[go: up one dir, main page]

JPS63242536A - Metal-polypropylene-metal laminated composite body - Google Patents

Metal-polypropylene-metal laminated composite body

Info

Publication number
JPS63242536A
JPS63242536A JP7658387A JP7658387A JPS63242536A JP S63242536 A JPS63242536 A JP S63242536A JP 7658387 A JP7658387 A JP 7658387A JP 7658387 A JP7658387 A JP 7658387A JP S63242536 A JPS63242536 A JP S63242536A
Authority
JP
Japan
Prior art keywords
polypropylene
metal
fibers
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7658387A
Other languages
Japanese (ja)
Inventor
大門 孝
坂本 秀志
足立 辰也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP7658387A priority Critical patent/JPS63242536A/en
Publication of JPS63242536A publication Critical patent/JPS63242536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリプロピレン系シートを金属板ではさんで圧
着した金属・樹脂積層複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal/resin laminated composite in which a polypropylene sheet is sandwiched between metal plates and pressure bonded.

更に詳しくは結晶性ポリプロピレンを不飽和カルボン酸
もしくはその誘導体で変性した変性ポリプロピレンもし
くは該変性ポリプロピレンを含む結晶性ポリプロピレン
から得られるポリプロピレン系繊維と有機質!&!緒と
導電性繊維とが不規則に絡み合って形成された不織布を
加熱圧縮して得られるポリプロピレン系シート(以下芯
材と呼ぶ)と金属板とより構成される積層複合体に関す
る。
More specifically, modified polypropylene obtained by modifying crystalline polypropylene with an unsaturated carboxylic acid or its derivative, or polypropylene fibers and organic materials obtained from crystalline polypropylene containing the modified polypropylene! &! The present invention relates to a laminated composite comprising a metal plate and a polypropylene sheet (hereinafter referred to as core material) obtained by heating and compressing a nonwoven fabric formed by irregularly intertwining conductive fibers and conductive fibers.

(従来の技術) 近年、金属板の軽量化、金属板への吸音性付与、振動減
衰性付与、断熱性付与の観点から、金属板の間にプラス
チックシートを挾んで組み合わUだ積層複合体が開発さ
れ、土木、建築、自動車、家電分野笠に広く用いられて
いる。
(Prior art) In recent years, from the viewpoint of reducing the weight of metal plates and imparting sound absorption, vibration damping, and heat insulation properties to metal plates, a U-shaped laminated composite has been developed in which plastic sheets are sandwiched between metal plates. Widely used in the civil engineering, architecture, automobile, and home appliance fields.

従来、芯材として用いられるプラスチックシートとして
はポリ1ヂレン、ポリプロピレン、ナイOシー6などの
熱可塑性樹脂が用いられている。
Conventionally, thermoplastic resins such as poly-1-dylene, polypropylene, and NOC-6 have been used as plastic sheets used as core materials.

また芯材に導電性をもたせ、複合体として溶接を可能に
するため、芯材の樹脂に金属粉、カーボンブラック、金
属メッキした樹脂粉末等を混練することも行なわれてい
る。
Furthermore, in order to impart conductivity to the core material and enable welding as a composite, metal powder, carbon black, metal-plated resin powder, etc. are mixed into the resin of the core material.

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

ポリプロピレン系シートを芯材とする複合体では、折り
曲げ加工、打ち扱き加工、切断、深絞り加工等の2次加
工に耐λ1;ノる接着強度を有することが求められてい
る。
A composite material having a polypropylene sheet as a core material is required to have an adhesive strength of λ1 to withstand secondary processing such as bending, punching, cutting, and deep drawing.

従来の、ボリア[1ピレン樹脂を芯材として用いた積層
複合体では、成形された部品を塗装する際の焼き付り処
理(通常180〜200℃程度で30分間加熱処理され
る)時に、打ち抜き加工を施した部分から芯材の樹脂が
溶融して流れ出したり、溶融樹脂の)真下(以下ボタ落
ちという)が起こり、打ち抜き加工部を塞ぐため、後加
工に支障をきたしたり、溶融樹脂が冷却凝固する過程で
大きく収縮づるために特にぜん断加工部付近が変形した
り、芯材の樹脂と金属との界面が剥離したりする等の欠
点があり、焼き付は塗装]]稈を必要と1゛る部品の用
途には使用できないという問題点があった。
In conventional laminated composites using boria[1-pyrene resin as the core material, punching is performed during the baking process (usually heat treated at 180 to 200°C for 30 minutes) when painting the molded parts. The resin of the core material may melt and flow out from the processed area, or the molten resin may fall directly below (hereinafter referred to as "bottom drop"), blocking the punched area, causing problems in post-processing, or causing the molten resin to cool down. Due to the large shrinkage during the solidification process, there are disadvantages such as deformation especially near the sheared part and peeling of the interface between the core resin and metal. There was a problem that it could not be used for parts with 1.

またポリプロピレン樹脂が絶縁体であることから、スポ
ット溶接やシーム溶接等の電気溶接が出来ないという問
題点も有していた。
Furthermore, since polypropylene resin is an insulator, it also has the problem that electric welding such as spot welding and seam welding cannot be performed.

