[go: up one dir, main page]

JPS63241825A - Superconductor manufacturing method - Google Patents

Superconductor manufacturing method

Info

Publication number
JPS63241825A
JPS63241825A JP62076819A JP7681987A JPS63241825A JP S63241825 A JPS63241825 A JP S63241825A JP 62076819 A JP62076819 A JP 62076819A JP 7681987 A JP7681987 A JP 7681987A JP S63241825 A JPS63241825 A JP S63241825A
Authority
JP
Japan
Prior art keywords
thin film
superconductor
supplementary
concentration
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62076819A
Other languages
Japanese (ja)
Inventor
Mikio Nakagawa
中川 三紀夫
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62076819A priority Critical patent/JPS63241825A/en
Publication of JPS63241825A publication Critical patent/JPS63241825A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Laminated Bodies (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、例えばジョセフソン素子、超伝導記憶素子
等の超電導デバイスや、マイスナー効果による磁気シー
ルドに用いられる超電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a superconductor used for superconducting devices such as Josephson elements and superconducting memory elements, and for magnetic shielding based on the Meissner effect.

「従来の技術」 近来、常電導状態から超電導状態へ遷移する臨界温度(
T c)が極めて高い酸化物系の超電導材料が種々発見
されつつある。そして、この上、うな超電導材料を用い
て薄膜状の超電導体を製造するには、従来、超電導材料
からなるターゲットに加速イオンを衝突させて、その表
面から叩き出された原子を基板上に薄膜状に付着させる
高周波スパッタ法が採られている。
"Conventional technology" Recently, the critical temperature (
Various oxide-based superconducting materials with extremely high T c) are being discovered. Furthermore, in order to manufacture a thin film superconductor using a superconducting material, conventionally, a target made of superconducting material is bombarded with accelerated ions, and the atoms ejected from the surface are deposited onto a thin film on a substrate. A high-frequency sputtering method is used to deposit the material in a uniform manner.

ところが、このようにして得られた薄膜状の超電導体は
、化合量論的な組成比よりずれたものとなり易い。これ
は、超電導体製造工程中に、空格子点が多数形成された
ことを意味する。そして、このような空格子点が多数形
成された超電導体では、その臨界温度、臨界電流密度が
高くならず、そのため満足すべき超電導特性が得られな
いという不都合がある。
However, the thin film superconductor thus obtained tends to have a composition ratio that deviates from the stoichiometric composition. This means that a large number of vacancies were formed during the superconductor manufacturing process. A superconductor in which a large number of such vacancies are formed does not have a high critical temperature or critical current density, and therefore has the disadvantage that satisfactory superconducting properties cannot be obtained.

そこで、本発明者等は、上記のような不都合を解決する
ために、超電導体の成分調整を図って、空格子点に補充
元素を導入し超電導特性の向上を図ることを検討してい
る。この補充元素導入の一手法として考えられるのは、
超電導材料の原料混合段階において、補充元素を含む粉
末を超電導(オ料からなる粉末に混合し、この混合粉末
を焼結してターゲットを作製し、このターゲットから高
周波スパッタ法により基板上に薄膜状の超電導体を形成
する方法である。
Therefore, in order to solve the above-mentioned disadvantages, the present inventors are considering improving the superconducting properties by adjusting the composition of the superconductor and introducing supplementary elements into the vacancies. One possible way to introduce this supplementary element is to
In the raw material mixing stage of superconducting materials, powder containing supplementary elements is mixed with powder consisting of superconducting materials, this mixed powder is sintered to create a target, and a thin film is formed from this target onto a substrate by high-frequency sputtering. This is a method for forming superconductors.

