JPS6324764A - Exposure control circuit for ccd solid-state image pick-up element - Google Patents
Exposure control circuit for ccd solid-state image pick-up elementInfo
- Publication number
- JPS6324764A JPS6324764A JP61168438A JP16843886A JPS6324764A JP S6324764 A JPS6324764 A JP S6324764A JP 61168438 A JP61168438 A JP 61168438A JP 16843886 A JP16843886 A JP 16843886A JP S6324764 A JPS6324764 A JP S6324764A
- Authority
- JP
- Japan
- Prior art keywords
- reverse
- pulse
- circuit
- transferring
- timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
末完り」は、CCD固体撮像素子の露出制御回路に関す
る。DETAILED DESCRIPTION OF THE INVENTION "(a) End of industrial application field" relates to an exposure control circuit for a CCD solid-state image sensor.
(ロ)従来の技術
テレビカメラの露出制動も通常アイリス制御回路により
レンズ筒内の絞り機構を制御しており、コストアップの
要因となってい念、そこで、例えば、唱和54年7月1
日発行の!レビジョン学会誌〃@33巻#!、7号第5
36〜541頁には、受光期間中の光電変換速度を2段
に切換えるべく、蓄積電極に対し従来の′g1荷伝送伝
送電圧しい第l電位と第1電文より低レベルの第2、−
+1 (+tとを選択的に印加すると共に、両電位の切
換タイミングを撮像出力レベルに応じて変更することに
より一定の撮像出力レベA/を得る様に構成し之露出制
御回路が!FA案されている。(b) Conventional technology Exposure braking in television cameras usually uses an iris control circuit to control the aperture mechanism inside the lens barrel, which increases costs.
Issued on the day! Revision Society Journal @ Volume 33 #! , No. 7 No. 5
On pages 36 to 541, in order to switch the photoelectric conversion speed during the light reception period into two stages, the storage electrode is set to the first electric potential, which is lower than the conventional 'g1 charge transfer transmission voltage, and the second electric potential, which is lower than the first electric message.
The exposure control circuit is configured to obtain a constant imaging output level A/ by selectively applying +1 (+t) and changing the switching timing of both potentials according to the imaging output level. ing.
以下、上述する従来技術の具体的溝底に付いて非年攬説
明する。まず、第2図はフレームトランスファ型COD
固体撮象素子の妨作説用図であり、素子は受光エリア+
BとJf槓エリア(2)と水平続出レジスタ(3)とプ
リアンプ(4)とより成り、両エリアにはそれぞれ4相
の垂直敞送りロック(ダl)〜(−4ンと(−sl)〜
(グs4)とが印加され、水平レジスタ(4)には2相
の水平状1朱クロック(〆Hl )(aH2)(3,5
8MH2)が印加される。Hereinafter, the specific groove bottom of the above-mentioned prior art will be explained in detail. First, Figure 2 shows a frame transfer type COD
This is a diagram for explaining the disturbance of a solid-state imaging device, and the device has a light receiving area +
It consists of a B and Jf control area (2), a horizontal successive register (3), and a preamplifier (4), and both areas each have 4-phase vertical feed locks (DAL) to (-4 and (-SL)). ~
(g s4) is applied to the horizontal register (4), and the two-phase horizontal 1 red clock (〆Hl) (aH2) (3, 5
8MH2) is applied.
受光エリア(1)に印加される垂直伝送りロックは、第
1・第2電極に第1相と第2相の垂直伝送りロック(ダ
1)(ダ2)がまたfJ3・第4電極に第3相と第4相
の垂直伝送りロック(g68)(ダ4)がそれぞれ印加
される。ま九受光エリアに於て第1−第3i!!極下は
n−チャンネルが、−!九第2・第4電極下にはn十チ
ャンネルがそれぞれ形成されており、光蓄積期間中(受
光期間中)K第1・第2*極がハイレベ/l’になると
、受光エリアのポテンシャル状態は第3図に図示する様
な状態となり、第2電極下に光電変換された電荷が蓄積
されることになる。The vertical transmission lock applied to the light receiving area (1) is the vertical transmission lock (Da 1) (Da 2) of the first and second phases applied to the first and second electrodes, and the vertical transmission lock (Da 1) (Da 2) applied to the fJ3 and fourth electrodes. Vertical transmission locks (g68) (da4) of the third and fourth phases are applied, respectively. 1st to 3rd i in the maku light receiving area! ! At the very bottom is the n-channel, -! N10 channels are formed under the 9th and 4th electrodes, and when the K1 and 2* poles reach a high level/l' during the light accumulation period (during the light reception period), the potential state of the light reception area changes. The state is as shown in FIG. 3, and the photoelectrically converted charges are accumulated under the second electrode.