溶接を可能にすべく、樹脂を導電性にするため、金属粉
を樹脂に混練する方法があるが混合を均一にすることが
困難である上に押出機のスクリューが摩耗する′!4設
備設備量題点があり史に多h1に充填しないと金属板間
の電気的接続が不完全となり易く、溶接性が必ずしも完
全でないという問題点があった。
In order to make the resin conductive in order to make welding possible, there is a method of kneading metal powder into the resin, but it is difficult to mix uniformly and the extruder screw wears out! Historically, there has been a problem in the amount of equipment used, and if the metal plates are not filled to a large capacity, the electrical connection between the metal plates tends to be incomplete, and weldability is not always perfect.

従って本発明の目的は、二次加工に不可欠な高度の接着
強度を有し、塗装時の焼さ・付は処1jl!工程におい
ても、溶融樹脂の流れ出しやボタ落らがなく、かつ切断
部付近の熱変形、芯材の樹脂と金属板との剥離が生じな
い耐熱性を有し、かつ電気抵抗溶接が可能な金属・ポリ
プロピレン・金属積層複合体を提供することである。
Therefore, the object of the present invention is to have a high adhesive strength that is essential for secondary processing, and to prevent burning and adhesion during painting! A metal that has heat resistance that does not cause molten resin to flow or drop during the process, does not cause thermal deformation near the cutting part, and does not cause peeling between the core resin and the metal plate, and can be electrically resistance welded. - To provide a polypropylene/metal laminated composite.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は前記問題点を解決すべく鋭意検討を重ねた
結果、特定の変性プロピレン系mMとイj機質繊維と導
電性i&Imとで不織布をつくり、これを加熱圧着した
シートを芯材として使用することにより問題点を解決で
きることを見い出し本発明を完成した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors created a nonwoven fabric using specific modified propylene-based mM, Ij organic fibers, and conductive i&Im, and used a sheet made by heat-pressing the nonwoven fabric as a core material. The present invention was completed based on the discovery that the problems could be solved by using the method as a method.

寸なわら本発明は結晶性ポリプロピレンを不飽和カルボ
ン酸もしくはその誘導体で変性した変性ポリプロピレン
もしくは該変性ポリプロピレンを混合した結晶性ポリプ
ロピレンから得られるポリプロピレン系繊組と、有機質
!li[と導電性繊維とが不規則に絡み合って形成され
た不織布をボリア[]ピレン系繊維の融点以上の温麿で
加熱圧縮して得られるポリプロピレン系シートを芯材と
したことを特徴とする金属・ボリア[1ピレン・金属V
4層複合体である。
In short, the present invention relates to a polypropylene fiber obtained from a modified polypropylene obtained by modifying crystalline polypropylene with an unsaturated carboxylic acid or a derivative thereof, or a crystalline polypropylene obtained by mixing the modified polypropylene, and an organic material! The core material is a polypropylene sheet obtained by heating and compressing a nonwoven fabric formed by irregularly intertwining li[] and conductive fibers at a temperature higher than the melting point of boria[]pyrene fibers. Metal/boria [1 pyrene/metal V
It is a four-layer composite.

不織布に配合される有機質繊維と導電性繊維の含み1量
は全体の15へ・50市間%が好ましく、しから導電性
繊維の配合filは5重!u%以上であることが好まし
い。
The amount of organic fibers and conductive fibers blended into the nonwoven fabric is preferably 15% to 50% of the total, and the blend of conductive fibers is 5 times! It is preferable that it is at least u%.

本発明において使用される変性ポリプロピレンは、後述
の結晶性ポリプロピレンを不飽和カルボン酸もしくはそ
の誘導体で変性したものである。
The modified polypropylene used in the present invention is a crystalline polypropylene described below modified with an unsaturated carboxylic acid or a derivative thereof.

該変性ポリプロピレンの製造に用い、る不飽和カルボン
酸としてはアクリル酸、メタクリル酸、フマル酸、マレ
イン酸、イタ」ン酸、シI・ラコン酎等を挙げることが
出来る。又、不飽和カルボン酸の誘導体としては酸無水
物、ニスデル、アミド、イミド、金属塩等があり、例え
ば無水マレイン酸、無水シトクコ5ン酸、無水イタコン
酸、アクリル酸メブル、メタクリル酸メチル\アクリル
@1チル、メタクリル酸エチル、アクリル酸ブチル、メ
タクリル酸ブチル、アクリル酸グリシジル、メタクリル
酸グリシジル、マレイン酸モノエチルエステル、マレイ
ン酸ジエチルエステル、フマル酸モノメチルエステル、
フマル酸ジメチルエステル、イタコン酸モノメチルエス
テル、イタコン酸ジエヂルエステル、アクリルアミド、
メタクリルアミド、マレイン酸モノアミド、マレイン酸
ジアミド、マレインM−N−モノエチルアミド、マレイ
ンM−N。
Examples of the unsaturated carboxylic acids used in the production of the modified polypropylene include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itanoic acid, and silica laconic acid. Further, derivatives of unsaturated carboxylic acids include acid anhydrides, Nisdel, amides, imides, metal salts, etc., such as maleic anhydride, cytocucopentaic acid anhydride, itaconic anhydride, mebble acrylate, methyl methacrylate/acrylic. @1 chill, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate,
Fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, acrylamide,
Methacrylamide, maleic monoamide, maleic diamide, maleic M-N-monoethylamide, maleic M-N.