「発明が解決しようとする問題点」 ところが、このような方法では、補充元素の一部が、タ
ーゲットから叩き出されて基板上に飛来する間に散逸し
てしまい、このため製造された超電導体中の補充元素濃
度を所望の濃度に制御することが困難である。したがっ
て、最適な補充元素濃度を決定して超電導特性の向上を
図ることが困難であるという問題があった。
``Problems to be Solved by the Invention'' However, in this method, some of the supplementary elements are ejected from the target and dissipated while flying onto the substrate, which causes problems in the manufactured superconductor. It is difficult to control the concentration of supplementary elements in the desired concentration. Therefore, there has been a problem in that it is difficult to determine the optimum supplementary element concentration to improve superconducting properties.

また、補充元素濃度を変更するには、新たに所望の補充
元素濃度のターゲットを作製しなければならないという
問題があった。
Furthermore, in order to change the supplementary element concentration, there is a problem in that a new target with the desired supplementary element concentration must be prepared.

「発明の目的」 この発明は、上記問題に鑑みてなされたもので、超電導
体中の補充元素濃度を制御することにより、最適な補充
元素濃度を決定して超電導特性の向上を図ることができ
る超電導体の製造方法を提供することを目的としている
"Purpose of the Invention" This invention was made in view of the above problem, and by controlling the concentration of supplementary elements in a superconductor, it is possible to determine the optimum concentration of supplementary elements and improve superconducting properties. The purpose is to provide a method for manufacturing superconductors.

「問題点を解決するための手段」 この発明の超電導体の製造方法は、酸化物系の超電導材
料からなる薄膜と、この薄膜への補充元素を含む化合物
からなる薄膜とを積層することにより積層薄膜を形成し
、次いで、この積層薄膜に、真空雰囲気あるいはガス雰
囲気で熱処理を施すことを、特徴としている。
"Means for Solving the Problems" The method for producing a superconductor of the present invention involves laminating a thin film made of an oxide-based superconducting material and a thin film made of a compound containing a supplementary element to this thin film. The method is characterized in that a thin film is formed and then the laminated thin film is subjected to heat treatment in a vacuum atmosphere or a gas atmosphere.

「実施例」 図はこの発明をL a−8r−Cu−0系の超電導体の
製造方法に適用した一例を説明するためのもので、この
系の超電導体を製造するには、まず、各元素の組成比が
、 La:Sr:Cu= 1.85 :0.15 :1とな
るように、La元素粉末とSr元素粉末とCuO粉末と
を混合して、この混合粉末を圧粉した後焼結してターゲ
ット(’r +)を作製する。また、これとは別に、5
rFtからなるターゲット(T、)を用、意する。
"Example" The figure is for explaining an example in which the present invention is applied to a method for producing a La-8r-Cu-0 series superconductor. After mixing La element powder, Sr element powder, and CuO powder so that the composition ratio of the elements becomes La:Sr:Cu=1.85:0.15:1 and compacting this mixed powder, A target ('r +) is produced by sintering. In addition, apart from this, 5
A target (T,) made of rFt is prepared.

次に、ターゲット(T、)をスパッタ装置にセットして
Arガス雰囲気で高周波スパッタリングを行うことによ
りサファイア等からなる基板!上にL a−S r−C
u−0系の超電導材料からなる薄l1i2を形成する。
Next, the target (T,) is set in a sputtering device and high frequency sputtering is performed in an Ar gas atmosphere to create a substrate made of sapphire or the like. La-S r-C on top
A thin l1i2 made of u-0-based superconducting material is formed.

このようにして形成された薄膜2には空格子点が多数存
在している。
A large number of vacancies exist in the thin film 2 formed in this manner.

次いで、スパッタ装置にターゲット(T、)をセットし
てスパッタリングを行うことにより、この薄膜2上に5
rFtからなる薄膜3を形成する。さらに、この薄膜3
上に上記と同様にして簿膜2を形成する。そして、この
工程を所定の回数だけ繰り返すことにより基板I上に積
層薄膜4を形成する。
Next, by setting a target (T,) in a sputtering device and performing sputtering, 5
A thin film 3 made of rFt is formed. Furthermore, this thin film 3
A film 2 is formed thereon in the same manner as above. Then, the laminated thin film 4 is formed on the substrate I by repeating this process a predetermined number of times.