第4図は、各垂直伝送りロックの出力波形を示す。図よ
り明らかな様に、前述する従来技術では、光JI積期間
に於て、第1相と第2相の垂直転送りロック(ダ1)(
ダ2)がハイレペ〃となって電荷の蓄積が為されるとき
、転送電位である第1電位CVo)より低い第2電位(
Vk)を設定し、両電位の切換タイミングを変化させる
ことにより撮像素子の最適露出状態全実現している。即
ち、光蓄積J91間(0に於ける第2電位印加期間tk
が長くなると蓄積電荷は制限され、逆に短かくなると増
加傾向となる。この様に蓄8!j量金コントローμされ
た蓄積電荷は、垂直ブランキング期間内の電荷伝送期間
に蓄積エリア+21 K回けて伝送される。FIG. 4 shows the output waveforms of each vertical transmission lock. As is clear from the figure, in the prior art described above, the first phase and second phase vertical transfer lock (DA1) (
When data 2) becomes a high repeat and charges are accumulated, the second potential (CVo) is lower than the first potential (CVo) which is the transfer potential.
By setting Vk) and changing the switching timing of both potentials, the optimum exposure state of the image sensor is fully realized. That is, during the optical accumulation J91 (the second potential application period tk at 0
As the time becomes longer, the accumulated charge is limited, and on the other hand, as the time becomes shorter, it tends to increase. Accumulate 8 like this! The stored charges controlled by the quantity j are transmitted over the storage area +21K times during the charge transmission period within the vertical blanking period.
この順方向転送期間に於て、デユーティサイタルを50
%とする垂直転送りロックは、第1相(11)、第2相
(ダ2)、第3相(ダ8)、第4相(ダ4)と順に発せ
られ、蓄積電荷を順方向に伝送し、全ての蓄積電前金蓄
積エリア(2)に転送する。During this forward transfer period, the duty cycle is set to 50
% vertical transfer lock is issued in the order of 1st phase (11), 2nd phase (da 2), 3rd phase (da 8), and 4th phase (da 4), and the accumulated charge is transferred in the forward direction. and transfer it to all accumulated charge advance payment accumulation areas (2).
転送された蓄積電荷は垂直転送りロック(ダsl)〜(
〆54)Kよって1水平向期周期に1ラインの割合で水
平ブランキング期間尺水平レジスタ(3)に転送される
。水平レジスタ(3)に伝送されたS積電荷は水平転送
りロック(ltl)(OH2)に同期して映像信号期間
に導出され、プリアンプ(4)全弁して撮像出力として
導出される。The transferred accumulated charges are vertical transfer lock (dasl)~(
54) According to K, the horizontal blanking period length is transferred to the horizontal register (3) at a rate of one line per horizontal period. The S product charge transmitted to the horizontal register (3) is derived during the video signal period in synchronization with the horizontal transfer lock (LTL) (OH2), and is derived as an imaging output after the preamplifier (4) is fully operated.
(ハ)発明が解決しようとする問題点
しかし、上述する従来例の場合、蓄積電位として電R転
送電位とは別の電位ども設定するために別の電源を必要
としかた拵、コアドアツブを免れ得ない。(c) Problems to be Solved by the Invention However, in the case of the above-mentioned conventional example, a separate power source is required to set a potential different from the R transfer potential as the storage potential. do not have.
(ニ)問題点を解決する之めの手段
そこで、本発明は、フレームトランスファ型のCCD固
体撮像素子に於て、水平ブランキング期間に前記受光エ
リアの蓄積電荷を前記蓄積エリアとは反対方向に伝送す
る逆転送手段と、前記CCD固体撮像素子の出力レベル
に応じて前記逆転送手段の駆動タイミングを制御する伝
送制御手段とを、それぞれ配して成る。(d) Means for Solving the Problems Therefore, the present invention provides a frame transfer type CCD solid-state image sensor in which charges accumulated in the light-receiving area are directed in the opposite direction to the accumulation area during the horizontal blanking period. A reverse transfer means for transmitting data and a transmission control means for controlling drive timing of the reverse transfer means according to the output level of the CCD solid-state image sensor are respectively arranged.