N−ジエチルアミド、マレイミド、N−ブチルマレイミ
ド、N−フェニルマレイミド、アクリル酸すトリウム、
メタクリル酸すトリウム、アクリル酸カリウム等を挙げ
ることができる。これらのうら無ホマレイン酸を用いる
のが好ましい。
N-diethylamide, maleimide, N-butylmaleimide, N-phenylmaleimide, storium acrylate,
Examples include sodium methacrylate and potassium acrylate. It is preferable to use these non-fomaleic acids.

変性方法としては公知の種々の方法を採用することがで
きる。例えば、有機過酸化物の存在下で結晶性ポリプロ
ピレンと不飽和カルボン酸もしくはその誘導体を結晶性
ポリプロピレンの融点以上の温瓜で溶融混練することに
よって行われる。
Various known methods can be employed as the modification method. For example, it is carried out by melt-kneading crystalline polypropylene and an unsaturated carboxylic acid or its derivative in warm water having a melting point higher than the melting point of the crystalline polypropylene in the presence of an organic peroxide.

該不飽和カルボンfabしくはその誘導体の使用量は原
料樹脂である結晶性ポリプロピレンに対しTO,’01
〜5f!ffi%、より好ましく$;to、05〜3重
量%である。又本発明にあっては上述の変性ポリプロピ
レンを5重M%以上含むように未変性の結晶性ポリプロ
ピレンを混合したものを用いることができる。
The amount of the unsaturated carbon fab or its derivative used is TO, '01 with respect to the crystalline polypropylene that is the raw material resin.
~5f! ffi%, more preferably $;to, 05 to 3% by weight. Further, in the present invention, it is possible to use a mixture of unmodified crystalline polypropylene so as to contain the above-mentioned modified polypropylene in an amount of 5% by weight or more.

一般的には、不飽和カルボン酸もしくはその誘導体の使
用量が0.1〜10重M%の変性ポリプロピレンを未変
性の結晶性ポリプロピレンと上述の91合になるように
混合して用いるのが好ましい。
Generally, it is preferable to mix modified polypropylene containing 0.1 to 10% by weight of unsaturated carboxylic acid or its derivative with unmodified crystalline polypropylene so that the ratio is 91 as described above. .

該変性ポリプロピレンに用いられる結晶性ポリプロピレ
ン及び変性ポリプロピレンに混合して用いられる結晶性
ポリプロピレンとしてはプロピレンの単独重合体やブ[
lピレン成分を少なくとも70重間%以上含むプロピレ
ン・エチレンブロック共重合体もしくはランダム共重合
体、プロピレン・エチレン・ブテン−1ブロック共重合
体らしくはランダム共重合体、プロピレン・ブテン−1
ランダム共重合体及びこれらの2種以上の混合物を例示
することが出来る。
The crystalline polypropylene used in the modified polypropylene and the crystalline polypropylene mixed with the modified polypropylene include propylene homopolymers and polypropylenes.
Propylene/ethylene block copolymer or random copolymer containing at least 70% by weight of pyrene component, propylene/ethylene/butene-1 block copolymer-like random copolymer, propylene/butene-1
Examples include random copolymers and mixtures of two or more thereof.

変性ポリプロピレン用の結晶性ポリプロピレンと該変性
ポリプロピレンにU合して用いられる結晶性ポリプロピ
レンとは同種のものであってもよく、又異種のものであ
ってもよい。
The crystalline polypropylene for the modified polypropylene and the crystalline polypropylene used in conjunction with the modified polypropylene may be of the same type or may be of different types.

又メルトフローレートは0.1〜20!?/10分程度
のものが好ましく、より好ましくは0.5〜10g/l
 0分のらのである。
Also, the melt flow rate is 0.1 to 20! ? /10 minutes is preferable, more preferably 0.5 to 10 g/l
It's 0 minutes.

本発明に用いる変性ポリプロピレンもしくは変性ポリプ
ロピレンを混合した結晶性ポリプロピレンには本発明の
効果を損なわない範囲内で他のポリオレフィン、例えば
エチレン・プロピレンラバー、エチレン・プロピレン・
ジエンラバー、ポリ4−メヂルベンテン、エチレン酢酸
ビニル共重合体等を混合して使用することも出来る。
The modified polypropylene used in the present invention or the crystalline polypropylene mixed with the modified polypropylene may contain other polyolefins, such as ethylene propylene rubber, ethylene propylene rubber, etc., to the extent that the effects of the present invention are not impaired.
It is also possible to use a mixture of diene rubber, poly-4-methylbentene, ethylene-vinyl acetate copolymer, and the like.

結晶性ポリプロピレンを不飽和カルボン酸又はその誘導
体で変性した変性樹脂を混合した不織布より1[lたポ
リプロピレン系シートを芯材として用いるので該芯材と
金属との接着性を改善することができる。
Since a polypropylene sheet made of a non-woven fabric prepared by mixing a modified resin obtained by modifying crystalline polypropylene with an unsaturated carboxylic acid or a derivative thereof is used as the core material, the adhesion between the core material and metal can be improved.

