JPS6324617B2 - - Google Patents
Info
- Publication number
- JPS6324617B2 JPS6324617B2 JP58050048A JP5004883A JPS6324617B2 JP S6324617 B2 JPS6324617 B2 JP S6324617B2 JP 58050048 A JP58050048 A JP 58050048A JP 5004883 A JP5004883 A JP 5004883A JP S6324617 B2 JPS6324617 B2 JP S6324617B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- polypropylene resin
- particles
- peak
- dsc curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 55
- 229920005989 resin Polymers 0.000 claims description 41
- 239000011347 resin Substances 0.000 claims description 41
- 238000001938 differential scanning calorimetry curve Methods 0.000 claims description 35
- -1 Polypropylene Polymers 0.000 claims description 34
- 239000004743 Polypropylene Substances 0.000 claims description 33
- 229920001155 polypropylene Polymers 0.000 claims description 33
- 239000006260 foam Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000005187 foaming Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 5
- 239000004604 Blowing Agent Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920003020 cross-linked polyethylene Polymers 0.000 description 3
- 239000004703 cross-linked polyethylene Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 2
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920006327 polystyrene foam Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は型内成型性が良好なポリプロピレン系
樹脂発泡粒子に関する。
予備発泡粒子を型内に充填し加熱し発泡させて
得られる、いわゆるビーズ発泡成型体(型内成型
体)は緩衝性、断熱性等に優れ、緩衝材、包装
材、断熱材、建築資材等広範囲に利用され、その
需要は近年富みに増大している。
この種成型体として従来、ポリスチレン発泡粒
子からなる成型体が知られていたが、ポリスチレ
ン発泡型内成型体は、脆いという致命的な欠点が
ある上、耐薬品性にも劣るという欠点を有し、早
くからその改善が望まれていた。かかる欠点を解
決するものとして架橋ポリエチレン発泡粒子から
なる成型体が提案された。しかしながら架橋ポリ
エチレン発泡粒子の場合は、型内成型によつて低
密度(高発泡)の成型体を得ることが困難であ
り、強いて低密度の成型体を得ようとすると、収
縮が著しく、しかも吸水性が大きい、物性の劣つ
た成型体しか得られず、実用に供し得る成型体は
到底得ることができなかつた。
そこで本発明者らはポリプロピレン系樹脂の有
する優れた物性に着目し、従来の型内成型体の有
する欠点を解決すべくポリプロピレン系樹脂発泡
粒子よりなる型内成型体の研究を行なつて来た。
しかしながらポリプロピレン系樹脂発泡粒子型内
成型体は、低密度(高発泡)で吸水率が小さく、
しかも収縮率の小さい寸法安定性に優れた成型体
が得られる場合もある反面、収縮率の大きい成型
体しか得られない場合もあり、必ずしも安定して
良好な成型体が得難いという問題点を有してい
た。本発明者らはこの原因を究明すべく更に鋭意
研究した結果、型内成型に用いるポリプロピレン
系樹脂発泡粒子(予備発泡粒子)の示差走査熱量
測定によつて得られるDSC曲線にポリプロピレ
ン系樹脂固有の固有ピークと該固有ピークより高
温側の高温ピークとが現われる結晶構造を有する
ポリプロピレン系樹脂発泡粒子を用いた場合に良
好な型内成型体が得られることを見い出し本発明
を完成するに至つた。
即ち本発明は、密閉容器内にポリプロピレン系
樹脂粒子と揮発性発泡剤を配合し、融解終了温度
Tm(融解終了温度Tmは6〜8mgのサンプルを10
℃/分の昇温速度で220℃まで昇温し次いで10