(力作用
よって、本発明によれば受光状態にある受光エリア例於
て、水平ブランキング期間にg&ta荷が逆方向転送さ
れる様構成されており、この逆転送タイミングを変化さ
せることてより最適の露光状態が得られる。(Due to the force action, according to the present invention, the G&TA load is transferred in the reverse direction during the horizontal blanking period in the light-receiving area in the light-receiving state, and by changing this reverse transfer timing, it becomes more optimal. The following exposure conditions can be obtained.
(へ)実施例 以下、大発明を図示せる一実施例に従い説明する。(f) Example Hereinafter, an explanation will be given according to an embodiment that illustrates the great invention.
本実施例は、固定の発疾回路(5)を入力する水平ブラ
ンキングパルス発生回路(6)と垂直ブランキングパル
ス発生回路i71と第1−第2転送りロック発生口@(
81++o+逆伝送りロック発生回路(9)と水平転送
りロック発生回路(川と上記している。前記第1転送り
ロック発生回路(8)は垂直ブランキングパルス1伝送
りロックを導出する。前記第2伝送りロック発生回路+
]01は、垂直ブランキング期間に第1垂直転送りロッ
クと同様受光エリア(2)に蓄積電#を転送するクロッ
クと、垂直走査期間に受光エリア(2)内の蓄積電荷を
全体に1ラインづつ垂直方向にシフトし水平ブランキン
グ期間内に水平レジスタ(31K i!!荷を転送する
タロツクとより成る第2転送りロックを導出する。水平
転送りロック発生回路(川は、水平ブランキング期間に
水平レジスタ(3)に転送された蓄積電荷を次の水平走
査期間に導出せしめる3、58MHzで2相の水平伝送
りロックを導出する。逆転送りロック発生回路(9)は
水平ブランキング期間に3.58MHzで4相の逆転送
りロックを導出する。尚、この逆転送りロックは、垂直
ブランキング期間内に発せられる垂直転送タロツクとけ
逆相であり受光エリア(])の電極に印加されたとき、
蓄積電荷を逆方向に伝送し図示省略したオーバーフロー
ドレインに流し出している。ま念、この逆転送りロック
は、撮像出力に対するノイズの発生全阻止するため水平
ブランキング期間にのみ導出される関係上、1回の転送
ライン故が38ラインにル1ノ限される。そこで、本実
施例では7水平開期期間に渡って逆転送を7回持続する
ことにより、全ての受光エリア(250ライン分)の蓄
積電荷を消去している。This embodiment consists of a horizontal blanking pulse generation circuit (6) inputting a fixed generation circuit (5), a vertical blanking pulse generation circuit i71, and a first-second transfer lock generation port @(
81++o+ reverse transmission lock generation circuit (9) and horizontal transfer lock generation circuit (referred to above as river). The first transfer lock generation circuit (8) derives the vertical blanking pulse 1 transmission lock. 2nd transmission lock generation circuit +
]01 is a clock that transfers the accumulated charge # to the light receiving area (2) in the same way as the first vertical transfer lock during the vertical blanking period, and a clock that transfers the accumulated charge # in the light receiving area (2) to the entire one line during the vertical scanning period. A second transfer lock consisting of a horizontal register (31Ki!) is shifted in the vertical direction and transferred within the horizontal blanking period. A two-phase horizontal transmission lock is derived at 3.58 MHz, which causes the accumulated charge transferred to the horizontal register (3) to be derived in the next horizontal scanning period.The reverse feed lock generation circuit (9) is activated in the horizontal blanking period. A four-phase reverse feed lock is derived at 3.58 MHz.This reverse feed lock is the reverse phase of the vertical transfer tarlock issued during the vertical blanking period, and when applied to the electrode in the light receiving area (]). ,
The accumulated charges are transmitted in the opposite direction and flowed out to an overflow drain (not shown). Please note that this reverse feed lock is derived only during the horizontal blanking period in order to completely prevent noise from occurring in the image pickup output, and therefore, one transfer line is limited to 38 lines. Therefore, in this embodiment, the accumulated charges in all the light receiving areas (250 lines) are erased by continuing the reverse transfer seven times over seven horizontal opening periods.
