JPS63242939A - Glass particle synthesis torch - Google Patents
Glass particle synthesis torchInfo
- Publication number
- JPS63242939A JPS63242939A JP8037187A JP8037187A JPS63242939A JP S63242939 A JPS63242939 A JP S63242939A JP 8037187 A JP8037187 A JP 8037187A JP 8037187 A JP8037187 A JP 8037187A JP S63242939 A JPS63242939 A JP S63242939A
- Authority
- JP
- Japan
- Prior art keywords
- torch
- outflow nozzle
- gas
- base material
- gas outflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 38
- 238000003786 synthesis reaction Methods 0.000 title claims description 36
- 239000011521 glass Substances 0.000 title claims description 31
- 239000002245 particle Substances 0.000 title claims description 13
- 239000007789 gas Substances 0.000 claims description 73
- 239000011261 inert gas Substances 0.000 claims description 24
- 239000002994 raw material Substances 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 14
- 238000006460 hydrolysis reaction Methods 0.000 claims description 5
- 230000007062 hydrolysis Effects 0.000 claims description 2
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 45
- 239000013307 optical fiber Substances 0.000 description 17
- 238000005245 sintering Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101150107222 GABARAPL1 gene Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/18—Eccentric ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/22—Inert gas details
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、気相軸付は法(VAD法)による光ファイバ
用多孔賞母材の製造に使用するガラス微粒子合成トーチ
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass fine particle synthesis torch used for manufacturing a porous core base material for optical fibers by the vapor deposition method (VAD method).
(従来の技術〕
従来、光フアイバ用母材の製造方法の一つに気相軸付は
法がある。この方法により多孔質母材を作製するには、
5tcla、G3C14などのガラス原料ガスを酸水素
火炎中で加熱加水分解反応させてガラス微粒子を合成し
、それを回転する出発部材の先端に堆積、成長させなが
ら引き上げて多孔質母材を作製し、これを高温で焼結ガ
ラス化させて透明ガラス体とし、石英管をその外周にジ
ャケットするか、コア多孔質体とクラフト多孔質体を同
時に形成させた多孔質母材を作製し、高温で焼結ガラス
化させて光フアイバ用母材とするものである。(Prior Art) Conventionally, one of the methods for manufacturing optical fiber preforms is vapor phase attachment.To produce a porous preform by this method,
A glass raw material gas such as 5tcla or G3C14 is heated and hydrolyzed in an oxyhydrogen flame to synthesize glass fine particles, which are deposited on the tip of a rotating starting member and pulled up while growing to produce a porous base material. This can be sintered and vitrified at high temperature to make a transparent glass body, and a quartz tube can be jacketed around the outer periphery, or a porous base material can be created in which a core porous body and a kraft porous body are simultaneously formed, and then sintered at a high temperature. It is vitrified and used as a base material for optical fibers.
これを第4図について説明すると、+51. (61,
1?+。To explain this with reference to FIG. 4, +51. (61,
1? +.
(8)はガラス微粒子合成トーチ、そのうち(5)はガ
ラス原料ガスとして5iclaとドーパントGec1.
が同時に供給されるコア合成用トーチ、(61,+71
. +81はガラス原料としてSiclgのみが供給さ
れるクラッド形成用トーチ、(9)は上記複数のトーチ
によって円柱状に形成された多孔質母材、01はコア合
成用トーチ(5)により形成されたコア多孔質体、αυ
はクラ 。(8) is a glass particle synthesis torch, of which (5) contains 5icla as a glass raw material gas and dopant Gec1.
A torch for core synthesis, (61, +71
.. +81 is a cladding torch to which only Siclg is supplied as a glass raw material, (9) is a porous base material formed into a cylindrical shape by the plurality of torches, and 01 is a core formed by the core synthesis torch (5). porous body, αυ
Hakura.