℃/分の降温速度で40℃付近まで降温した後、再
度10℃/分の昇温速度で220℃まで昇温し、第2
回目の昇温によつて得られたDSC曲線の吸熱ピ
ークの裾が高温側でベースラインの位置に戻つた
時の温度をいう。)以上に昇温することなく発泡
温度まで昇温した後、容器の一端を解放して樹脂
粒子と水とを容器内より低圧の雰囲気下に放出
し、樹脂粒子を発泡せしめて得られるポリプロピ
レン系樹脂発泡粒子であつて、ポリプロピレン系
樹脂発泡粒子の示差走査熱量測定によつて得られ
るDSC曲線(ただしポリプロピレン系樹脂発泡
粒子1〜3mgを示差走査熱量計によつて10℃/分
の昇温速度で220℃まで昇温した時に得られる
DSC曲線)に該ポリプロピレン系樹脂固有の固
有ピークと、該固有ピークの温度より高温側の高
温ピークとが表れる結晶構造を有することを特徴
とするポリプロピレン系樹脂発泡粒子を要旨とす
る。
本発明においてポリプロピレン系樹脂として
は、プロピレン単独重合体、エチレン−プロピレ
ンブロツク共重合体、エチレン−プロピレンラン
ダム共重合体等が用いられるが、特にエチレン−
プロピレンランダム共重合体が好ましい。
本発明において、ポリプロピレン系樹脂発泡粒
子の示差走査熱量測定によつて得られるDSC曲
線とは、ポリプロピレン系樹脂発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で
220℃まで昇温したときに得られるDSC曲線であ
り、例えば、試料を室温から220℃まで10℃/分
の昇温速度で昇温した時に得られるDSC曲線を
第1回目のDSC曲線とし、次いで220℃から10
℃/分の降温速度で40℃付近まで降温し、再度10
℃/分の昇温速度で220℃まで昇温した時に得ら
れるDSC曲線を第2回目のDSC曲線とし、これ
らのDSC曲線から固有ピーク、高温ピークを求
めることができる。
即ち本発明における固有ピークとは、発泡粒子
を構成するポリプロピレン系樹脂固有の吸熱ピー
クであり、該ポリプロピレン系樹脂の、いわゆる
融解時の吸熱によるものであると考えられる。該
固有ピークは第1回目のDSC曲線にも第2回目
のDSC曲線にも現われ、ピークの頂点の温度は
第1回目と第2回目で多少異なる場合があるが、
その差は5℃未満通常は2℃未満である。
一方、本発明における高温ピークとは、第1回
目のDSC曲線で上記固有ピークより高温側に現
われる吸熱ピークであり、DSC曲線にこの高温
ピークが現われないポリプロピレン系樹脂発泡粒
子は型内成型性が悪く、良好な成型体を得ること
はできない。上記高温ピークは、上記固有ピーク
として現われる構造とは異なる結晶構造の存在に
よるものではないかと考えられ、該高温ピークは
第1回目のDSC曲線には現われるが、同一条件
で昇温を行なつた第2回目のDSC曲線には現わ
れない。従つて高温ピークとして現われる構造は
本発明のポリプロピレン系樹脂発泡粒子自体が有
していたものである。
前記第2回目のDSC曲線に現われる固有ピー
クの温度と第1回目のDSC曲線に現われる高温
ピークの温度との差は大きいことが望ましく、第
2回目のDSC曲線の固有ピークの頂点の温度と
高温ピークの頂点の温度との差は5℃以上、好ま
しくは10℃以上である。
本発明のポリプロピレン系樹脂発泡粒子は、密
閉容器内にポリプロピレン系樹脂粒子と、該樹脂
粒子100重量部に対して水100〜400重量部、揮発
性発泡剤(例えばジクロロジフロロメタン)5〜
30重量部、分散剤(例えば微粒状酸化アルミニウ
ム)0.1〜3重量部を配合し、融解終了温度Tm以
上に昇温することなく、Tm−25℃〜Tm−5℃
(Tmはポリプロピレン系樹脂の融解終了温度で、
本発明においては、試料6〜8mgを示差走査熱量
計にて10℃/分の昇温速度で220℃まで昇温し、
次いで10℃/分の降温速度で40℃付近まで降温し
た後、再度10℃/分の昇温速度で220℃まで昇温
し、第2回目の昇温によつて得られたDSC曲線
の吸熱ピークの裾が高温測でベースラインの位置
に戻つた時の温度を融解終了温度とした。)まで
昇温した後、容器の一端を開放して、上記樹脂粒
子と水とを容器内より低圧の雰囲気下に放出し、
樹脂粒子を発泡せしめて得ることができる。
上述の如く、発泡に際して発泡温度を融解終了
温度Tm以上に昇温することなく上記した一定の
温度範囲に規定することにより、DSC曲線に固
有ピークと高温ピークの現われる構造を有する、
本発明の発泡粒子を得ることができる。一旦融解
終了温度Tm以上に昇温した場合は、得られた発
泡粒子のDSC曲線には固有ピークのみが現れ高
温ピークは現れず、又成型性が良好で収縮が少な
い成型体を与える発泡粒子を得ることができな
い。
以下、実施例、比較例を挙げて本発明を更に詳
細に説明する。
実施例1〜3および比較例1〜3
密閉容器に水300重量部、エチレン−プロピレ
ンランダム共重合体粒子(Tm=153℃)100重量
部、極微粒状酸化アルミニウム(分散剤)0.3重
量部及び第1表に示す揮発性発泡剤を配合し、撹
拌下加熱した。第1表に示す発泡温度にて30分間
保持した後、容器内の圧力を、窒素ガスにより30
Kg/cm2(G)に保持しながら容器の一端を開放し、樹
脂粒子と水とを同時に大気下へ放出し、樹脂粒子
を発泡せしめて発泡粒子を得た。得られた発泡粒
