JPS6323955Y2 - - Google Patents
Info
- Publication number
- JPS6323955Y2 JPS6323955Y2 JP7603086U JP7603086U JPS6323955Y2 JP S6323955 Y2 JPS6323955 Y2 JP S6323955Y2 JP 7603086 U JP7603086 U JP 7603086U JP 7603086 U JP7603086 U JP 7603086U JP S6323955 Y2 JPS6323955 Y2 JP S6323955Y2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- specific gravity
- separation cylinder
- storage tank
- liquid storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
この考案は、比重差のある粒子の混在する粒子
混在物を比重大の粒子と比重小の粒子とに選別す
る粒子混在物の選別装置に係る。[Detailed description of the invention] (Field of industrial application) This invention is a particle inclusion sorting device that separates particle inclusions containing particles with different specific gravity into particles with high specific gravity and particles with low specific gravity. It depends.
(従来の技術)
従来、電線や電気部品等の異種材質から構成さ
れる製品のスクラツプは米粒位いの大きさに破砕
された後、風力及び磁力選別してスクラツプの有
価物の再利用が図られている。(Prior technology) Conventionally, scraps from products made of different materials such as electric wires and electrical parts are crushed into pieces the size of a grain of rice, and then separated by wind and magnetic forces to reuse the scraps as valuable materials. It is being
(考案が解決しようとする問題点)
しかし、風力及び磁力選別では、例えば銅、ア
ルミニウム、貴金属類などの金属粒子、プラスチ
ツク粒などの粒子混在物を各材質の粒子に選別す
ることが充分でなかつた。(Problem that the invention aims to solve) However, with wind and magnetic sorting, it is not sufficient to separate particle contaminants such as metal particles such as copper, aluminum, and precious metals, and plastic particles into particles of each material. Ta.
(問題点を解決するための手段)
この考案は上記した問題点を解決するために、
比重差のある粒子の混在する粒子混在物を、貯液
槽に縦向きあるいは斜状に設けた分離筒内に供給
し、貯液槽内の液体を分離筒内を経て貯液槽に還
流させ、該液体を利用して比重大の粒子と比重小
の粒子とに選別する選別装置であつて、前記分離
筒は下端に下開口部が設けられかつ上端に上開口
部が設けられた筒状をなし、分離筒内には下部側
が小径のコーン形状の選別筒が縦向きに複数個配
設されるとともに、前記分離筒には粒子混在物を
分離筒内に供給する供給手段が設けられ、比重大
の粒子を下開口部側に、比重小の粒子を上開口部
側に分離せしめる構造とされる。(Means for solving the problems) In order to solve the above problems, this invention
A particle mixture containing particles with different specific gravity is supplied into a separation cylinder installed vertically or obliquely in a liquid storage tank, and the liquid in the liquid storage tank is returned to the liquid storage tank through the separation cylinder. , a sorting device that uses the liquid to separate particles with high specific gravity and particles with low specific gravity, wherein the separation tube has a cylindrical shape with a lower opening provided at the lower end and an upper opening provided at the upper end. A plurality of cone-shaped sorting cylinders each having a small diameter on the lower side are arranged vertically in the separation cylinder, and the separation cylinder is provided with a supply means for supplying particle inclusions into the separation cylinder, The structure is such that particles of high specific gravity are separated to the lower opening side, and particles of low specific gravity are separated to the upper opening side.
(作用)
分離筒内には貯液槽内の液体がポンプにより所
定量流入して上開口部側へ排出される。供給手段
により分離筒内に供給された粒子混在物は分離筒
内において比重差により分離され、比重小の粒子
は液流によつて上開口部側へ搬ばれて排出され
る。比重の大きい粒子は液流に抗して分離筒内を
沈降して下開口部から排出される。また比重が大
きくても細い粒子やいわゆる中間比重の粒子は一
旦液流によつて上開口部側に搬ばれるが、分離筒
内に設けられた選別筒の選別作用によつて下開口
部側へ搬ばれて排出される。(Function) A predetermined amount of liquid in the liquid storage tank flows into the separation cylinder by a pump and is discharged to the upper opening side. The particle mixture supplied into the separation cylinder by the supply means is separated within the separation cylinder based on the difference in specific gravity, and particles with lower specific gravity are carried toward the upper opening side by the liquid flow and discharged. Particles with a large specific gravity settle in the separation cylinder against the liquid flow and are discharged from the lower opening. In addition, even if the specific gravity is large, fine particles or particles with so-called intermediate specific gravity are once carried to the upper opening side by the liquid flow, but are transferred to the lower opening side by the sorting action of the sorting cylinder installed in the separation cylinder. It is transported and discharged.