ラド形成用トーチ+61. fi+、 (81により形
成されたクラッド多孔質体、(2)は出発部材の石英棒
、αjは回転、引上げ装置、α船は保護容器、αつは余
剰ガラス微粒子の排気調整器である。第4図ではコア多
孔質体α呻のみも作製できる。Rad formation torch +61. fi+, (2) is the quartz rod of the starting member, αj is the rotation and pulling device, α ship is the protective container, and α is the exhaust regulator for excess glass particles. In Figure 4, only the core porous body α can be produced.
上記、多孔質母材の作製に使用する酸化物ガラス微粒子
合成トーチとしては、第5図に示すような構造のものが
種々知られている。As the oxide glass fine particle synthesis torch used for producing the above-mentioned porous base material, various structures as shown in FIG. 5 are known.
第5図において、(A)は、原料ガス流出ノズルfil
を中心とし、その周囲に可燃性ガス流出ノズル(2)、
不活性ガス流出ノズル(3)、助燃性ガス流出ノズル(
4)を順次設けた公知の合成トーチである。In FIG. 5, (A) is the raw material gas outflow nozzle fil.
The flammable gas outflow nozzle (2) is located around the center.
Inert gas outflow nozzle (3), combustion auxiliary gas outflow nozzle (
This is a known synthetic torch in which 4) are sequentially provided.
(B)は特開昭55−95635号に提案される合成ト
ーチであって、(1−1)、(1−2)はそれぞれ組成
の異なるガラス原料ガスと可燃性ガス(例えばHl)と
の混合ガス流出ノズル、(3)は不活性ガス(例えばA
r。(B) is a synthesis torch proposed in JP-A No. 55-95635, in which (1-1) and (1-2) are composed of a frit gas and a combustible gas (for example, Hl) having different compositions, respectively. The mixed gas outflow nozzle (3) is an inert gas (e.g. A
r.
tie)流出ノズル、(4)は助燃性ガス(例えば0.
)流出ノズルである。この合成トーチは、酸水素火炎に
よる流出ノズルの隔壁消耗を防止してトーチの寿命をの
ばし、光フアイバ用多孔質母材の製造の長時間安定化が
図れるとしている。tie) outflow nozzle, (4) is a combustion supporting gas (e.g. 0.
) is the outflow nozzle. This synthetic torch is said to extend the life of the torch by preventing the partition wall of the outflow nozzle from being worn out by the oxyhydrogen flame, thereby making it possible to stabilize the production of porous preforms for optical fibers over long periods of time.
(C)は特開昭59−3028号に提案される合成トー
チであって、(1−3)はガラス原料ガス、可燃性ガス
および不活性ガスとの混合ガス流出ノズル、(3)は不
活性ガス流出ノズル、(4)は助燃性ガス流出ノズルで
ある。この合成トーチの周辺に配置したガラス管よりN
2ガスを流すが、その流量を変えることによって多孔質
母材の外径が制御できるとしている。(C) is a synthesis torch proposed in JP-A No. 59-3028, (1-3) is a mixed gas outlet nozzle of frit gas, combustible gas, and inert gas, and (3) is an inert gas. The active gas outflow nozzle (4) is a combustion auxiliary gas outflow nozzle. N from the glass tube placed around this synthetic torch.
The company claims that the outer diameter of the porous base material can be controlled by changing the flow rates of two gases.
(D)は特開昭59−107934号に提案される合成
トーチで、+11は原料ガス流出ノズル、(4)は助燃
性ガス流出ノズル、(2)は可燃性ガス流出ノズルであ
る。(D) is a synthesis torch proposed in JP-A-59-107934, +11 is a raw material gas outflow nozzle, (4) is an auxiliary gas outflow nozzle, and (2) is a combustible gas outflow nozzle.
このようなノズル配置にすると、ガラス原料ガスの反応
効率がよく、堆積速度を増加させることができるので、
安定且つ経済的に多孔質母材が製造できるとしている。With such a nozzle arrangement, the reaction efficiency of the frit gas is high and the deposition rate can be increased.
It is said that porous base materials can be produced stably and economically.