子の見掛(嵩)発泡倍率を第1表に示す。次に得
られた各発泡粒子を示差走査熱量計(島津製作所
製DT−30型)によつて10℃/分の昇温速度で
220℃まで昇温して第1回目の測定を行なつた後
10℃/分の降温速度で40℃まで降温し、再度10
℃/分の昇温速度で220℃まで昇温して第2回目
の測定を行なつた。実施例1〜3の発泡粒子の
DSC曲線のうち実施例1の発泡粒子のDSC曲線
を第1図に示す。また、比較例については比較例
3の発泡粒子のDSC曲線を第2図に示す。第1
図及び第2図において実線は第1回目の測定で得
られたDSC曲線を示し、点線は第2回目の測定
で得られたDSC曲線を示す。実施例1〜3の発
泡粒子について得られたDSC曲線から第2回目
のDSC曲線に現われる固有ピークaの頂点の温
度と第1回目のDSC曲線に現われる高温ピーク
bの頂点の温度との差(△T)を求め、第1表に
併せて示した。次に実施例1〜3及び比較例1〜
3の各発泡粒子を2Kg/cm2(G)の空気で24時間加圧
処理しその後50mm×300mm×300mmの内寸法を有す
る成型用金型に充填し、3.2Kg/cm2(G)の蒸気で加
熱し、発泡成型を行なつた。得られた各成型体を
80℃のオーブン内で24時間乾燥し常温まで徐冷し
た後の発泡成型体の発泡倍率、収縮率及び吸水率
を測定し吸水率の大小より融着性の良否を判定し
た。結果を第1表に示す。
The present invention relates to foamed polypropylene resin particles having good in-mold moldability. The so-called bead foam molded product (in-mold molded product), which is obtained by filling pre-expanded particles into a mold and heating and foaming them, has excellent cushioning properties, heat insulation properties, etc., and can be used as cushioning materials, packaging materials, heat insulation materials, construction materials, etc. It is widely used and the demand for it has increased tremendously in recent years. Conventionally, molded bodies made of polystyrene foam particles have been known as this type of molded body, but polystyrene foam molded bodies have the fatal disadvantage of being brittle and have the disadvantage of being inferior in chemical resistance. , improvements have been desired for a long time. A molded body made of crosslinked polyethylene foam particles has been proposed as a solution to these drawbacks. However, in the case of cross-linked polyethylene foam particles, it is difficult to obtain a molded product with low density (high foaming) by in-mold molding. Only molded bodies with high physical properties and poor physical properties were obtained, and it was impossible to obtain any molded bodies that could be put to practical use. Therefore, the present inventors have focused on the excellent physical properties of polypropylene resin, and have conducted research on in-mold molded bodies made of expanded polypropylene resin particles in order to solve the drawbacks of conventional in-mold molded bodies. .
However, polypropylene resin foam particles molded in a mold have a low density (high foaming) and a low water absorption rate.