(実施例)
次に、本考案の一実施例を図面に基づいて説明
する。なお、本実施例においては、電線やテレビ
受像機等の電気製品のスクラツプを5mm程度の大
きさに破砕し磁力選別処理した後に、得られた非
磁性の金属粒子Mとプラスチツク粒子Pとよりな
る粒子混在物Aが選別処理される。(Example) Next, an example of the present invention will be described based on the drawings. In this example, the scraps of electrical products such as electric wires and television receivers are crushed into pieces of about 5 mm in size and subjected to magnetic separation treatment, and then the resulting scraps are made up of non-magnetic metal particles M and plastic particles P. Particle inclusion A is subjected to a sorting process.
第1図は選別装置1の全体を示したものであつ
て、この選別装置1は水Wを貯えた貯液槽2と、
この貯液槽2の貯水W内に下端部を配置して約60
度に斜設され、上端部側をポンプ3に連通された
分離筒4と、分離筒4内に粒子混在物Aを供給す
る供給器5とを主要部としている。貯液槽2は縦
断面が略V字形にされていて落下する金属粒子M
が槽内底部に集まるようにされている。貯液槽2
の一方側には還水槽19が配置され、かつ他方側
には排水槽21が配置されている。 FIG. 1 shows the whole of a sorting device 1, and this sorting device 1 includes a liquid storage tank 2 storing water W,
The lower end is placed in the water storage W of this liquid storage tank 2, and the
The main parts are a separation cylinder 4 which is obliquely installed at the same time and whose upper end side is communicated with a pump 3, and a feeder 5 which supplies particle inclusions A into the separation cylinder 4. The liquid storage tank 2 has a substantially V-shaped longitudinal section, and falls metal particles M.
are collected at the bottom of the tank. Liquid storage tank 2
A return water tank 19 is arranged on one side of the tank, and a drainage tank 21 is arranged on the other side.
分離筒4はほぼ同一内径D1とされた筒状の中
胴部6よりなり、その下端部には下開口部7、上
端部には上開口部8が形成されていて、下開口部
7は貯液槽2の水中に配置されている。分離筒4
内には、上端側が中胴部6の内径D1と等しい大
径部10とされ下方に細くなり下端側が内径D2
の小径部11とされたコーン形状の選別筒12
が、所定間隔L1を保持して縦向きに複数個配さ
れている。選別筒12の上端側の内径D1と下端
側の内径D2の比は選別する粒子混在物の比重、
ポンプ3の吸い上げ流量等に基づき適宜に定めら
れるが本実施例においては略5対3とされてい
る。選別筒12を配設する間隔L1は選別筒12
の筒長L2と略同一にされている。分離筒4の中
胴部6には粒子混在物Aを供給する供給口13が
開口されて、供給器5の下端と連通している。 The separation cylinder 4 consists of a cylindrical middle body part 6 having approximately the same inner diameter D1, and has a lower opening 7 formed at its lower end, an upper opening 8 formed at its upper end, and the lower opening 7 It is placed underwater in the liquid storage tank 2. Separation tube 4
Inside, the upper end side is a large diameter part 10 that is equal to the inner diameter D1 of the middle body part 6, and the lower end side is a large diameter part 10 that is tapered downward and has an inner diameter D2.
A cone-shaped sorting tube 12 with a small diameter portion 11
are vertically arranged with a predetermined interval L1 between them. The ratio between the inner diameter D1 on the upper end side and the inner diameter D2 on the lower end side of the sorting cylinder 12 is determined by the specific gravity of the particle inclusions to be sorted;
It is determined as appropriate based on the suction flow rate of the pump 3, etc., but in this embodiment, it is approximately 5:3. The interval L1 at which the sorting tubes 12 are arranged is the same as the sorting tubes 12.
The cylinder length L2 is approximately the same as that of the cylinder length L2. A supply port 13 for supplying particle inclusions A is opened in the middle body 6 of the separation cylinder 4 and communicates with the lower end of the supply device 5 .