(E)は特開昭59−227734号に提案される合成
トーチで、(1)は原料ガス流出ノズル、(4)は助燃
性ガス流出ノズル、(3)は不活性ガス流出ノズル、(
2)は可燃性ガス流出ノズルである。このようなノズル
配置にすると、火炎反応が酸化反応を主体にして行われ
るので、弗素のドーピングも可能となりこれに伴い光フ
アイバ用母材の屈折率分布の制御範囲が拡大できるとし
ている。(E) is a synthesis torch proposed in JP-A-59-227734, in which (1) is a raw material gas outflow nozzle, (4) is a combustion auxiliary gas outflow nozzle, (3) is an inert gas outflow nozzle, (
2) is a flammable gas outflow nozzle. With such a nozzle arrangement, the flame reaction is primarily an oxidation reaction, making it possible to dope fluorine, thereby expanding the range of control over the refractive index distribution of the optical fiber base material.
(F)は特開昭61−106435号に提案される合成
トーチで、(1−1)はガラス原料ガスと可燃性ガスと
の混合ガス流出ノズル、(1−4)はガラス原料ガスと
不活性ガスとの混合ガス流出ノズル、(4)は助燃性ガ
ス流出ノズルである。この合成トーチによれば、屈折率
分布の変化の少ない略ステップインデックス型光ファイ
バの多孔質母材を作製することができるとしている。(F) is a synthesis torch proposed in JP-A-61-106435, (1-1) is a mixed gas outlet nozzle of frit gas and combustible gas, and (1-4) is a mixture of frit gas and combustible gas. The mixed gas outflow nozzle with active gas (4) is a combustion auxiliary gas outflow nozzle. According to this synthesis torch, it is possible to produce a porous base material for a substantially step-index optical fiber with little change in refractive index distribution.
上記の各々の合成トーチは、原料ガス流出ノズルを中心
とし、その周囲に08、Hい不活性ガスの多重管組合わ
せ配置にして、回転し引き上げられる石英棒@の先端を
ターゲットとしてガラス微粒子を堆積させながら多孔質
母材(9)を作製するが、第6図に示すように、合成ト
ーチ(5)を多孔質母材(9)に対して傾斜させて使用
する場合、多孔質母材(9)の成長端(22)の上方に
なるにしたがって原料ガス濃度が希薄となると共に、酸
水素火炎O1の高温部(23)にさらされるので、これ
により多孔質母材の表面焼結(24)が進むという問題
がある。このように表面焼結部(24)が多孔質母材の
表面全体に進行すると、該母材の表面と内部との密度差
の欠陥が生じるため、その後の焼結工程における焼結ガ
ラス化に支障をきたすことになる。すなわち、第7図に
示すように焼結させると多孔質母材内に残留するガスが
拡散して該母材外部へ脱気するときに、前記表面焼結(
24)が障壁となり、焼結ガラス母材(25)内に残留
気泡(26)が起きるという問題がときに生じる。この
ように気泡の残留は光ファイバの伝送特性のみならず、
機械的強度も著しく低下させるので気泡の残留を起こさ
ない光フアイバ用多孔質母材の合成方法が求められてい
た。Each of the above synthesis torches has a raw material gas outflow nozzle in the center, a multiple tube combination of 08H inert gas around it, and glass particles are targeted at the tip of a quartz rod that is rotated and pulled up. A porous base material (9) is produced while depositing, but when the synthesis torch (5) is used at an angle with respect to the porous base material (9) as shown in FIG. The concentration of the raw material gas becomes dilute as it goes above the growth end (22) of (9), and it is exposed to the high temperature part (23) of the oxyhydrogen flame O1, which causes surface sintering of the porous base material ( There is a problem that 24) progresses. When the surface sintered portion (24) progresses over the entire surface of the porous base material, defects due to the difference in density between the surface and the inside of the base material occur, which prevents sintering and vitrification in the subsequent sintering process. This will cause trouble. That is, as shown in FIG. 7, when the gas remaining in the porous base material is diffused and degassed to the outside of the porous base material when sintered, the surface sintering (
24) acts as a barrier, and the problem sometimes arises that residual bubbles (26) occur in the sintered glass matrix (25). In this way, residual bubbles affect not only the transmission characteristics of optical fibers, but also
Since the mechanical strength is also significantly reduced, there has been a need for a method for synthesizing a porous base material for optical fibers that does not cause residual bubbles.
