
のである。
This invention was made in order to eliminate the above-mentioned conventional problems.For example, as a superconductor used in a superconducting coil, instead of the conventional dense one, the refrigerant liquid is sucked up and held inside by capillary action. By using a refrigerant that has voids that can
It is an object of the present invention to provide a superconductor that can reduce the size of the device and maintain the superconducting state even when a part of the superconducting coil is exposed from the refrigerant liquid. □ [Means for solving the problem] The refrigerant self-retaining superconductor according to the present invention is a superconductor whose electrical resistance becomes zero and becomes superconducting when cooled to a predetermined temperature or below, and which retains the refrigerant. It has voids that can be removed.

[作用コ この発明における冷媒自己保持超電導体は、超電導体内
に冷媒液を保持する空隙を有しているため、超電導体の
一部が冷媒から露出していても、空隙内に保持された冷
媒により冷却され、冷媒中にあるような状態を維持でき
、超電導状態を保つことが出来る。また臨界温度以下に
初期冷却する場合も迅速に冷却できる。従って冷媒使用
量が低減でき、低温容器のコンパクト化、装置の小型化
が図れる。
[Operation] The refrigerant self-retaining superconductor in this invention has a void that retains the refrigerant liquid within the superconductor, so even if a part of the superconductor is exposed from the refrigerant, the refrigerant retained within the void remains. It is possible to maintain a state similar to that in a refrigerant and maintain a superconducting state. In addition, when initial cooling is performed below the critical temperature, cooling can be performed quickly. Therefore, the amount of refrigerant used can be reduced, and the low-temperature container and apparatus can be made more compact.

[実施例コ □以下、この発明の一実施例を図について説明する。第
1図はこの発明の一実施例を適用した超電導機器を模式
的に示す断面図である。図において(2・)は超電導コ
イルを冷却するための冷媒、(3)′は超電導コイル及
び冷媒(2)を収納するための冷温容器、(5a)は冷
媒液の液面、(6)はこの発明の一実施例の冷媒に応じ
た空隙を内含する超電導体でこの場合は多孔質焼結体で
製作された超電導コイルである。第2図は第1図に示す
超電導機器において冷媒液(2)が減少し、超電導コイ
ル(6)が冷媒液面より露出している場合を模式的に示
した断面図でであり、(5b)はその時の冷媒液の液面
である。なお、(6b)は冷媒到達面で第1図の場合は
勿論であるが、第2図の場合にも超電導コイル(6)、
上端部(6b)まで内部に、即ち超電導体の空隙全体に
冷媒が保持されている。
[Embodiment □ Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view schematically showing a superconducting device to which an embodiment of the present invention is applied. In the figure, (2・) is a refrigerant for cooling the superconducting coil, (3)' is a cold container for storing the superconducting coil and refrigerant (2), (5a) is the liquid level of the refrigerant, and (6) is the refrigerant. An embodiment of the present invention is a superconductor containing voids depending on the refrigerant, in this case a superconducting coil made of a porous sintered body. FIG. 2 is a cross-sectional view schematically showing the superconducting device shown in FIG. 1 when the refrigerant liquid (2) decreases and the superconducting coil (6) is exposed from the refrigerant liquid level, ) is the liquid level of the refrigerant liquid at that time. Note that (6b) is the refrigerant reaching surface, which is of course the case in Fig. 1, but also in the case of Fig. 2, where the superconducting coil (6),
The coolant is held inside up to the upper end (6b), that is, throughout the void in the superconductor.

次に動作について説明する。超電導コイル(6)の運転
方法については従来装置と同じであり第1図がこれに当
る。ところで長時間に及ぶ運転では冷媒液面(5a)は
外部からの熱侵入により液が蒸発して徐々に低下してく
る。この発明の如き冷媒に応じた空隙を内含した超電導
体による超電導コイル(6)であれは、第2図のように
冷媒液面(5b)より超電導コイル(1)の上部が露出
しても超電導コイル(1)自身が毛細管力により冷媒液
を保持するため自身は捕捉した冷媒液により冷却されあ
たかも冷媒液中に在るが如き状態が維持され、超電導状
態を保つことができる。従って、クエンチの心配がなく
運転できることになる。
Next, the operation will be explained. The method of operating the superconducting coil (6) is the same as that of the conventional device, and is illustrated in FIG. By the way, during long-term operation, the refrigerant liquid level (5a) gradually decreases as the liquid evaporates due to heat intrusion from the outside. In the case of a superconducting coil (6) made of a superconductor containing voids depending on the refrigerant as in the present invention, even if the upper part of the superconducting coil (1) is exposed from the refrigerant liquid level (5b) as shown in FIG. Since the superconducting coil (1) itself retains the refrigerant liquid by capillary force, it is cooled by the captured refrigerant liquid and maintains a state as if it were in the refrigerant liquid, so that the superconducting state can be maintained. Therefore, it is possible to drive without worrying about quenching.