供給器5は下部が円錐形に形成された筒状とさ
れ、供給器5上には粒子混在物Aを貯えたホツパ
15が設置されている。ホツパ15の底部にはロ
ータリバルブ16が設けられていてロータリーバ
ルブ16の駆動回転により所定量の粒子混在物A
を供給器5内に供給可能されている。また供給器
5の上端は還水管25を介して還水槽19に接続
されている。還水槽19は連通管24により貯液
槽2と連通されていて、水の流通が可能である。
還水槽19の水は還水管25に介装されたポンプ
26により供給器5へ給水され供給器5内に所定
水位が保持される。還水槽19上には水平振動す
る振動スクリーン20が設けられていて、金属粒
子Mに伴う水Wを還水槽19内に流下可能とされ
ている。また、貯液槽2には底部と、底部側部か
ら振動スクリーン20上まで延長されたスクリユ
コンベア17が配設されていて、モータ18の駆
動によつて貯液槽2内に選別された金属粒子Mを
還水槽19に配設した振動スクリーン20上に搬
送しうるものとされている。 The feeder 5 has a cylindrical shape with a conical lower part, and a hopper 15 storing particle inclusions A is installed above the feeder 5. A rotary valve 16 is provided at the bottom of the hopper 15, and a predetermined amount of particle inclusions A is generated by driving rotation of the rotary valve 16.
can be supplied into the supply device 5. Further, the upper end of the supply device 5 is connected to a water return tank 19 via a water return pipe 25. The return water tank 19 is connected to the liquid storage tank 2 through a communication pipe 24, and water can flow therethrough.
Water in the water return tank 19 is supplied to the supply device 5 by a pump 26 installed in a water return pipe 25, and a predetermined water level is maintained in the supply device 5. A vibrating screen 20 that vibrates horizontally is provided above the water return tank 19 to allow water W accompanying the metal particles M to flow down into the water return tank 19. The liquid storage tank 2 is also provided with a bottom and a screw conveyor 17 extending from the side of the bottom to above the vibrating screen 20. The metal particles M can be conveyed onto a vibrating screen 20 disposed in a water return tank 19.
一方、分離筒4の上部開口部8側には分離筒4
内の水および比重小のプラスチツク粒子Pを、排
水槽21の振動スクリーン22上に導く細径の排
水管9が接続されている。排水管9にはポンプ3
が介装されていて、貯液槽2の水Wを分離筒4内
を満して排水管9から排出可能とされている。 On the other hand, on the upper opening 8 side of the separation cylinder 4, there is a separation cylinder 4.
A drain pipe 9 with a small diameter is connected to the drain tank 21 for guiding the water and plastic particles P of low specific gravity onto the vibrating screen 22 of the drain tank 21. Pump 3 is installed in drain pipe 9.
is interposed so that the water W in the liquid storage tank 2 can fill the separation tube 4 and be discharged from the drain pipe 9.
排水槽21は貯液槽2と連通管23により連通
され排水槽21内の水は貯液槽2内に流入可能に
されている。 The drain tank 21 is communicated with the liquid storage tank 2 through a communication pipe 23, so that the water in the drain tank 21 can flow into the liquid storage tank 2.
次に上記した本例選別装置の作用を説明する。 Next, the operation of the above-mentioned sorting device of this embodiment will be explained.
ポンプ3を駆動すると貯液槽2内に貯えられた
水Wは吸い上げられて分離筒4内を通過し振動ス
クリーン22上に排出され、排水槽21内に流入
し、再び連通管23を通つて貯液槽2に還流され
る。またポンプ26を駆動すると還水槽19の水
は還水管25内を通つて供給器5内に流入し、供
給器5底部の供給口3を経て分離筒4内に流入し
て貯液槽2内の水Wとともにポンプ3により吸い
上げられて排水槽21内に排出される。 When the pump 3 is driven, the water W stored in the liquid storage tank 2 is sucked up, passes through the separation cylinder 4, is discharged onto the vibrating screen 22, flows into the drainage tank 21, and passes through the communication pipe 23 again. The liquid is refluxed to the liquid storage tank 2. When the pump 26 is driven, the water in the water return tank 19 flows into the supply device 5 through the water return pipe 25, flows into the separation cylinder 4 through the supply port 3 at the bottom of the supply device 5, and flows into the liquid storage tank 2. The water W is sucked up by the pump 3 and discharged into the drainage tank 21.