本発明は上記の問題を解決することを目的とするもので
、多孔質母材の成長端の上方における過を発生しない表
面脱泡性にすぐれた多孔質母材を容易に作製させるガラ
ス微粒子合成トーチを提供するものである。The purpose of the present invention is to solve the above-mentioned problems.The present invention aims to synthesize fine glass particles that can easily produce a porous base material with excellent surface defoaming properties that does not generate excess above the growth edge of the porous base material. It provides a torch.
〔問題点を解決するための手段と作用3本考案は、可燃
性ガスと助燃性ガスを燃焼して得られる火炎中にガラス
原料ガスを吹き込み、火炎加水分解または加熱分解によ
ってガラス微粒子を合成させるトーチの断面において、
中心の原料ガス流出ノズルの上方に不活性ガス流出ノズ
ルを配置し、下方に可燃性ガス又は助燃性ガス流出ノズ
ル、不活性ガス流出ノズル、助燃性ガス又は可燃性ガス
流出ノズルを順次設けて成ることを特徴とするものであ
る。[Means and effects for solving the problem 3 This invention injects frit gas into the flame obtained by burning combustible gas and auxiliary gas, and synthesizes glass particles by flame hydrolysis or thermal decomposition. In the cross section of the torch,
An inert gas outflow nozzle is arranged above the central raw material gas outflow nozzle, and a flammable gas or combustion auxiliary gas outflow nozzle, an inert gas outflow nozzle, and a combustion auxiliary gas or combustible gas outflow nozzle are provided below in this order. It is characterized by this.
以下、本発明の作用について説明する。Hereinafter, the effects of the present invention will be explained.
第2図は、本発明にかかる合成トーチの使用による多孔
質母材の形成と火炎との関係を示す模式図である。火炎
Osの中央付近は、原料ガス流出ノズルの延長にあって
気相又は固相のガラス微粒子の空間密度が高い部分αη
で、その上方は不活性ガスの包被部Ql、下方は酸水素
火炎部(ISが存在する。FIG. 2 is a schematic diagram showing the relationship between the formation of a porous matrix and flame by using the synthetic torch according to the present invention. Near the center of the flame Os is a part αη that is an extension of the raw material gas outflow nozzle and has a high spatial density of gaseous or solid phase glass particles.
Above this is an inert gas enveloping part Ql, and below is an oxyhydrogen flame part (IS).
合成トーチ(5)から出たガラス原料ガス(至)は、主
成分の5ic14とドーピング剤を含む塩化物であって
^r、 Heなどの不活性キャリアガスによって火炎α
e中に供給される。不活性ガスによって包被されている
火炎部分Qlでは、合成トーチ(5)の出口からのある
距離を経て、0.とHヨとの燃焼による加熱加水分解反
応部(21)で関与するH□Oが拡散される。原料ガス
のうち5icLを例にとれば、H80との次の反応によ
り5ioJk粒子を生成する。The glass raw material gas (5) emitted from the synthesis torch (5) is a chloride containing 5ic14 as a main component and a doping agent, and is heated to a flame α by an inert carrier gas such as He.
It is supplied during e. In the flame section Ql surrounded by inert gas, after a certain distance from the exit of the synthesis torch (5), 0. The H□O involved in the heating hydrolysis reaction section (21) is diffused by the combustion of H□O and H□O. Taking 5icL of the raw material gas as an example, 5ioJk particles are generated by the following reaction with H80.