導出された撮像出力は、映像処理回路(+2+於て処理
され映像信号として導出される。この映像信号れ
け、一部積分回路02)に於て積分さる。積分出力は、
^
撮像出力レベルと対応関係にあり、積分出力レベルを所
定値に固定することが露出状方を一定にすることになる
。積分出力は次段のサンプリング回グ
路141に於て垂直同期周期でサンプリンされる。すン
プリング出力は、ローパスフィルタu5)t−1f−し
てAD変換回路州に入力され、f幼の少ない積分出力レ
ベルがADf換される。このAD変換データを入力する
逆転送パルス発生回路(17)は垂直ブランキングパル
スの終端t−起点として7水平向期周期分のパルス幅を
呈する逆転送パルス乞導出する。The derived imaging output is processed in a video processing circuit (+2+ and derived as a video signal. This video signal deviation is partially integrated in an integration circuit 02). The integral output is
^ There is a correspondence relationship with the imaging output level, and fixing the integral output level to a predetermined value makes the exposure shape constant. The integrated output is sampled in the next stage sampling circuit 141 at vertical synchronization cycles. The sampling output is passed through a low-pass filter u5)t-1f- and inputted into an AD converter circuit, and the integrated output level with a small f value is converted into an AD converter. The reverse transfer pulse generation circuit (17) inputting this AD conversion data generates a reverse transfer pulse having a pulse width of 7 horizontal periods from the end t-starting point of the vertical blanking pulse.
尚、この逆転送パルス発生タイミングij、AD変換デ
ータが大なるとき発生タイミングが遅れ、小なるとき早
くなる。切換パルス発生回路0樽ハ、逆転送パルスと水
平ブランキングパルスの論理積出力(7個)切換パルス
としてタロツク選択回路0匂に入力している。このクロ
ック烟択回路U9)H切換パルス発生の度に逆転送りロ
ックを選択導出することになり、受光エリア(1)中の
蓄4!L電荷は光蓄積期間中の逆転送パルス発生タイミ
ングに於て、水平ブランキング期間毎に約38う・fン
づつ逆転送され、7水平開期で全ての蓄N!電荷が受光
エリア外に排出される。その結果、受光エリアmより蓄
10エリア(2)に転送される蓄積電荷は、逆転法以後
171m1W項された電荷となり逆転パルスの発生タイ
ミングが露光量全制御する。Note that the reverse transfer pulse generation timing ij is delayed when the AD conversion data is large, and becomes early when it is small. The switching pulse generation circuit 0 is inputting the AND output (7 pieces) of the reverse transfer pulse and the horizontal blanking pulse to the tarok selection circuit 0 as a switching pulse. This clock selection circuit U9) selectively derives the reverse feed lock every time the H switching pulse is generated, so that the accumulated 4! At the timing of the reverse transfer pulse generation during the optical accumulation period, the L charge is reversely transferred by about 38 u·f every horizontal blanking period, and all the accumulated N! Charge is discharged outside the light receiving area. As a result, the accumulated charge transferred from the light-receiving area m to the storage area (2) becomes a charge 171 m1W after the reversal method, and the timing of generation of the reversal pulse completely controls the exposure amount.
第5図は、itI記クロりク選択回路θ9)より受光エ
リア(1)の電極に印加される第1垂直妖送りロック(
g61 )〜(〆4)の波形説明図である。図より明ら
かな様に、光蓄積期間をて於て第1相及び第2相の垂直
伝送りロック(Ox)(cd2)はハイレベル状界にあ
り、当該電極下に光電変換によって発生する電荷を蓄え
る。また第1垂直伝送りロックは、垂直ブランキング期
間に蓄積電荷を蓄積エリアに転送しており、図中のタイ
ミング(tl)に伝送しており、図中のタイミング(t
l)〜(t4)に於て、受光エリア(11及び蓄積エリ
ア(2)の電極下のポテンシャ/Vは第6図の様に変化
する。FIG. 5 shows the first vertical shift lock (
It is a waveform explanatory diagram of g61) to (〆4). As is clear from the figure, during the photoaccumulation period, the vertical transmission lock (Ox) (cd2) of the first and second phases is at a high level state, and the charge generated by photoelectric conversion under the electrode. Save up. In addition, the first vertical transmission lock transfers the accumulated charge to the accumulation area during the vertical blanking period, and transmits it at the timing (tl) in the figure.