このように水Wが循環している選別装置1にお
いて、ホツパ15内の粒子混在物Aはロータリバ
ルブ16の駆動によつて一定量ずつ供給器5内に
供給される。粒子混在物Aは供給器5内の水中を
流下し供給口13を経て分離筒4内に供給され
る。 In the sorting device 1 in which the water W is circulated in this way, the particle contaminants A in the hopper 15 are supplied into the feeder 5 in fixed amounts by driving the rotary valve 16. The particle mixture A flows down through the water in the feeder 5 and is fed into the separation cylinder 4 through the feed port 13 .
分離筒4内には第2図に示されるとうりコーン
形状の選別筒12が所定の間隔L1で配設されて
いるために、ポンプ3により吸い上げられる水W
は選別筒12の小径部11部位で最速の流れS1
となり、選別筒12の大径部10部位では緩速の
流れS2となるとともに配設された各選別筒12
間の中胴部6内周面に沿つて水Wの流れ方向に対
して上下方向に循環する渦流S3を生じている
(第2図参照)。ポンプ3により吸い込まれる水W
量を適当なものに調整すると、供給口13から分
離筒4内に入る粒子混在物Aのうち比重小のプラ
スチツク粒子Pは水Wの流れとともに上方へ搬送
され、排出管9を通つて振動スクリーン22上に
排出されて回収される。 Cone-shaped sorting tubes 12 as shown in FIG.
is the fastest flow S1 at the small diameter portion 11 of the sorting tube 12
Therefore, in the large diameter portion 10 of the sorting tube 12, the flow becomes slow S2, and each sorting tube 12 arranged
A vortex S3 is generated that circulates in the vertical direction with respect to the flow direction of the water W along the inner circumferential surface of the middle body part 6 between the two (see FIG. 2). Water W sucked by pump 3
When the amount is adjusted to an appropriate value, the plastic particles P with low specific gravity among the particle inclusions A entering the separation cylinder 4 from the supply port 13 are transported upward with the flow of water W, and are passed through the discharge pipe 9 to the vibrating screen. 22 and collected.
他方、銅など比重大の金属粒子Mは最速の流れ
S1に抗して分離筒4内を落下して貯液槽2内の
底部に分離される。また、比重が大きくても細い
粒子やプラスチツク粒子Mより比重が大きく、か
つ金属粒子Mより比重が小さい、例えばアルミニ
ウム粒子などのいわゆる中間比重の金属粒子Mは
供給口13から最速の流れS1により分離筒4内
を一旦は上方に搬ばれる。しかし、分離筒4は傾
斜状に配設され、間隔L1間では緩速の流れS2
となつているために金属粒子Mは水流により搬ば
れながら分離筒4の中心部から中胴部6内周面側
に移動して渦流S3内に入り(第2図参照)、渦
流S3内を循環する。そして、循環している間に
金属粒子Mは相互にからみ合い団塊を形成して小
径部11の最速の流れS1に抗して落下可能な大
きさの団塊Maとなると選別筒12の内周面上を
落下して貯液槽2内に分離される。 On the other hand, metal particles M having a specific weight such as copper fall through the separation cylinder 4 against the fastest flow S1 and are separated at the bottom of the liquid storage tank 2. Further, even if the specific gravity is large, thin particles or metal particles M having a so-called intermediate specific gravity such as aluminum particles, which have a specific gravity larger than the plastic particles M and smaller than the metal particles M, are separated from the supply port 13 by the fastest flow S1. Once inside the cylinder 4, it is carried upward. However, the separation cylinder 4 is arranged in an inclined manner, and between the interval L1, the slow flow S2
Therefore, the metal particles M move from the center of the separation cylinder 4 toward the inner peripheral surface of the middle body 6 while being carried by the water flow, enter the vortex S3 (see Fig. 2), and move inside the vortex S3. circulate. While circulating, the metal particles M become entangled with each other to form a lump, and when the metal particles M become large enough to fall against the fastest flow S1 of the small diameter section 11, the inner peripheral surface of the sorting cylinder 12 The liquid falls from above and is separated into the liquid storage tank 2.