Moreover, while there are cases in which a molded product with a small shrinkage rate and excellent dimensional stability can be obtained, there are also cases in which only a molded product with a large shrinkage rate can be obtained, which poses the problem that it is not always possible to obtain a stable and good molded product. Was. As a result of further intensive research to find out the cause of this, the present inventors found that the DSC curve obtained by differential scanning calorimetry of polypropylene resin foam particles (pre-expanded particles) used for in-mold molding has a unique characteristic of polypropylene resin. The present inventors have discovered that a good in-mold molded product can be obtained when foamed polypropylene resin particles having a crystal structure in which a characteristic peak and a high temperature peak higher than the characteristic peak appear, have led to the completion of the present invention. That is, in the present invention, polypropylene resin particles and a volatile foaming agent are blended in a closed container, and the melting end temperature is
Tm (melting end temperature Tm
The temperature was increased to 220℃ at a heating rate of ℃/min, then 10
After lowering the temperature to around 40℃ at a cooling rate of ℃/min, the temperature was raised again to 220℃ at a heating rate of 10℃/min, and then
This is the temperature at which the tail of the endothermic peak of the DSC curve obtained by the second temperature increase returns to the baseline position on the high temperature side. ) After the temperature has been raised to the foaming temperature without increasing the temperature above 100%, one end of the container is opened to release the resin particles and water into a lower pressure atmosphere from inside the container, and the resin particles are foamed. A DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles (1 to 3 mg of foamed polypropylene resin particles was measured at a heating rate of 10°C/min using a differential scanning calorimeter). Obtained when the temperature is raised to 220℃
The object of the present invention is to provide foamed polypropylene resin particles characterized by having a crystal structure in which a characteristic peak specific to the polypropylene resin and a high temperature peak higher than the temperature of the characteristic peak appear in the DSC curve. In the present invention, as the polypropylene resin, propylene homopolymer, ethylene-propylene block copolymer, ethylene-propylene random copolymer, etc. are used, but in particular ethylene-propylene
Propylene random copolymers are preferred. In the present invention, the DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles is defined as 1 to 3 mg of foamed polypropylene resin particles.
using a differential scanning calorimeter at a heating rate of 10°C/min.
This is the DSC curve obtained when the temperature is raised to 220°C. For example, the DSC curve obtained when the sample is heated from room temperature to 220°C at a heating rate of 10°C/min is the first DSC curve, Then 10 from 220℃
The temperature was lowered to around 40°C at a cooling rate of 10°C/min, and then
The second DSC curve is the DSC curve obtained when the temperature is raised to 220°C at a heating rate of °C/min, and the characteristic peak and high temperature peak can be determined from these DSC curves. That is, the characteristic peak in the present invention is an endothermic peak unique to the polypropylene resin constituting the expanded particles, and is thought to be due to the so-called endotherm of the polypropylene resin during melting. The characteristic peak appears in both the first DSC curve and the second DSC curve, and the temperature at the top of the peak may be slightly different between the first and second times.
The difference is less than 5°C, usually less than 2°C. On the other hand, the high temperature peak in the present invention is an endothermic peak that appears on the higher temperature side than the above-mentioned characteristic peak in the first DSC curve, and foamed polypropylene resin particles that do not have this high temperature peak in the DSC curve have poor in-mold formability. This is bad, and a good molded product cannot be obtained. It is thought that the above-mentioned high-temperature peak is due to the presence of a crystal structure different from the structure that appears as the above-mentioned characteristic peak, and although the high-temperature peak appears in the first DSC curve, the temperature was raised under the same conditions. It does not appear in the second DSC curve. Therefore, the structure appearing as a high temperature peak was possessed by the expanded polypropylene resin particles of the present invention itself. It is desirable that the difference between the temperature of the characteristic peak appearing in the second DSC curve and the temperature of the high temperature peak appearing in the first DSC curve is large, and the temperature at the peak of the characteristic peak of the second DSC curve and the high temperature are preferably large. The difference from the peak temperature is 5°C or more, preferably 10°C or more. The expanded polypropylene resin particles of the present invention contain polypropylene resin particles in a closed container, 100 to 400 parts by weight of water per 100 parts by weight of the resin particles, and 5 to 5 parts by weight of a volatile blowing agent (for example, dichlorodifluoromethane).