次に、この積層薄膜4に、0.ガスとF、ガスとからな
る混合ガスの雰囲気で熱処理(加熱温度=800℃〜1
100℃、加熱時間:1時間〜100時間)を施す。こ
れにより、薄膜2中のL a、 S r。
Next, this laminated thin film 4 is coated with 0. Heat treatment in a mixed gas atmosphere consisting of gas, F, and gas (heating temperature = 800℃ ~ 1
100°C, heating time: 1 hour to 100 hours). As a result, L a and S r in the thin film 2.

Cu、Oと、薄膜3中のSr、Fとが相互に拡散し反応
して、積T!i薄膜4が均一な薄膜状の超電導体となる
Cu and O and Sr and F in the thin film 3 diffuse and react with each other, resulting in a product T! The thin film 4 becomes a uniform thin film superconductor.

そして、このようにして製造された超電導体は、その内
部に存在している空格子点にF原子(補充光T:)が導
入されて空格子点が減少したものになっている。
In the superconductor thus manufactured, F atoms (supplementary light T:) are introduced into the vacancies existing inside the superconductor, so that the number of vacancies is reduced.

上記の超電導体の製造方法によれば、L a−S r−
Cu−0系の空格子点を有する薄膜2上に、S r F
 !からなる薄膜3を形成し、さらに、この薄膜3上に
薄膜2を形成する工程を繰り返して積層薄膜4を形成し
、この積層薄膜4に熱処理を施すことにより空格子点に
F原子を導入したので、薄膜3の膜厚を制御することに
より超電導体中のF原子の濃度を所望の濃度に制御する
ことができ、よって最適なF原子の濃度を決定して超電
導特性の向上を図ることができる。
According to the above method for manufacturing a superconductor, L a-S r-
On the thin film 2 having Cu-0-based vacancies, S r F
! A thin film 3 consisting of the above was formed, and the process of forming the thin film 2 on this thin film 3 was repeated to form a laminated thin film 4, and F atoms were introduced into the vacancies by subjecting this laminated thin film 4 to heat treatment. Therefore, by controlling the thickness of the thin film 3, the concentration of F atoms in the superconductor can be controlled to a desired concentration, and therefore, it is possible to determine the optimum concentration of F atoms and improve the superconducting properties. can.

また、薄膜3の膜厚を熱処理前に測定し薄膜2の膜厚と
比較することにより、熱処理後に得られる薄膜状の超電
導体中のF原子の濃度を正確に知ることができる。
Furthermore, by measuring the thickness of the thin film 3 before the heat treatment and comparing it with the thickness of the thin film 2, it is possible to accurately know the concentration of F atoms in the thin film superconductor obtained after the heat treatment.

さらに、F原子(補充元素)の濃度の変更が、積層薄膜
4の層数および各層の層厚(膜厚)を変更する。ことに
より自在に行えるので、従来のように補充元素濃度を変
更する際に新たに所望の補充元素濃度のターゲットを作
製する必要がない。
Furthermore, changing the concentration of F atoms (supplementary element) changes the number of layers of the laminated thin film 4 and the layer thickness (film thickness) of each layer. Since this can be done freely, there is no need to create a new target with a desired supplemental element concentration when changing the supplementary element concentration, unlike in the past.

なお、上記実施例においては、この発明をLa−5r−
Cu−0系のものについて適用したが、Laの代わりに
Sc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd
In addition, in the above-mentioned example, this invention is La-5r-
It was applied to Cu-0 series, but instead of La, Sc, Y, La, Ce, Pr, Nd, Pm, Eu, Gd
.

Tb、Dy、Ho、Er、Tm、Yb、Lu等のl1l
a族元素、また、Srの代わりにBe、S r、Mg、
Ba、Ra等のアルカリ土類金属元素が用いられた酸化
物系のものに適用してもよい。
l1l of Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.
Group a elements, and instead of Sr, Be, Sr, Mg,
It may also be applied to oxides using alkaline earth metal elements such as Ba and Ra.