1) to (t4), the potential /V under the electrodes of the light receiving area (11) and the storage area (2) changes as shown in FIG.
従って、垂直ブランキング期間に於て、蓄積電荷は時間
の経過と共て順方向(蓄積エリア方向)にシフトされる
。一方第5図より明らかな様に、発生タイミングをコン
トロールされて導出される逆転送パルスに対応して発生
する3、58MHzの逆転送りロックは、逆転送パルス
発生期間に対応してクロック選択回路α9)より導出さ
れる。この逆転送タロツクは、第7図に図示する様に水
平グランキング期間に於てのみ発生し、第8図に拡大し
て図示する様なりロック波形全車する。この第8図に於
けるタイミング(tl)〜(t4)に於て、該当′@電
極下ボテンンヤy状態は第9図に図示する様に変化する
。従って、蓄積電荷は逆転送時に時間の経過と共に逆方
向に伝送されオーバーフロードレインに排出されること
江なる。Therefore, during the vertical blanking period, the accumulated charges are shifted in the forward direction (towards the accumulation area) as time passes. On the other hand, as is clear from FIG. 5, the 3.58 MHz reverse feed lock that occurs in response to the reverse transfer pulse that is derived by controlling the generation timing is caused by the clock selection circuit α9 corresponding to the reverse transfer pulse generation period. ) is derived from This reverse transfer tarlock occurs only during the horizontal granking period, as shown in FIG. 7, and the lock waveform is fully formed as shown in an enlarged view in FIG. 8. At timings (tl) to (t4) in FIG. 8, the corresponding '@electrode bottom y state changes as shown in FIG. 9. Therefore, during reverse transfer, the accumulated charges are transferred in the reverse direction over time and are discharged to the overflow drain.
尚第2伝送りロック発生回路(lO)より導出されるg
S2垂直転送りロックCIzls l ) 〜(es4
)H1第7図に図示する様に水平ブランキング期間に
1個づつ発生し、水平レジスタ(3)に一ラインづつの
蓄積電荷を転送している。Furthermore, g derived from the second transmission lock generation circuit (lO)
S2 vertical transfer lock CIzlsl ) ~(es4
)H1 As shown in FIG. 7, one charge is generated during the horizontal blanking period, and the accumulated charges are transferred to the horizontal register (3) one line at a time.
(ト)発明の効果
よって、本発明によれば、映像信号の田カレベルに応じ
て逆転送タイミングが変化することになり、而も逆転送
が水平転送が為されていない水平ブランキング期間に於
てのみ為されるため、逆転送に伴って発生するノイズが
vtl像出力に混入することもなく、その効果は大であ
る。(g) According to the present invention, the reverse transfer timing changes according to the level of the video signal, and the reverse transfer is performed during the horizontal blanking period when horizontal transfer is not performed. Since only the above transfer is performed, the noise generated due to reverse transfer is not mixed into the VTL image output, and the effect is great.
4. 図uTi (7J ia qlな脱用第1図は本
発明の一実施例を示す回路ブロック図、第2図はフレー
ムトランスファ型CCD固体撮像素子の@作説E3A図
、第3図は光蓄積期間に於ける受光エリアのポテンシャ
ル状態説明図、第4図は従来の第1垂直転送りロック波
形説明図、第5図は本発明の第1垂直転送りロック波形
説明図、第6図は垂直ブランキング期間に於けるポテン
シャル変化説明図、第7図は逆転送りロックとwJ2垂
直転送りロックの波形説明図、第8図は逆転送りロック
波形説明図、第9図は逆転遂時のポテンシャ/I/変化
説明図、をそれぞれ顕わす。4. Figure uTi (7J ia ql) Figure 1 is a circuit block diagram showing one embodiment of the present invention, Figure 2 is a diagram of a frame transfer type CCD solid-state image sensor @work E3A, and Figure 3 is a light accumulation period. 4 is an explanatory diagram of the conventional first vertical transfer lock waveform, FIG. 5 is an explanatory diagram of the first vertical transfer lock waveform of the present invention, and FIG. 6 is an explanatory diagram of the first vertical transfer lock waveform of the present invention. An explanatory diagram of potential changes during the ranking period, Fig. 7 is an explanatory diagram of the waveforms of the reverse feed lock and wJ2 vertical transfer lock, Fig. 8 is an explanatory diagram of the reverse feed lock waveforms, and Fig. 9 is the potential/I when the reverse rotation is completed. /Change explanatory diagram, respectively.