30 parts by weight, and 0.1 to 3 parts by weight of a dispersant (for example, finely divided aluminum oxide), and the temperature is Tm-25℃ to Tm-5℃ without increasing the temperature above the melting end temperature Tm.
(Tm is the melting end temperature of polypropylene resin,
In the present invention, 6 to 8 mg of a sample is heated to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter.
Next, the temperature was lowered to around 40°C at a cooling rate of 10°C/min, and then the temperature was raised again to 220°C at a heating rate of 10°C/min. The temperature at which the tail of the peak returned to the baseline position in the high temperature measurement was defined as the melting end temperature. ), one end of the container is opened to release the resin particles and water into a lower pressure atmosphere than inside the container,
It can be obtained by foaming resin particles. As mentioned above, by setting the foaming temperature within the above-mentioned constant temperature range without increasing the temperature above the melting end temperature Tm during foaming, the product has a structure in which a specific peak and a high temperature peak appear in the DSC curve.
Expanded particles of the present invention can be obtained. Once the temperature is raised above the melting end temperature Tm, the DSC curve of the obtained foamed particles shows only a characteristic peak and no high temperature peak, and the foamed particles give a molded product with good moldability and less shrinkage. can't get it. Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 to 3 In a sealed container, 300 parts by weight of water, 100 parts by weight of ethylene-propylene random copolymer particles (Tm = 153°C), 0.3 parts by weight of ultrafine aluminum oxide (dispersant) and The volatile foaming agents shown in Table 1 were blended and heated while stirring. After maintaining the foaming temperature shown in Table 1 for 30 minutes, the pressure inside the container was reduced to 30 minutes using nitrogen gas.
While maintaining the pressure at Kg/cm 2 (G), one end of the container was opened, and the resin particles and water were simultaneously discharged into the atmosphere to foam the resin particles to obtain foamed particles. Table 1 shows the apparent (bulk) expansion ratio of the obtained expanded particles. Next, each of the foamed particles obtained was measured using a differential scanning calorimeter (Model DT-30 manufactured by Shimadzu Corporation) at a heating rate of 10°C/min.
After raising the temperature to 220℃ and performing the first measurement
The temperature was lowered to 40℃ at a cooling rate of 10℃/min, and then
A second measurement was carried out by raising the temperature to 220°C at a heating rate of °C/min. Expanded particles of Examples 1 to 3
Among the DSC curves, the DSC curve of the expanded particles of Example 1 is shown in FIG. Regarding Comparative Example, the DSC curve of expanded particles of Comparative Example 3 is shown in FIG. 1st
In the figures and FIG. 2, the solid line indicates the DSC curve obtained in the first measurement, and the dotted line indicates the DSC curve obtained in the second measurement. Difference ( ΔT) was determined and shown in Table 1. Next, Examples 1 to 3 and Comparative Examples 1 to
Each of the foamed particles in step 3 was pressurized with 2Kg/cm 2 (G) of air for 24 hours, and then filled into a mold with internal dimensions of 50 mm x 300 mm x 300 mm. It was heated with steam and foam molded. Each molded body obtained
After drying in an oven at 80°C for 24 hours and slowly cooling to room temperature, the expansion ratio, shrinkage rate, and water absorption rate of the foamed molded product were measured, and the quality of the fusion property was judged based on the magnitude of the water absorption rate. The results are shown in Table 1.