5icln(G) +2HxO=SiOg(G、S)
+4HCI (G)原料ガス(至)と酸水素火炎α■と
が隣接する界面では、上記の反応が効率よく進行するの
で加熱加水分解反応部(21)を成長端(22)に配置
して、ガラス微粒子を堆積、成長させ、不活性ガスの包
被部O1を成長端(22)の側面にあてることにより、
多孔質母材(9)の表面焼結を抑制防止させることがで
きる。5icln(G) +2HxO=SiOg(G,S)
The above reaction proceeds efficiently at the interface where the +4HCI (G) raw material gas (to) and the oxyhydrogen flame α■ are adjacent, so the heated hydrolysis reaction section (21) is placed at the growth end (22), By depositing and growing glass particles and applying the inert gas envelope O1 to the side surface of the growth end (22),
Surface sintering of the porous base material (9) can be suppressed and prevented.
従って、該多孔質母材を高温で焼結ガラス化させても、
残留気泡が生じない良好な光フアイバ用母材を得ること
ができる。Therefore, even if the porous base material is sintered and vitrified at high temperature,
A good optical fiber base material without residual bubbles can be obtained.
本発明の実施例を第1図に示す合成トーチの断面にもと
づいて説明する。An embodiment of the present invention will be described based on a cross section of a synthetic torch shown in FIG.
(A)は円形型合成トーチであって、il+はガラス原
料ガス流出ノズル、(3)は+1)の外周に設けた半円
形の不活性ガス(例えばAr、 He)流出ノズル、(
2)は可燃性ガス(例えばl流出ノズル、(31は(2
)の外周に設けた不活性ガス流出ノズル、(4)は助燃
性ガス(例えば0□)流出ノズルである。(B)は角形
型合成トーチで、(11は原料ガス流出ノズル、(3)
は+11の外周に設けた半角形の不活性ガス流出ノズル
、(2)は可燃性ガス流出ノズル、鉛は(2)の外周に
設けた不活性ガス流出ノズル、(4)は助燃性ガス流出
ノズルである。(C)は、上記合成トーチ(B)の可燃
性ガス流出ノズル(2)に助燃性ガスを供給、助燃性ガ
ス流出ノズル(4)に可燃性ガスを供給する合成トーチ
であって、酸水素火炎中における酸化反応域を拡大させ
たものである。(D)は角形型合成トーチで、(11は
中心の原料ガス流出ノズル、鎖は(11の両端に設けた
不活性ガス流出ノズル、(3)は+11. +3’lの
外周に設けた半角形の不活性ガス流出ノズル、(4)は
助燃性ガス流出ノズル、顧は(4)の外周に設けた不活
性ガス流出ノズル、(2)は可燃性ガス流出ノズルであ
る。第1図(A)、 (B)、 (C)、 (D)の合
成トーチを用い作製した多孔質母材を焼結ガラス化した
結果、得られた光フアイバ用母材はいずれも気泡の残留
がみられず、原料ガス流出ノズルTitの上方に不活性
ガス流出ノズル(3)を設ける本発明の合成トーチ構造
とすることにより、多孔質母材の表面焼結が抑止できる
ことを確認した。第1図に示した各合成トーチ(A)、
(B)、 (C)、 (D)によって得た光フアイバ
用母材の屈折率分布を測定した結果を第3図に示す0合
成トーチ(B)、 (D)による屈折率分布は、はぼス
テップインデックス型を示し、合成トーチ(A)、 (
C)では二乗分布に近いものが得られた。又、第1図(
D)の合成トーチで作製する多孔質母材の外径は、10
0φ以下のものが容易に得られ、表面焼結を起こさない
ので、焼結ガラス化における多孔質母材の脱気性が良好
であることを確認できた。(A) is a circular synthesis torch, il+ is a frit gas outflow nozzle, (3) is a semicircular inert gas (e.g. Ar, He) outflow nozzle provided on the outer periphery of +1), (
2) is a combustible gas (e.g. l outflow nozzle, (31 is (2)
) is an inert gas outflow nozzle provided on the outer periphery, and (4) is a combustion auxiliary gas (for example, 0□) outflow nozzle. (B) is a square-shaped synthesis torch, (11 is a raw material gas outflow nozzle, (3)
is a half-square inert gas outflow nozzle installed on the outer periphery of +11, (2) is a flammable gas outflow nozzle, lead is an inert gas outflow nozzle installed on the outside of (2), and (4) is an auxiliary gas outflow nozzle. It's a nozzle. (C) is a synthesis torch that supplies combustion assisting gas to the flammable gas outflow nozzle (2) of the synthesis torch (B) and supplies combustible gas to the combustion support gas outflow nozzle (4), and This expands the oxidation reaction zone in the flame. (D) is a square-shaped