また、空格子点に導入する元素としてF原子を用いたが
、CQ 、B r等のハロゲン元素を用いてもよい。こ
の場合、ターゲット(T、)の素材を、SrC(h、 
S rB rt等のLaのハロゲン化物にして薄膜3を
形成すればよい。
Furthermore, although F atoms were used as the elements introduced into the vacancies, halogen elements such as CQ and Br may also be used. In this case, the target (T,) material is SrC (h,
The thin film 3 may be formed using a halide of La such as S rB rt.

さらに、ターゲット(T、)の素材を5rFtにしたが
、S rCQt、 S rB rt等のSrのハロゲン
化物、あるいはLaF’s、LaCQt、LaBrt等
のLaのハロゲン化物にしてもよい。
Furthermore, although the target (T,) is made of 5rFt, it may be made of Sr halides such as S rCQt and S rB rt, or La halides such as LaF's, LaCQt, and LaBrt.

加えて、積石薄膜4の熱処理をO,ガスとF、ガスとか
らなる混合ガスの雰囲気で行ったが、真空雰囲気、ある
いはCIL、Br*、HF、CF*、CChF!等のハ
ロゲン化物含有ガス、P b、 Z n、 S n”J
の低融点金属の酸化物、塩化物、炭酸塩等の蒸気ガスな
どのハロゲン元素を含む雰囲気で行ってもよい。
In addition, the heat treatment of the stacked stone thin film 4 was performed in an atmosphere of a mixed gas consisting of O gas and F gas, but in a vacuum atmosphere or CIL, Br*, HF, CF*, CChF! Halide-containing gases such as P b, Z n, S n”J
It may be carried out in an atmosphere containing a halogen element such as a vapor gas of a low melting point metal oxide, chloride, carbonate, etc.

「発明の効果」 以上説明したように、この発明によれば、酸化物系の超
電導材料からなる薄膜と、この薄膜への補充元素を含む
化合物からなる薄膜とを積層することにより形成された
積層薄膜に、真空雰囲気あるいは補充元素を含むガス雰
囲気で熱処理を施すことにより補充元素を導入したので
、補充元素を含む化合物からなる薄膜の膜厚を制御する
ことにより、超電導中の補充元素濃度を所望の濃度に制
御することができ、より、て最適な補充元素濃度を決定
して超電導特性の向上を図ることができる。
"Effects of the Invention" As explained above, according to the present invention, a laminated layer formed by laminating a thin film made of an oxide-based superconducting material and a thin film made of a compound containing a supplementary element to this thin film. Since the supplementary element was introduced into the thin film by heat treatment in a vacuum atmosphere or a gas atmosphere containing the supplementary element, the concentration of the supplementary element during superconductivity can be adjusted to the desired concentration by controlling the thickness of the thin film made of a compound containing the supplementary element. Therefore, the optimum supplementary element concentration can be determined and the superconducting properties can be improved.

また、補充元素を含む化合物からなる薄膜の膜厚を熱処
理前に測定し超電導材料からなる薄膜の膜厚と比較する
ことにより、熱処理後に得られる超電導体中の補充元素
濃度を正確に知ることができる。
In addition, by measuring the thickness of a thin film made of a compound containing a supplementary element before heat treatment and comparing it with the thickness of a thin film made of a superconducting material, it is possible to accurately determine the concentration of supplementary elements in the superconductor obtained after heat treatment. can.