【表】【table】
【表】
以上説明したように本発明のポリプロピレン系
樹脂発泡粒子は、DSC曲線にポリプロピレン系
樹脂固有の固有ピークと、該固有ピークより高温
側の高温ピークとが現われる結晶構造を有するこ
とにより、高温ピークがDSC曲線に現われない
ポリプロピレン系樹脂発泡粒子を用いた型内成型
体のように成型体が大きく収縮することがなく、
発泡粒子を型内成型する際の型内成型性に優れ、
容易に低密度(高発泡)の成型体が得られるとと
もに、得られた成型体は収縮率、吸水率が小さ
い、優れた物性を有する。また、ポリプロピレン
系樹脂発泡粒子からなる型内成型体はポリスチレ
ン系樹脂発泡粒子からなる型内成型体のように脆
いという欠点はなく、耐衝撃性、耐薬品性に優れ
た成型体を提供でき、しかも架橋ポリエチレン発
泡粒子からなる型内成型体に比べ低密度(高発
泡)とした場合でも収縮率、吸水率の小さい優れ
た成型体を提供できる等の種々の効果を有する。[Table] As explained above, the expanded polypropylene resin particles of the present invention have a crystal structure in which a characteristic peak specific to the polypropylene resin and a high temperature peak on the high temperature side of the characteristic peak appear in the DSC curve, so that the foamed particles can be used at high temperatures. The molded product does not shrink significantly unlike in-mold molded products using expanded polypropylene resin particles that do not have peaks in the DSC curve.
Excellent in-mold moldability when molding expanded particles in a mold,
A low-density (highly foamed) molded product can be easily obtained, and the resulting molded product has excellent physical properties such as low shrinkage and water absorption. In addition, the in-mold molded body made of polypropylene resin foam particles does not have the disadvantage of being brittle like the in-mold molded body made of polystyrene resin foamed particles, and can provide a molded body with excellent impact resistance and chemical resistance. In addition, it has various effects such as being able to provide an excellent molded product with low shrinkage and water absorption even when the density is lower (highly foamed) than in-mold molded products made of crosslinked polyethylene foam particles.
図面は示差走査熱量測定によつて得られる
DSC曲線を示し、第1図は実施例1の発泡粒子
のDSC曲線、第2図は比較例3の発泡粒子の
DSC曲線である。
The drawing is obtained by differential scanning calorimetry
Figure 1 shows the DSC curve of the expanded particles of Example 1, and Figure 2 shows the DSC curve of the expanded particles of Comparative Example 3.
It is a DSC curve.
Claims (1)
発性発泡剤を配合し、融解終了温度Tm(融解終
了温度Tmは6〜8mgのサンプルを10℃/分の昇
温速度で220℃まで昇温し次いで10℃/分の降温
速度で40℃付近まで降温した後、再度10℃/分の
昇温速度で220℃まで昇温し、第2回目の昇温に
よつて得られたDSC曲線の吸熱ピークの裾が高
温側でベースラインの位置に戻つた時の温度をい
う。)以上に昇温することなく発泡温度まで昇温
した後、容器の一端を解放して樹脂粒子と水とを
容器内より低圧の雰囲気下に放出し、樹脂粒子を
発泡せしめて得られるポリプロピレン系樹脂発泡
粒子であつて、ポリプロピレン系樹脂発泡粒子の
示差走査熱量測定によつて得られるDSC曲線
(ただしポリプロピレン系樹脂発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で
220℃まで昇温した時に得られるDSC曲線)に該
ポリプロピレン系樹脂固有の固有ピークと、該固
有ピークの温度より高温側の高温ピークとが表れ
る結晶構造を有することを特徴とするポリプロピ
レン系樹脂発泡粒子。 2 固有ピークの頂点の温度と高温ピークの頂点
の温度との差が5℃以上である特許請求の範囲第
1項に記載のポリプロピレン系樹脂発泡粒子。[Claims] 1. Polypropylene resin particles and a volatile blowing agent are blended in a closed container, and the melting end temperature Tm (melting end temperature Tm is 220°C at a heating rate of 10°C/min for a sample of 6 to 8 mg). ℃, then lowered the temperature to around 40℃ at a cooling rate of 10℃/min, and then raised the temperature again to 220℃ at a heating rate of 10℃/min. This is the temperature at which the tail of the endothermic peak of the DSC curve returns to the baseline position on the high-temperature side. The polypropylene resin foam particles are obtained by discharging and water from inside a container into a low-pressure atmosphere and foaming the resin particles, and the DSC curve obtained by differential scanning calorimetry of the polypropylene resin foam particles ( However, polypropylene resin foam particles 1 to 3 mg
using a differential scanning calorimeter at a heating rate of 10°C/min.