該変性ポリプロピレンもしくは変性ポリプロピレンを含
む結晶性ポリプロピレンには、その機能を阻害しない範
囲内で、耐熱安定剤、耐候安定剤、滑剤、スリップ剤、
難燃剤、帯電防止剤、核剤、無機質充填剤、金属粉等を
配合して用いてもかまわへい。
The modified polypropylene or the crystalline polypropylene containing the modified polypropylene may contain heat-resistant stabilizers, weather-resistant stabilizers, lubricants, slip agents,
Flame retardants, antistatic agents, nucleating agents, inorganic fillers, metal powders, etc. may be used in combination.

本発明で使用される有機質U&紺としては、該右tl質
繊維とポリプロピレン系繊維とから形成された不織布を
溶融圧縮する際、もしくは成形加工する際の温度条件で
分解、溶融しないものを用いる以外は特に制限がなく、
例えばポリアミド系繊維、ポリイミド系11雑、ポリニ
スミル系繊組、ポリビニルア′ルコール系繊維、ポリ塩
化ビニリデン系繊維、ポリアクリLlニトリル系la紺
、ポリウレタン系繊維、フェノール系繊維、レーヨン繊
維、アセテート繊維、木綿繊維、亜麻繊維、黄麻繊維、
羊毛繊維、絹繊維及びこれらの2種以上の混合物等を挙
げることが出来る。
The organic U and navy blue used in the present invention are those that do not decompose or melt under the temperature conditions during melt-compression or molding of the nonwoven fabric formed from the TL fibers and polypropylene fibers. There are no particular restrictions on
For example, polyamide fiber, polyimide 11 miscellaneous, polynismil fiber, polyvinyl alcohol fiber, polyvinylidene chloride fiber, polyacrylic LL nitrile la navy blue, polyurethane fiber, phenol fiber, rayon fiber, acetate fiber, cotton. fiber, flax fiber, jute fiber,
Examples include wool fibers, silk fibers, and mixtures of two or more thereof.

本発明で用いる)g電性繊維としては、金属繊維炭素繊
維、金属被覆炭素繊維、金属被覆有機質繊維、金属被覆
ガラス!l維、金属被覆有機質繊維等が挙げられる。
Examples of g-electric fibers used in the present invention include metal fiber carbon fibers, metal-coated carbon fibers, metal-coated organic fibers, and metal-coated glass! Examples include l fibers, metal-coated organic fibers, and the like.

本発明で用いられる不織布はバインダー法、二−ドルバ
ンヂング法、スパンボンディングによる水圧絡み合わせ
法、熱接着法、湿式抄造法等の方法により得られるもの
である。
The nonwoven fabric used in the present invention can be obtained by a binder method, a needle bundling method, a hydraulic entanglement method using spunbonding, a thermal bonding method, a wet papermaking method, or the like.

本発明に用いる不織布に占める有81質繊頼と導電性繊
維の合計量は15〜50@吊%の範囲内にあることが好
ましく、特に20〜40重量%であることが望ましい。
The total amount of the nonwoven fabric used in the present invention, including the 81-quality fibers and the conductive fibers, is preferably in the range of 15 to 50% by weight, particularly preferably 20 to 40% by weight.

有機質繊維と導電性繊維の合計量が50重洛%を超える
と、積層複合体の接着強度が低下するので好ましくなく
、又、15重量%未満では塗装時の焼き付は処理時に切
断部や打ち扱き加工部から溶融樹脂の流れ出しが見られ
、かつ樹脂と金属板との界面が剥離し易(なるので好ま
しくない。
If the total amount of organic fibers and conductive fibers exceeds 50% by weight, it is undesirable because the adhesive strength of the laminated composite will decrease, and if it is less than 15% by weight, it will cause burning during painting and damage to the cut parts and nails during processing. This is not preferable because the molten resin can be seen flowing out from the handling area, and the interface between the resin and the metal plate is likely to peel off.

導電性繊維の配合品は少なくとも5車量%は必要であり
、5重量%未満では電気抵抗溶接することができない。
The amount of the conductive fiber compound must be at least 5% by weight, and if it is less than 5% by weight, electric resistance welding cannot be performed.

本発明の芯材に使用するポリプロピレン系シートは萌述
の不織布をポリプロピレン系繊維の融点以上でしかも有
la質mtIiが分解、溶融しない温度で例えばスーパ
ーカレンダー等の装置を用いて加熱圧縮してシート状に
成形したものであり、厚みは0.03〜1.0M、好ま
しくは0.05〜0.3swの範Un内にあることが望
ましい。
The polypropylene sheet used as the core material of the present invention is made by heating and compressing the nonwoven fabric described above using a device such as a super calender at a temperature above the melting point of the polypropylene fiber and at a temperature at which the laminated mtIi does not decompose or melt. The thickness is preferably within the range of 0.03 to 1.0M, preferably 0.05 to 0.3sw.