(1)・・・受光エリア、(2)・・・蓄積エリア、(
3)・・・水平レジスタ。(1)...Light receiving area, (2)...Storage area, (
3)...Horizontal register.
Claims (1)
蓄積エリアに転送し、該蓄積エリアの電荷を同期信号に
同期して導出するフレームトランスファ型のCCD固体
撮像素子に於て、 水平ブランキング期間に前記受光エリアの蓄積電荷を前
記蓄積エリアとは反対方向に伝送する逆伝送手段と、 前記CCD固体撮像素子の出力レベルに応じて前記逆転
送手段の駆動タイミングを制御する転送制御手段とを、 それぞれ配して成る露出制御回路。(1) In a frame transfer type CCD solid-state image sensor, which transfers the accumulated charge in the light receiving area to the accumulation area during the vertical blanking period and derives the charge in the accumulation area in synchronization with a synchronization signal, the horizontal blanking period a reverse transmission means for transmitting the accumulated charge in the light receiving area in a direction opposite to the accumulation area; and a transfer control means for controlling the drive timing of the reverse transfer means according to the output level of the CCD solid-state image sensor. Exposure control circuit consisting of each.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168438A JPS6324764A (en) | 1986-07-17 | 1986-07-17 | Exposure control circuit for ccd solid-state image pick-up element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168438A JPS6324764A (en) | 1986-07-17 | 1986-07-17 | Exposure control circuit for ccd solid-state image pick-up element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6324764A true JPS6324764A (en) | 1988-02-02 |
Family
ID=15868120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61168438A Pending JPS6324764A (en) | 1986-07-17 | 1986-07-17 | Exposure control circuit for ccd solid-state image pick-up element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6324764A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01212084A (en) * | 1988-02-18 | 1989-08-25 | Sanyo Electric Co Ltd | Solid-state image pickup device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6046175A (en) * | 1983-05-24 | 1985-03-12 | ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ−. | Ccd frame transfer image sensor |
-
1986
- 1986-07-17 JP JP61168438A patent/JPS6324764A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6046175A (en) * | 1983-05-24 | 1985-03-12 | ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ−. | Ccd frame transfer image sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01212084A (en) * | 1988-02-18 | 1989-08-25 | Sanyo Electric Co Ltd | Solid-state image pickup device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4686572A (en) | Driving device for interline-transfer CCD for use in electronic still camera | |
KR100247936B1 (en) | Readout method and device therefor in video camera system | |
JPS6324764A (en) | Exposure control circuit for ccd solid-state image pick-up element | |
JPS6387874A (en) | solid-state imaging device | |
JPH01231485A (en) | Solid-state image pickup device | |
US6476941B1 (en) | Solid-state image sensing device and operation method thereof | |
US8300132B2 (en) | Driving method of solid-state imaging device, solid-state imaging system, and camera system | |
JPH11191863A (en) | Solid-state image pickup device, drive method for the solid-state image pickup device, solid-state image pickup element and drive method for the solid-state image pickup element | |
CN107018341B (en) | A TDI CCD image sensor and driving method | |
JPH01170281A (en) | solid state electronic imaging device | |
JP4700855B2 (en) | Imaging device | |
JPH03101384A (en) | Exposure control circuit for ccd solid-state image pickup element | |
JP3200516B2 (en) | Solid-state imaging device | |
JP2515747B2 (en) | Imaging device | |
JP2004328314A (en) | Method of driving solid-state imaging device, driving device therefor, solid-state imaging apparatus, and imaging apparatus module | |
JP4618335B2 (en) | Charge transfer device, solid-state imaging device, camera, and driving method of solid-state imaging device | |
JP2544341B2 (en) | Driving method for solid-state imaging device | |
JP2003069904A (en) | Ccd output circuit and ccd output method | |
JPH10200819A (en) | Solid-state image pickup device, and its driving method and camera | |
JPH08321915A (en) | Solid-state image pickup device and its drive method | |
JP5614476B2 (en) | Solid-state imaging device driving method, solid-state imaging device, and camera system | |
JP3540753B2 (en) | Imaging device | |
JP2618962B2 (en) | Solid-state imaging device camera | |
JP3540752B2 (en) | Imaging device | |
JPH03283778A (en) | Solid-state image pickup element and its drive system |