synthesis torch, (11 is the raw material gas outflow nozzle in the center, the chains are (11) inert gas outflow nozzles provided at both ends, (3) is a half-angle provided on the outer periphery of +11. +3'l (4) is a combustion-assisting gas outflow nozzle, (4) is an inert gas outflow nozzle provided on the outer periphery of (4), and (2) is a combustible gas outflow nozzle. As a result of sintering and vitrifying the porous base materials prepared using the synthesis torch of A), (B), (C), and (D), the resulting optical fiber base materials all had residual air bubbles. First, it was confirmed that the surface sintering of the porous base material could be suppressed by using the synthesis torch structure of the present invention in which the inert gas outflow nozzle (3) is provided above the raw material gas outflow nozzle Tit. Each synthetic torch shown (A),
Figure 3 shows the results of measuring the refractive index distribution of the optical fiber base material obtained by (B), (C), and (D). It shows the step index type, and the synthetic torch (A), (
In C), a distribution close to a square distribution was obtained. Also, Figure 1 (
The outer diameter of the porous base material produced using the synthesis torch in D) is 10
It was confirmed that the porous base material had good degassing properties during sintering and vitrification because it was easily obtained with a diameter of 0φ or less and did not cause surface sintering.
(比較例〕
従来から使用された第5図(A)に示す合成トーチで多
孔質母材を作製し、焼結ガラス化させて光フアイバ用母
材としたところ第7図に示すような気泡の残留(26)
が起き、光フアイバ用母材(25)としては不適当であ
った。この合成トーチでは、中心の原料ガス流出ノズル
が同心円状に酸水素火炎で包被されているため、第7図
で説明した如く、多孔質母材の成長端の上部が高温の酸
水素火炎に連続的にさらされ、多孔質母材の表面焼結が
避けられない。第8図はこの合成トーチで作製した多孔
質母材の断面にそってガラス密度を参考までに調べたも
のである。結果において、該母材の表面内部の多孔質密
度は比較的に均一であるが、表面付近は表面焼結が進み
、多孔質密度が急昇していることがわかる。(Comparative example) When a porous base material was prepared using a conventionally used synthesis torch shown in FIG. 5(A) and sintered and vitrified to form an optical fiber base material, bubbles as shown in FIG. 7 were formed. Residue (26)
occurred, making it unsuitable as an optical fiber base material (25). In this synthesis torch, the central raw material gas outflow nozzle is covered concentrically with oxyhydrogen flame, so as explained in Fig. 7, the upper part of the growth end of the porous base material is exposed to the high temperature oxyhydrogen flame. Continuously exposed, surface sintering of the porous matrix is inevitable. FIG. 8 shows, for reference, the glass density measured along the cross section of the porous base material produced using this synthesis torch. The results show that the porous density inside the surface of the base material is relatively uniform, but near the surface, surface sintering progresses and the porous density rapidly increases.
以上説明した如く、本発明によるガラス微粒子合成トー
チを多孔質母材の作製に用いることにより、該母材の表
面焼結を抑止できるので、焼結ガラス化において気泡の
残留がなく、且つ安定で良好な光フアイバ用母材を得る
ことができる。さらに、該合成トーチに供給する01.