本発明で用いる金属板としては、鉄、鋼、アルミニウム
、銅、亜鉛、錫、ニッケル、チタン等の金属板及びこれ
らの金属の1種又は2種以上を主成分とする合金の金属
板を用いることが出来る。
The metal plates used in the present invention include metal plates made of iron, steel, aluminum, copper, zinc, tin, nickel, titanium, etc., and metal plates made of alloys containing one or more of these metals as main components. I can do it.

該金属板の厚みは0.05〜2.0閾、好ましくは0.
15〜1.0swである。
The thickness of the metal plate is 0.05 to 2.0, preferably 0.05 to 2.0.
It is 15 to 1.0 sw.

j該金属板は通常その接着面を脱脂処理もしくはサンド
ブラスト処理等の表面処理を施して用いられる。更にエ
ポキシ樹脂コート等のブライマー処理、りOメート処理
等の表面処理を施してbよい。
j The metal plate is usually used after its adhesive surface has been subjected to a surface treatment such as degreasing or sandblasting. Furthermore, a surface treatment such as a brimer treatment such as an epoxy resin coating or a phosphorus mate treatment may be performed.

本発明の積層複合体は前記ポリプロピレン系シートの両
面に、接着面を表面処理した金属板を重ね合わせた後、
圧縮成形機や熱ロール等を使用して加熱圧着することに
よって得ることが出来る。
The laminated composite of the present invention is obtained by laminating metal plates whose adhesive surfaces have been surface-treated on both sides of the polypropylene sheet, and then
It can be obtained by heat-pressing using a compression molding machine, a hot roll, or the like.

この時の加熱温度は160〜220℃であることが好ま
しく、加圧圧力は1〜50KI/ciGの範囲内である
ことが好ましく、この様な条f[下で0.1秒〜10分
間圧着することが望ましい。
The heating temperature at this time is preferably 160 to 220°C, and the pressurizing pressure is preferably within the range of 1 to 50 KI/ciG. It is desirable to do so.

(作 用) ポリプロピレンは極性基を有しないので、金属板に対し
、その表面に種々の表面処理を施したとしても、圧着後
の接着強度が弱いのであるが、本発明では不飽和カルボ
ン酸又はその誘導体により変性したので極性基が導入さ
れ、複合体とした時、種々の2次加工に耐える接着強度
を有する。
(Function) Since polypropylene does not have a polar group, the adhesive strength after pressure bonding to a metal plate is weak even if various surface treatments are applied to the surface of the metal plate. Since it has been modified with its derivatives, polar groups have been introduced, and when it is made into a composite, it has adhesive strength that can withstand various secondary processes.

変性ポリプロピレン繊維と有機質繊維と導電性mNとか
ら不織布をつくり、ポリプロピレン繊維の融1?1以上
の温度で加熱圧縮したシートを芯材として金属板を圧る
したので、有機質tanh導電性!l維の網状構造によ
り強化された樹脂芯材となり、複合体として焼き付は処
理などを1jっだ時、溶融ポリプロピレンが網状繊維に
とりこまれ、打ち扱き加工部等からの流れ出しやボタ落
ちがなく、切断tilsPI近の熱変形、芯材の樹脂と
金属板との剥離が4じず、耐熱性が良好である。
A nonwoven fabric was made from modified polypropylene fibers, organic fibers, and conductive mN, and the sheet was heated and compressed at a temperature higher than the melting point of the polypropylene fibers, and then pressed against a metal plate using the sheet as a core material, resulting in organic tanh conductivity! It becomes a reinforced resin core material due to the network structure of the polypropylene fibers, and when it is baked as a composite, the molten polypropylene is incorporated into the network fibers, and there is no run-out or drop-off from the processing area. There was no thermal deformation near the cutting tilsPI, no peeling between the core resin and the metal plate, and the heat resistance was good.

通常導電性を付与するために使用される金属粉末等は、
混練時←凝集し易く均一な混練が難しい。
Metal powders etc. that are normally used to impart conductivity are
During kneading, it tends to aggregate and it is difficult to mix uniformly.

又芯材の厚さにくらべて粒径が小ざ1ぎると導通が得ら
れず、大き1ぎると接着強度が低下する難点があり粒径
範囲の選択が難しい。本発明では導電性謀覇が、不織布
形成時に均一に分布しており、しかも繊維であるので芯
材の加熱圧縮形成時にも柔軟に対応し、上下金属板間の
導電性を確実にすることができ、溶接性を良好にしてい
る。
Furthermore, if the particle size is too small compared to the thickness of the core material, electrical conductivity cannot be obtained, and if it is too large, the adhesive strength decreases, making it difficult to select the particle size range. In the present invention, the conductive layer is uniformly distributed during the formation of the nonwoven fabric, and since it is a fiber, it can be flexibly applied during the heating and compression forming of the core material, and the conductivity between the upper and lower metal plates can be ensured. It has good weldability.

〔実施例〕〔Example〕

以下に実施例及び比較例によって、本発明を具体的に説
明するが、本発明は、実施例によって同等限定されるも
ので番よない。
The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to the same extent by the Examples.