さらに、補充元素濃度の変更が、積層薄膜の層数および
各層の層厚(膜厚)を変更することにより自在に行える
ので、従来のように補充元素濃度をを変更する際に新た
に所望の補充元素濃度のターゲットを作製する必要がな
い。
Furthermore, the supplementary element concentration can be freely changed by changing the number of layers in the laminated thin film and the layer thickness (film thickness) of each layer. There is no need to create targets with supplementary element concentrations.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の超電導体の製造方法の一実施例を説明す
るためのものであり、基板上に形成された積層薄膜の断
面図である。 2・・・・・・L a−9r−Cu−0系の超電導材料
からなる薄膜(酸化物系の超電導材料からなる薄膜)、 3・・・・・・5rFtからなる薄膜(補充元素を含む
化合物からなる薄膜)、 4・・・・・・積層薄膜。 出顎人 藤倉電線株式会社 手続打[T正置(自発) 昭flj32年10月 7日 昭和62年特許願第76819号 2、発明の名称 超電導体の製造方法 3、補正をする者 事件との関係  特許出願人 (518)藤倉電線株式会社 4、代理人 東京都中央区八重洲2丁目1番5号 東京駅前ビル6階
明細書の「発明の詳細な説明」の欄。 6、補正の内容 (1)  第4頁第14行、rLa元素〜Sr元素粉末
」をrLatos粉末と5rCOs粉末」に訂正する。 (2)第8頁第3行、「い。」の後に次の文を加入する
。 「なお、以下に、Y −B a−Cu−0系の超電導体
の製造方法に適用した例について説明する。この系の超
電導体を製造するには、まず、各元素の組成比が、 Y :Ba:Cu= 1.0 :2.0 :3.0とな
るように、YyOi粉末とBaO粉末とCuO粉末とを
混合して、この混合粉末を圧粉した後焼結してターゲッ
ト(TOを作製する。また、これとは別に、BaF、か
らなるターゲット(T、)を用意する。 次に、ターゲット(’r +)をスパッタ装置にセット
してArガス雰囲気で高周波スパッタリングを行うこと
によりサファイア等からなる基板上にY−B a−Cu
−0系の超電導材料からなる薄膜2を形成する。 次いで、スパッタ装置にターゲット(T、)をセットし
てスパッタリングを行うことにより、この薄膜上にBa
F*からなる薄膜を形成する。さらに、この薄膜上に上
記と同様にして薄膜を形成する。 そして、この工程を所定の回数だけ繰り返すことにより
基板上に積層薄膜を形成する。
The figure is for explaining one embodiment of the method for manufacturing a superconductor of the present invention, and is a cross-sectional view of a laminated thin film formed on a substrate. 2...La thin film made of a-9r-Cu-0-based superconducting material (thin film made of oxide-based superconducting material), 3... Thin film made of 5rFt (containing supplementary elements) Thin film consisting of a compound), 4...Laminated thin film. Jaw Person Fujikura Electric Cable Co., Ltd. Procedures [T-Seki (Spontaneous) October 7, 1962 Patent Application No. 76819 2, Name of Invention Method for Manufacturing Superconductor 3, Amendment Case Related: Patent Applicant (518) Fujikura Electric Cable Co., Ltd. 4, Agent 6th Floor, Tokyo Station Building, 2-1-5 Yaesu, Chuo-ku, Tokyo "Detailed Description of the Invention" column of the specification. 6. Contents of correction (1) Page 4, line 14, "rLa element to Sr element powder" is corrected to "rLatos powder and 5rCOs powder". (2) Add the following sentence after "I." on page 8, line 3. "Below, we will explain an example applied to the method for manufacturing a Y-B a-Cu-0 system superconductor. In order to manufacture this system superconductor, first, the composition ratio of each element is changed to Y :Ba:Cu=1.0:2.0:3.0, YyOi powder, BaO powder, and CuO powder are mixed, and this mixed powder is compacted and sintered to form a target (TO Separately, a target (T, ) made of BaF is prepared. Next, the target ('r +) is set in a sputtering device and high-frequency sputtering is performed in an Ar gas atmosphere. Y-B a-Cu on a substrate made of sapphire etc.
A thin film 2 made of -0-based superconducting material is formed. Next, by setting a target (T,) in a sputtering device and performing sputtering, Ba is deposited on this thin film.
A thin film made of F* is formed. Furthermore, a thin film is formed on this thin film in the same manner as above. Then, by repeating this process a predetermined number of times, a laminated thin film is formed on the substrate.