加えて、毛細管力により冷媒液を吸い上げる機能がある
ため、例えは超電導コイル(6)を臨界温度以下にまで
初期冷却する場合でも、より迅速に冷却できる効果があ
り、また超電導コイル(1)の初期冷却が完了し、冷媒
液を貯蔵する場合も必ずしも全部分が冷媒液乙こ浸る必
要がないことから、冷媒使用量の低減化が図れる。この
結果、低温容器のコンパクト化が図れ、そしてこれに応
じて熱ふく躬による熱侵入量の低減化が図れる。
In addition, since it has the ability to suck up the refrigerant liquid by capillary force, even when the superconducting coil (6) is initially cooled down to below the critical temperature, it can be cooled more quickly. Even when the initial cooling is completed and the refrigerant liquid is stored, the entire part does not necessarily need to be immersed in the refrigerant liquid, so the amount of refrigerant used can be reduced. As a result, the low-temperature container can be made more compact, and the amount of heat intrusion due to heat flux can be reduced accordingly.

一方、冷凍機、凝縮器を付加して再液化を行う場合にも
熱侵入量の低減化が図れることから、従来より小さい能
力で済み、これがまた再液化システムのコンパクト化に
つながる。
On the other hand, even when reliquefaction is performed by adding a refrigerator and a condenser, the amount of heat intrusion can be reduced, so the capacity can be smaller than before, which also leads to a more compact reliquefaction system.

この発明に係わる超電導体としては例えはNbT1合金
超電導材、Nb3Sn化合物超電導材、La、S「から
成る酸化物超電導材が用いられる。
As the superconductor according to the present invention, for example, an NbT1 alloy superconducting material, a Nb3Sn compound superconducting material, and an oxide superconducting material consisting of La and S are used.

この発明における超電導体の製作法としては例えは粉体
を焼き固める方法がある。いわゆる焼結体である。
An example of a method for producing a superconductor according to the present invention is a method of baking and solidifying powder. This is a so-called sintered body.

また空隙の大きさについては毛細管力が生じ冷媒が吸い
上げられるかあるいは保持される程度であれは任意で良
いが、一般に毛細管力は冷媒の表面張力に応じた空隙の
大きざにより最大となるので、平均的な空隙の大きさと
してはそれに近い状態がより好ましい。
The size of the void may be arbitrary as long as capillary force is generated and the refrigerant is sucked up or retained, but in general, capillary force is maximized depending on the size of the void depending on the surface tension of the refrigerant. It is more preferable that the average void size be close to that.

いずれにしろ適当な空隙を内含するような製造法により
製作され、冷媒自己吸引作用あるいは冷媒自己保持作用
が機能するような超電導体であれは良い。即ち素材中に
空隙を設けた素材自身が空隙を有する超電導体であって
も、素材間に空隙を設けるようにして形成した超電導体
、例えば、金属超電導線を空隙をあけて巻回したような
ものでも良い。
In any case, any superconductor is suitable as long as it is manufactured by a manufacturing method that includes appropriate voids and has a refrigerant self-suction function or a refrigerant self-retention function. In other words, even if the material itself is a superconductor with voids, a superconductor formed with voids between the materials, such as a metal superconducting wire wound with voids, Anything is fine.

又、冷媒を上方から滴下させるようにすれは、超電導体
内の空隙への冷媒の補給は毛細管現象にたよる必要はな
い。
Furthermore, as long as the refrigerant is dropped from above, replenishment of the refrigerant into the voids within the superconductor does not need to rely on capillary action.