(実施例1〜5、比較例1〜3) エチレン含量3.5重量%のプロピレン・エチレンラン
ダム共重合体をラジカル開始剤として1゜3(t−ブヂ
ルパーAキシイソプロピル)ベンピン0.10重量%を
用いて無水マレインM1.2Φm%で変性した女性ポリ
プロピレン25重量%と未変性のプロピレン・エチレン
ブロック共重合体くエチレン含量8.5重量%)60重
間%及びエチレン・プロピレンゴム15小間%とからな
るポリプロピレンを11報状に加工した。、該繊維とブ
イロン繊維(繊維長50m)とステンレス・スチール繊
@(繊維長5 m )とを第1表に承り割合で配合した
繊維混合物から作られた目付flit200g/Tdの
不織布を各々スーパーカレンダーと赤外線加熱とを併用
して線圧50にぴ/ cm s温度190℃で処理して
シート状とした。
(Examples 1 to 5, Comparative Examples 1 to 3) Using a propylene/ethylene random copolymer with an ethylene content of 3.5% by weight as a radical initiator, 0.10% by weight of 1゜3(t-butylperAxisopropyl)benpine 25% by weight of female polypropylene modified with 1.2Φm% of anhydrous maleic M, 60% by weight of unmodified propylene-ethylene block copolymer (ethylene content: 8.5% by weight) and 15% by weight of ethylene-propylene rubber. Polypropylene consisting of was processed into 11 reports. , a nonwoven fabric with a fabric weight of 200 g/Td made from a fiber mixture of the fiber, bouylon fiber (fiber length 50 m), and stainless steel fiber @ (fiber length 5 m) in the proportions shown in Table 1 was supercalendered. It was processed into a sheet form at a linear pressure of 50 pi/cms and a temperature of 190°C using a combination of infrared heating and infrared heating.

比較例として、変性ポリプロピレン系繊維にナイロン繊
維を配合Vず、ステンレス・スチール繊組のみ10重量
%配合して、同様にシート状とした場合を比較例1とし
た。
As a comparative example, Comparative Example 1 was prepared by adding 10% by weight of stainless steel fibers to the modified polypropylene fibers instead of adding nylon fibers to the modified polypropylene fibers.

またナイロンIIMもステンレス・スチール繊維も配合
しないで同様にシート状とした場合を比較例2とした。
Further, Comparative Example 2 was prepared in the same manner as in sheet form without adding nylon IIM or stainless steel fiber.

またナイロンm組のみ30重量%配合し、ス゛アンレス
・スチール繊維を配合しないでll81様にシート状と
した場合を比較例3とした。
Comparative Example 3 was prepared in which 30% by weight of only the nylon m group was blended, and the sheet was made into a sheet like 1181 without blending the swanless steel fiber.

次に金属板として表面をトリクレン洗浄した厚み0.2
75mの冷間圧延鋼板を準備した。
Next, the surface was cleaned with triclean as a metal plate to a thickness of 0.2
A 75 m cold rolled steel plate was prepared.

前記シートを2枚の鋼板の間に挿入し、180℃で1分
間、20 KB / cm Gの圧力で圧着し、fy4
1i’4複合体を得た。
The sheet was inserted between two steel plates and crimped at 180 °C for 1 minute at a pressure of 20 KB/cm G.
1i'4 complex was obtained.

ポリプロピレンmHとして未変性ポリプロピレンを使用
した比較例4では、接着力がなく、積層複合体が得られ
なかった。
In Comparative Example 4 in which unmodified polypropylene was used as polypropylene mH, there was no adhesive strength and a laminated composite could not be obtained.

該積層複合体のT型剥離強度、厚み方向の電気抵抗及び
熱処理後の状態を評価、観察し、その結果を第1表に示
した。尚、T型剥離強度の測定はJ Is−に−685
4に準じて行った。ただし引張速度は200m/分とし
た。厚み方向の電気抵抗は直径4mの棒状電極を用いて
コンピユーテイングデジタルマルチメーターTR687
7(タケダ理研製)で実測した。
The T-peel strength, electrical resistance in the thickness direction, and state after heat treatment of the laminated composite were evaluated and observed, and the results are shown in Table 1. In addition, the measurement of T-type peel strength was carried out using J Is-685.
It was carried out according to 4. However, the tensile speed was 200 m/min. The electrical resistance in the thickness direction was measured using a computing digital multimeter TR687 using a rod-shaped electrode with a diameter of 4 m.
7 (manufactured by Takeda Riken).

熱処理は$1201、横101に切断した積層複合体の
中央部に直径20ag+の穴を聞けたものを試験片とし
、該試験片を200℃に保った加熱オーブン内に30分
間吊り下げて実施した。
The heat treatment was carried out by using a test piece that had a hole of diameter 20ag+ in the center of the laminated composite that was cut into 101 pieces horizontally for $1201, and suspending the test piece in a heating oven maintained at 200°C for 30 minutes. .