Polypropylene resin foam characterized by having a crystal structure in which a characteristic peak specific to the polypropylene resin and a high temperature peak on the higher temperature side than the temperature of the characteristic peak appear in the DSC curve obtained when the temperature is raised to 220 ° C. particle. 2. The polypropylene resin foam particles according to claim 1, wherein the difference between the temperature at the apex of the characteristic peak and the temperature at the apex of the high temperature peak is 5° C. or more.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58050048A JPS59176336A (en) | 1983-03-25 | 1983-03-25 | Expanded polypropylene resin particles |
EP84103187A EP0123144B1 (en) | 1983-03-25 | 1984-03-22 | Polypropylene resin prefoamed particles |
DE8484103187T DE3466700D1 (en) | 1983-03-25 | 1984-03-22 | Polypropylene resin prefoamed particles |
KR1019840001539A KR840008174A (en) | 1983-03-25 | 1984-03-24 | Polypropylene Resin Prefoam Particle |
US07/082,560 US4840973A (en) | 1983-03-25 | 1987-08-07 | Polypropylene resin prefoamed particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58050048A JPS59176336A (en) | 1983-03-25 | 1983-03-25 | Expanded polypropylene resin particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59176336A JPS59176336A (en) | 1984-10-05 |
JPS6324617B2 true JPS6324617B2 (en) | 1988-05-21 |
Family
ID=12848104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58050048A Granted JPS59176336A (en) | 1983-03-25 | 1983-03-25 | Expanded polypropylene resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59176336A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8844407B2 (en) | 2009-09-17 | 2014-09-30 | Wagic, Inc. | Extendable multi-tool including interchangable light bulb changer and accessories |
US8869655B2 (en) | 2002-08-12 | 2014-10-28 | Wagic, Inc. | Customizable light bulb changer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4582871B2 (en) * | 2000-07-07 | 2010-11-17 | 旭化成ケミカルズ株式会社 | Non-crosslinked resin foamable particles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5790027A (en) * | 1980-11-22 | 1982-06-04 | Japan Styrene Paper Co Ltd | Prefoamed polypropylene resin particle and its production |
-
1983
- 1983-03-25 JP JP58050048A patent/JPS59176336A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5790027A (en) * | 1980-11-22 | 1982-06-04 | Japan Styrene Paper Co Ltd | Prefoamed polypropylene resin particle and its production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8869655B2 (en) | 2002-08-12 | 2014-10-28 | Wagic, Inc. | Customizable light bulb changer |
US8844407B2 (en) | 2009-09-17 | 2014-09-30 | Wagic, Inc. | Extendable multi-tool including interchangable light bulb changer and accessories |
Also Published As
Publication number | Publication date |
---|---|
JPS59176336A (en) | 1984-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4840973A (en) | Polypropylene resin prefoamed particles | |
JPH0417978B2 (en) | ||
EP0224265B1 (en) | Production method of expansion-molded article of polypropylene resin | |
JPH0419258B2 (en) | ||
JPS5943491B2 (en) | Polypropylene resin foam molding | |
JPH0739501B2 (en) | Non-crosslinked linear low density polyethylene pre-expanded particles | |
JPH011741A (en) | Non-crosslinked linear low density polyethylene pre-expanded particles | |
JPH0559139B2 (en) | ||
JPS5943490B2 (en) | Polypropylene synthetic resin foam molding | |
JPS6344779B2 (en) | ||
JPS6324617B2 (en) | ||
JP3950557B2 (en) | Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom | |
JPS6324618B2 (en) | ||
JPS614738A (en) | Preparation of foamed polypropylene resin particle | |
JP3281904B2 (en) | Expanded polypropylene resin particles and molded article thereof | |
JPS6244778B2 (en) | ||
JPH0464335B2 (en) | ||
JP2709395B2 (en) | Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles | |
JPH0739500B2 (en) | Pre-expanded polypropylene resin particles | |
JPS6344778B2 (en) | ||
JPS6023428A (en) | Production of prefoamed particle of polypropylene resin | |
JPH0350693B2 (en) | ||
JPS6344780B2 (en) | ||
JPH01190736A (en) | Method for producing expanded polyolefin resin particles | |
JPH0218225B2 (en) |