H,、不活性ガスの流出組合せを種々変更させること
により、屈折率分布の形状をまた変えることができるの
で、光ファイバのタイプに応じて作り分けを行える利点
がある。As explained above, by using the glass fine particle synthesis torch according to the present invention to prepare a porous base material, surface sintering of the base material can be suppressed, so that no air bubbles remain during sintering and vitrification, and the process is stable. A good optical fiber base material can be obtained. Additionally, 01.00% is supplied to the synthesis torch.
H. By changing the outflow combination of inert gases, the shape of the refractive index distribution can also be changed, so there is an advantage that the optical fibers can be manufactured differently depending on the type of optical fiber.
第1図は本発明にかかるガラス微粒子合成トーチの断面
説明図、第2図は本発明にかかる合成トーチの使用によ
る多孔質母材と火炎との関係を示す模式図、第3図は本
発明の合成トーチによって得た光フアイバ用母材の屈折
率分布図、第4図はガラス微粒子集合体の作製装置、第
5図は公知の合成トーチの断面説明図、第6図は公知の
合成トーチによる多孔質母材の表面焼結の説明図、第7
図は焼結ガラス母材に形成される残留気泡の状態説明図
、第8図は公知の合成l・−チによる多孔質母材の表面
焼結とガラス密度との関係解析図である0図中の主な符
号は次の通りである。
1;ガラス原料流出ノズル、2;可燃性ガス流出ノズル
、3;不活性ガス流出ノズル、4;助燃性ガス流出ノズ
ル、5;合成トーチ、9;多孔質母材、17;原料ガス
によるガラス微粒器濃度分布部、18;不活性ガスの包
被部、19;酸水素火炎部、20;ガラス原料ガス、2
1;加熱加水分解反応部、22;成長端、23;酸水素
火炎の高温部、24;表面焼結、25;焼結ガラス母材
、26;残留気泡。
出 願 人 タック電線株式会社
代 理 人 弁理士 水口孝−
第1 図
(^) (B)染3
図
A−合成トー+ 8・/?Aトー5− C
合成トーチ D・イシ廼しトーチ第2目
第4図
率5図FIG. 1 is a cross-sectional explanatory diagram of a glass fine particle synthesis torch according to the present invention, FIG. 2 is a schematic diagram showing the relationship between a porous base material and flame when the synthesis torch according to the present invention is used, and FIG. 3 is a diagram according to the present invention. A refractive index distribution diagram of an optical fiber base material obtained by a synthesis torch, FIG. 4 is an apparatus for producing a glass particle aggregate, FIG. 5 is an explanatory cross-sectional view of a known synthesis torch, and FIG. 6 is a known synthesis torch. Explanatory diagram of surface sintering of porous base material by
The figure is an explanatory diagram of the state of residual bubbles formed in the sintered glass base material, and Figure 8 is an analytical diagram of the relationship between the surface sintering of the porous base material and the glass density by the known synthesis method. The main symbols inside are as follows. 1; Glass raw material outlet nozzle, 2; Flammable gas outlet nozzle, 3; Inert gas outlet nozzle, 4; Combustion auxiliary gas outlet nozzle, 5; Synthetic torch, 9; Porous base material, 17; Glass fine particles produced by raw material gas container concentration distribution part, 18; inert gas enveloping part, 19; oxyhydrogen flame part, 20; glass raw material gas, 2
1; heating hydrolysis reaction part, 22; growth end, 23; high temperature part of oxyhydrogen flame, 24; surface sintering, 25; sintered glass base material, 26; residual bubbles. Applicant Tak Electric Cable Co., Ltd. Agent Patent Attorney Takashi Mizuguchi - Figure 1 (^) (B) Some 3
Figure A-Synthetic toe + 8/? A to 5-C
Synthetic Torch D. Ishibashi Torch 2nd Eye
Figure 4 Rate Figure 5
Claims (2)
中にガラス原料ガスを吹き込み、火炎加水分解または加
熱分解によってガラス微粒子を合成させるトーチの断面
において、中心の原料ガス流出ノズルの上方に不活性ガ
ス流出ノズルを配置し、下方に可燃性ガス又は助燃性ガ
ス流出ノズル、不活性ガス流出ノズル、助燃性ガス又は
可燃性ガス流出ノズルを順次設けて成ることを特徴とす
るガラス微粒子合成トーチ。(1) Glass raw material gas is blown into the flame obtained by burning combustible gas and auxiliary gas, and glass particles are synthesized by flame hydrolysis or thermal decomposition.In the cross section of the torch, above the central raw material gas outflow nozzle Glass particle synthesis characterized in that an inert gas outflow nozzle is arranged at the bottom, and a flammable gas or combustion auxiliary gas outflow nozzle, an inert gas outflow nozzle, and a combustion auxiliary gas or combustible gas outflow nozzle are provided in sequence below. torch.