第1表に示す通り、芯材に有機質繊組とS電性繊維とを
特定の割合で配合した不織布から得られたシートを用い
た本発明の積層複合体は、剥離強度も高く、熱処理によ
る切断部からの溶融樹脂の流れ出しも見られず、切断部
の変形も無い。切断部における金属板と樹脂層との剥離
現象もまったく見られず、v4層複合体は熱処理前の形
状をそのまま維持していた。更に本発明の積層複合体は
電気抵抗溶接が可能な低い抵抗値を示している。
As shown in Table 1, the laminated composite of the present invention using a sheet obtained from a nonwoven fabric containing organic fibers and S-conductive fibers in a specific ratio as a core material has high peel strength, and No molten resin was observed flowing out from the cut portion, and there was no deformation of the cut portion. There was no peeling phenomenon between the metal plate and the resin layer at the cut portion, and the V4 layer composite maintained its shape before the heat treatment. Additionally, the laminated composites of the present invention exhibit low resistance values that allow electrical resistance welding.

ナイロン繊維を配合せず、ステンレス繊維のみ10重量
%配合した比較例1では熱処理後の樹脂の流れ出しや切
断部の変形、剥離が若干認められた。ブイロン繊維もス
テンレス繊維配合しない比較例2では、厚み方向の電気
抵抗も1012Ωより大きく、溶接不能であり、又熱処
理後の樹脂の流れ出しや切断部の変形、剥離が認められ
た。
In Comparative Example 1, in which only 10% by weight of stainless steel fibers were blended without blending nylon fibers, some flow of resin after heat treatment, deformation of cut parts, and peeling were observed. In Comparative Example 2, in which neither bouylon fibers nor stainless steel fibers were mixed, the electrical resistance in the thickness direction was greater than 1012 Ω, making it impossible to weld, and resin flowing out after heat treatment, deformation of cut parts, and peeling were observed.

ブイロンmuのみを配合し、ステンレス繊維を配合しな
い比較例3では厚み方向の電気抵抗が1012ΩJ−り
人きく、溶接不可能であった。
In Comparative Example 3, in which only Vylon mu was blended and no stainless steel fibers were blended, the electrical resistance in the thickness direction was 1012 ΩJ-, and welding was impossible.

〔発明の効果〕〔Effect of the invention〕

本発明で得られる積層少合体は、切断、打ち抜き加T1
曲げ加工、深絞り加工等の2次加工によっても剥離する
ことがなく、また塗装時の焼ぎ付は処理においてb1切
断部や打ち扱き加工部のり創面からの芯材の樹脂の流れ
出し、ボタ落ちがなく、かつ熱による変形が極めて少な
いうえ、更に切断部における金属板と芯材との剥離現象
がまったく見られない。また従来不可能であった電気抵
抗溶接が可能となった。
The laminated small aggregate obtained by the present invention is cut and punched at T1
It will not peel off even during secondary processing such as bending or deep drawing, and the burning during painting will not occur due to the flow of the resin of the core material from the glued surface of the B1 cut part or the punched part during processing, and the drop-off of the core material. There is no deformation due to heat, and there is no peeling phenomenon between the metal plate and the core material at the cut portion. Additionally, electric resistance welding, which was previously impossible, became possible.

特に本発明の積層複合体は、不織布を加熱圧縮してシー
トとしたものを芯材として用いるため、該芯材の厚みを
100μ以下にすることが可能となり、かかる薄い芯材
を用いた積層複合体は制振板として特にイ、i用である
In particular, since the laminated composite of the present invention uses a nonwoven fabric heated and compressed into a sheet as the core material, it is possible to reduce the thickness of the core material to 100μ or less, and the laminated composite using such a thin core material The body is especially suitable for use as a damping plate.

従って自動車の内外板パネル、家電・弱電製品の各種パ
ネル、建築用パネル等幅広い用途に好適に使用すること
が出来る。
Therefore, it can be suitably used in a wide range of applications, such as interior and exterior panels of automobiles, various panels for home appliances and light electrical appliances, and panels for construction.

Claims (1)

【特許請求の範囲】 1、結晶性ポリプロピレンを不飽和カルボン酸もしくは
その誘導体で変性した変性ポリプロピレンもしくは該変
性ポリプロピレンを混合した結晶性ポリプロピレンから
得られるポリプロピレン系繊維と、有機質繊維と導電性
繊維とが不規則に絡み合つて形成された不織布をポリプ
ロピレン系繊維の融点以上の温度で加熱圧縮して得られ
るポリプロピレン系シートを芯材としたことを特徴とす
る金属・ポリプロピレン・金属積層複合体。 2、不織布に配合される有機質繊維と導電性繊維の合計
量が全体の15〜50重量%であつて、しかも導電性繊
維の配合量が5重量%以上である特許請求の範囲第1項
に記載の金属・ポリプロピレン・金属積層複合体。
[Claims] 1. A polypropylene fiber obtained from a modified polypropylene obtained by modifying crystalline polypropylene with an unsaturated carboxylic acid or a derivative thereof, or a crystalline polypropylene mixed with the modified polypropylene, an organic fiber, and a conductive fiber. A metal/polypropylene/metal laminated composite material characterized in that the core material is a polypropylene sheet obtained by heating and compressing irregularly intertwined nonwoven fabric at a temperature higher than the melting point of polypropylene fibers. 2. Claim 1, wherein the total amount of organic fibers and conductive fibers blended into the nonwoven fabric is 15 to 50% by weight of the total, and the content of the conductive fibers is 5% by weight or more. The metal/polypropylene/metal laminate composite described above.
JP7658387A 1987-03-30 1987-03-30 Metal-polypropylene-metal laminated composite body Pending JPS63242536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658387A JPS63242536A (en) 1987-03-30 1987-03-30 Metal-polypropylene-metal laminated composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658387A JPS63242536A (en) 1987-03-30 1987-03-30 Metal-polypropylene-metal laminated composite body