[発明の効果コ 以上のように、この発明によれは、所定温度以下に冷却
することにより電気抵抗が零となり超電導状態を示す超
電導体において、冷媒を保持し得る空隙を有するものに
したので、超電導体の一部が冷媒液より露出しても臨界
温度以下に維持でき、しかも相乗効果として機器の低熱
侵入化、省スペース化、省エネルギ化が図れる冷謀目己
保持超電導体が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, a superconductor that exhibits a superconducting state with zero electrical resistance when cooled to a predetermined temperature or below has voids capable of holding a refrigerant. Even if a part of the superconductor is exposed to the refrigerant liquid, the temperature can be maintained below the critical temperature, and as a synergistic effect, a self-retaining superconductor can be obtained that can reduce heat intrusion into equipment, save space, and save energy. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の一実施例による超電導機器
の模式断面図で、第1図は定常状態を、第2図は冷媒が
減少、超電導コイルカ達令媒液面より露出した状態を表
している。第3図は従来の超電導機器における冷却装置
の構成図、第4図は第3図における装置内の超電導機器
の模式断面図である。 (2)  冷媒 (5aX5b)   冷媒液面 (6)     超電導コイル (6b)     冷媒到達面 尚、図中同一符号は同一、又は相当部分を示す。
Figures 1 and 2 are schematic cross-sectional views of a superconducting device according to an embodiment of the present invention. Figure 1 shows a steady state, and Figure 2 shows a state in which the refrigerant has decreased and the superconducting coil is exposed above the liquid level. represents. FIG. 3 is a block diagram of a cooling device in a conventional superconducting device, and FIG. 4 is a schematic cross-sectional view of the superconducting device in the device in FIG. (2) Refrigerant (5aX5b) Refrigerant liquid level (6) Superconducting coil (6b) Refrigerant reaching surface Note that the same reference numerals in the drawings indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)所定温度以下に冷却することにより電気抵抗が零
となり超電導状態を示す超電導体において、冷媒を保持
し得る空隙を有することを特徴とする冷媒自己保持超電
導体。
(1) A refrigerant self-retaining superconductor characterized in that the superconductor exhibits a superconducting state with zero electrical resistance when cooled to a predetermined temperature or below, and has voids capable of retaining a refrigerant.
(2)冷媒を毛細管現象により吸い上げ保持し得る空隙
を有することを特徴とする特許請求の範囲第1項記載の
冷媒自己保持超電導体。
(2) A refrigerant self-holding superconductor according to claim 1, characterized in that the refrigerant self-retaining superconductor has a void capable of sucking up and retaining refrigerant by capillary action.
(3)空隙は超電導体本体内部に分布していることを特
徴とする特許請求の範囲第1項又は第2項記載の冷媒自
己保持超電導体。
(3) A refrigerant self-retaining superconductor according to claim 1 or 2, wherein the voids are distributed within the superconductor main body.
(4)超電導体は多孔質体であることを特徴とする特許
請求の範囲第1項ないし第3項のいずれかに記載の冷媒
自己保持超電導体。
(4) The refrigerant self-retaining superconductor according to any one of claims 1 to 3, wherein the superconductor is a porous body.
JP62084194A 1987-04-06 1987-04-06 Refrigerant self-holding superconductor Pending JPS63250020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084194A JPS63250020A (en) 1987-04-06 1987-04-06 Refrigerant self-holding superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084194A JPS63250020A (en) 1987-04-06 1987-04-06 Refrigerant self-holding superconductor

Publications (1)

Publication Number Publication Date
JPS63250020A true JPS63250020A (en) 1988-10-17

Family

ID=13823660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084194A Pending JPS63250020A (en) 1987-04-06 1987-04-06 Refrigerant self-holding superconductor

Country Status (1)

Country Link
JP (1) JPS63250020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224242B2 (en) * 2002-05-07 2007-05-29 Micorwave And Materials Designs Ip Pty Ltd. Microwave filter assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224242B2 (en) * 2002-05-07 2007-05-29 Micorwave And Materials Designs Ip Pty Ltd. Microwave filter assembly

Similar Documents

Publication Publication Date Title
US9014769B2 (en) Cryocooler system and superconducting magnet apparatus having the same
JP5228177B2 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JPH04350906A (en) Oxide superconducting coil cooling method and cooling device
JP2002208512A (en) Cooling method and cooling structure for high-temperature superconducting coil
JP4790752B2 (en) Superconducting magnet
JPH11219814A (en) Superconducting magnet and method for precooling the same
JPS63250020A (en) Refrigerant self-holding superconductor
JP5540642B2 (en) Cooling device for superconducting equipment
JPH10275719A (en) Superconductor cooling method
JPS63292610A (en) Current supply lead for superconducting device
JP4095742B2 (en) Conduction cooled superconducting magnet
JP3993407B2 (en) Current leads for superconducting equipment
JPH1074621A (en) Magnetizing method for superconductor and superconducting magnetic device
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPS6142977A (en) Superconductive apparatus
US3562685A (en) Foil wrapped superconducting magnet
JPS61208206A (en) Superconductive magnet
JPH05304025A (en) High magnetic field generator and permanent current switch
JPH0927415A (en) Current leads for superconducting devices
JPH0256905A (en) Superconducting magnet device
JPH08195309A (en) Superconducting current lead
US3530682A (en) Foil wrapped superconducting magnet
JPH04342105A (en) Superconducting electromagnet device
KR20030010964A (en) Method for MgB2 superconductor wire
JPH09113048A (en) Cryotemperature apparatus