活性ガス流出ノズルを配置したことを特徴とする特許請
求の範囲第(1)項記載のガラス微粒子合成トーチ。(2) The glass particle synthesis torch according to claim (1), characterized in that inert gas outflow nozzles are arranged at both ends of the central raw material gas outflow nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8037187A JPS63242939A (en) | 1987-03-31 | 1987-03-31 | Glass particle synthesis torch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8037187A JPS63242939A (en) | 1987-03-31 | 1987-03-31 | Glass particle synthesis torch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63242939A true JPS63242939A (en) | 1988-10-07 |
JPH0535691B2 JPH0535691B2 (en) | 1993-05-27 |
Family
ID=13716414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8037187A Granted JPS63242939A (en) | 1987-03-31 | 1987-03-31 | Glass particle synthesis torch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63242939A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180216227A1 (en) * | 2017-01-31 | 2018-08-02 | Ofs Fitel, Llc | Parallel slit torch for making optical fiber preform |
-
1987
- 1987-03-31 JP JP8037187A patent/JPS63242939A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180216227A1 (en) * | 2017-01-31 | 2018-08-02 | Ofs Fitel, Llc | Parallel slit torch for making optical fiber preform |
US10745804B2 (en) * | 2017-01-31 | 2020-08-18 | Ofs Fitel, Llc | Parallel slit torch for making optical fiber preform |
Also Published As
Publication number | Publication date |
---|---|
JPH0535691B2 (en) | 1993-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4224046A (en) | Method for manufacturing an optical fiber preform | |
US4414012A (en) | Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass | |
US4336049A (en) | Method for producing multi-component glass fiber preform | |
EP0185106B1 (en) | Method of producing a rod containing fluorine | |
US4082420A (en) | An optical transmission fiber containing fluorine | |
GB1580152A (en) | Continuous optical fibre preform fabrication method | |
US4259101A (en) | Method for producing optical fiber preform | |
GB2128981A (en) | Fabrication method of optical fiber preforms | |
US4295869A (en) | Process for producing optical transmission fiber | |
RU2284968C2 (en) | Method of manufacture of the optical glass | |
US4915716A (en) | Fabrication of lightguide soot preforms | |
JPS63242939A (en) | Glass particle synthesis torch | |
JPS6048456B2 (en) | Method for manufacturing base material for optical fiber | |
JP2793617B2 (en) | Manufacturing method of optical fiber preform | |
EP0156370A2 (en) | Method for producing glass preform for optical fiber | |
JPH0525818B2 (en) | ||
JPS6041627B2 (en) | Manufacturing method of optical fiber base material | |
JPH07330366A (en) | Manufacturing method of optical fiber preform | |
JPS596819B2 (en) | Method for manufacturing doped quartz glass rod | |
JPS6136134A (en) | Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber | |
JPS59137333A (en) | Manufacture of base material for optical fiber | |
JP2000169175A (en) | Manufacturing method of glass base material | |
JPH0535692B2 (en) | ||
JPS6230146B2 (en) | ||
JPS6243934B2 (en) |