Publications (1)

Publication Number Publication Date
JPS63242536A true JPS63242536A (en) 1988-10-07

Family

ID=13609304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658387A Pending JPS63242536A (en) 1987-03-30 1987-03-30 Metal-polypropylene-metal laminated composite body

Country Status (1)

Country Link
JP (1) JPS63242536A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021899A1 (en) * 2008-08-18 2010-02-25 Productive Research LLC. Formable light weight composites
JP2012126133A (en) * 2010-12-14 2012-07-05 Shinyoung Co Ltd Multiple bonding material
US8796580B2 (en) 2009-12-28 2014-08-05 Productive Research Processes for welding composite materials and articles therefrom
US9005768B2 (en) 2011-02-21 2015-04-14 Productive Research Composite materials including regions differing in properties and methods
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
CN107234766A (en) * 2017-06-27 2017-10-10 重庆大学 A kind of powder lamination process method of quick preparation magnesium-based Fiber Reinforced Metal Laminates
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927708B2 (en) 2008-08-18 2011-04-19 Productive Research Llc Formable light weight composites
CN102186666A (en) * 2008-08-18 2011-09-14 多产研究有限责任公司 Formable light weight composites
JP2012500142A (en) * 2008-08-18 2012-01-05 プロダクティブ リサーチ エルエルシー. Formable lightweight composite
US9889634B2 (en) 2008-08-18 2018-02-13 Productive Research Llc Formable light weight composites
US9434134B2 (en) 2008-08-18 2016-09-06 Productive Research Llc Formable light weight composites
WO2010021899A1 (en) * 2008-08-18 2010-02-25 Productive Research LLC. Formable light weight composites
US9239068B2 (en) 2009-12-28 2016-01-19 Productive Research Llc Processes for welding composite materials and articles therefrom
US8796580B2 (en) 2009-12-28 2014-08-05 Productive Research Processes for welding composite materials and articles therefrom
US9415568B2 (en) 2010-02-15 2016-08-16 Productive Research Llc Formable light weight composite material systems and methods
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US11331880B2 (en) 2010-02-15 2022-05-17 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US11084253B2 (en) 2010-02-15 2021-08-10 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
US9849651B2 (en) 2010-02-15 2017-12-26 Productive Research Llc Formable light weight composite material systems and methods
US10710338B2 (en) 2010-02-15 2020-07-14 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9981451B2 (en) 2010-02-15 2018-05-29 Productive Research Llc Delamination resistant, weldable and formable light weight composites
JP2012126133A (en) * 2010-12-14 2012-07-05 Shinyoung Co Ltd Multiple bonding material
US9962909B2 (en) 2011-02-21 2018-05-08 Productive Research Llc Composite materials including regions differing properties, and methods
US9005768B2 (en) 2011-02-21 2015-04-14 Productive Research Composite materials including regions differing in properties and methods
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
CN107234766A (en) * 2017-06-27 2017-10-10 重庆大学 A kind of powder lamination process method of quick preparation magnesium-based Fiber Reinforced Metal Laminates
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof

Similar Documents

Publication Publication Date Title
US4752526A (en) Heat resistance-improved metal-polypropylene laminate composite
JPS63242536A (en) Metal-polypropylene-metal laminated composite body
JPH02164531A (en) Vibrationproof composite material
JPS5840491B2 (en) Method of manufacturing laminates
JPH0199837A (en) Metal-polypropylene laminated composite
JPH0372661B2 (en)
JPS63158242A (en) Vibration-damping steel plate with excellent welding performance
JPS5814459B2 (en) adhesive resin composition
JPS63233830A (en) Metal-polypropylene-metal laminated composite body
JPS63242535A (en) Metal-polypropylene-metal laminated composite body
JPS62164533A (en) Metal-polypropylene laminated composite body
JPH0115380B2 (en)
JPS6257428A (en) Glass-fiber reinforced composite meterial
JPS62221534A (en) Metal-polypropylene laminated composite body having improvedheat resistance
JPH02297432A (en) Composite steel plate
JPS63191630A (en) Metal-polypropylene laminated composite body having improved heat resistance
JP5379992B2 (en) Insulated folded board
JPS62164534A (en) Metal-polypropylene laminated composite body
JPS63120638A (en) Metal-polypropylene laminated composite body
JPS63191881A (en) Damping material composition and its composite material
JPS63209934A (en) Metal-polypropylene-metal laminated composite body having improved heat resistance
JPS62220331A (en) Metal-polypropylene laminated composite body having improvedheat resistance
JPH05269900A (en) Heat insulating inorganic fiber mat for metal table flap prevented from scattering of inorganic fiber splash
JP3008649B2 (en) Insulated inorganic fiber mat for metal folded plate which prevented scattering of inorganic fiber splash
JPH0151341B2 (en)