Claims (1)

【特許請求の範囲】[Claims] 酸化物系の超電導材料からなる薄膜と、この薄膜への補
充元素を含む化合物からなる薄膜とを積層することによ
り積層薄膜を形成し、次いで、この積層薄膜を、真空中
あるいはガス雰囲気で熱処理することを特徴とする超電
導体の製造方法。
A laminated thin film is formed by laminating a thin film made of an oxide-based superconducting material and a thin film made of a compound containing a supplementary element to this thin film, and then this laminated thin film is heat-treated in a vacuum or a gas atmosphere. A method for producing a superconductor, characterized by:
JP62076819A 1987-03-30 1987-03-30 Superconductor manufacturing method Pending JPS63241825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076819A JPS63241825A (en) 1987-03-30 1987-03-30 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076819A JPS63241825A (en) 1987-03-30 1987-03-30 Superconductor manufacturing method

Publications (1)

Publication Number Publication Date
JPS63241825A true JPS63241825A (en) 1988-10-07

Family

ID=13616278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076819A Pending JPS63241825A (en) 1987-03-30 1987-03-30 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPS63241825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274657A (en) * 1987-05-06 1988-11-11 Semiconductor Energy Lab Co Ltd Oxide superconductive material
JPH01198465A (en) * 1988-02-04 1989-08-10 Fujitsu Ltd superconducting composite material
JPH0287688A (en) * 1988-09-26 1990-03-28 Matsushita Electric Ind Co Ltd Superconducting element and its manufacturing method
US5141917A (en) * 1988-11-29 1992-08-25 Fujitsu Limited Multilayer deposition method for forming Pb-doped Bi-Sr-Ca-Cu-O Superconducting films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274657A (en) * 1987-05-06 1988-11-11 Semiconductor Energy Lab Co Ltd Oxide superconductive material
JPH01198465A (en) * 1988-02-04 1989-08-10 Fujitsu Ltd superconducting composite material
JPH0287688A (en) * 1988-09-26 1990-03-28 Matsushita Electric Ind Co Ltd Superconducting element and its manufacturing method
US5141917A (en) * 1988-11-29 1992-08-25 Fujitsu Limited Multilayer deposition method for forming Pb-doped Bi-Sr-Ca-Cu-O Superconducting films
US5585332A (en) * 1988-11-29 1996-12-17 Fujitsu Limited Process for preparing a perovskite Bi-containing superconductor film

Similar Documents

Publication Publication Date Title
RU1831470C (en) Process of manufacture of a superconductor ceramic wire
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JP2711253B2 (en) Superconducting film and method for forming the same
JPS63241825A (en) Superconductor manufacturing method
JPS63241824A (en) Manufacture of superconductor
US5196398A (en) Process for producing thallium type superconducting thin film
KR890011126A (en) Composite oxide superconducting thin film or wire and its manufacturing method
JPH0825742B2 (en) How to make superconducting material
JPH04132611A (en) Superconductor
EP0344406B1 (en) Tl-based copper oxide superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
EP0333513B1 (en) Oxide superconductor
JPS63233066A (en) Production of superconductive body
JP2532969B2 (en) Oxide-based superconducting film and method for producing the same
US5110791A (en) Method for producing oxide superconductor
JPS63303810A (en) Ceramic superconductor
JPH01183176A (en) Method for manufacturing superconducting thin film
JPH01160827A (en) Preparation of oxide superconducting thin film
JP3059464B2 (en) Oxide material
JPH07112927B2 (en) Method for manufacturing oxide superconducting thin film
JPH01102975A (en) Manufacture of superconducting ceramic
JPH01167224A (en) Caramics having artificial lattice structure
JPH02159364A (en) Manufacturing method of Tl-based superconducting laminated film
JPS63248019A (en) Method for manufacturing oxide superconducting thin film