このようにして貯液槽2内に分離された金属粒
子Mはスクリユコンベア17によつて搬送されて
振動スクリーン20上に回収される。 The metal particles M thus separated in the liquid storage tank 2 are conveyed by the screw conveyor 17 and collected on the vibrating screen 20.
それぞれ選別回収された金属粒子Mおよびプラ
スチツク粒子Pは図示しない搬送手段により各振
動スクリーン20,22上から各貯留場に搬送さ
れる。 The metal particles M and plastic particles P, which have been sorted and collected, are conveyed from the vibrating screens 20 and 22 to the respective storage areas by means of conveyance means (not shown).
この実施例においては、金属粒子Mとプラスチ
ツク粒子Pとを選別する例について述べたが、粒
子はこれに限らず、例えば銅粒子とアルミニウム
粒子の金属粒子同志、ビニル樹脂と硬質プラスチ
ツク粒子同志の粒子混在物など比重を相違する粒
子混在物の場合に広く適用することができる。こ
の場合にはポンプ3の吸い上げ水量を適宜調整す
るなどして最速の流れS1が適宜調節される。 In this embodiment, an example in which metal particles M and plastic particles P are sorted out has been described, but the particles are not limited to this, and for example, metal particles such as copper particles and aluminum particles, and particles of vinyl resin and hard plastic particles. It can be widely applied to cases of particle inclusions with different specific gravities, such as inclusions. In this case, the fastest flow S1 is adjusted as appropriate by adjusting the amount of water sucked up by the pump 3 as appropriate.
なお、この実施例においては分離筒4を水平面
から略60度傾けて立設したものを示したが、この
角度は60度に限定するものに限られず適宜角度の
斜状あるいは縦向き状にすることができる。ま
た、前記した実施例は水を用いて粒子混在物を比
重大のものと比重小のものとに選別したが、粒子
混在物によつては食塩水などの所定液比重の液体
を用いることができる。 In addition, in this embodiment, the separation tube 4 is shown as being tilted approximately 60 degrees from the horizontal plane, but this angle is not limited to 60 degrees, and it may be slanted or vertically oriented at an appropriate angle. be able to. In addition, in the above embodiment, water was used to separate particle contaminants into those with specific gravity and those with low specific gravity, but depending on the particle contaminants, a liquid with a predetermined specific gravity such as saline solution may be used. can.
(考案の効果)
この考案は、前記問題解決手段となしたことに
より、比重差のある粒子混在物を比重大の粒子と
比重小に選別することができる。なお、選別した
各粒子のものは有効な再利用に供される。(Effects of the Invention) This invention is a means for solving the above problem, so that particle inclusions with different specific gravity can be sorted into particles of high specific gravity and particles of low specific gravity. Note that each sorted particle is effectively reused.
特に本考案においては、上方へ液体を流通し粒
子混在物を選別する分離筒内に、下部側が小径の
コーン形状の選別筒を複数個配設せしめたため、
選別性の悪い中間比重の粒子の選別が良化され、
粒子混在物の選別機能が高められる特徴を有す
る。 In particular, in the present invention, a plurality of cone-shaped sorting tubes with a small diameter on the lower side are arranged in the separation tube that distributes liquid upward and sorts out particle inclusions.
Improved sorting of particles with intermediate specific gravity, which have poor sortability,
It has the feature of increasing the ability to sort out particle inclusions.
添付図面はこの考案の一実施例を示し、第1図
は選別装置の概略した全体図、第2図は分離筒の
要部拡大断面図である。
1……粒子選別装置、2……貯液槽、3……ポ
ンプ、4……分離筒、5……供給器、7……下開
口部、8……上開口部、12……選別筒、A……
粒子混在物、M……金属粒子、P……プラスチツ
ク粒子、W……水。
The accompanying drawings show an embodiment of this invention, with FIG. 1 being a schematic overall view of the sorting device, and FIG. 2 being an enlarged cross-sectional view of the main part of the separation cylinder. DESCRIPTION OF SYMBOLS 1... Particle sorting device, 2... Liquid storage tank, 3... Pump, 4... Separation tube, 5... Supply device, 7... Lower opening, 8... Upper opening, 12... Sorting tube , A...
Particle inclusions, M...metal particles, P...plastic particles, W...water.
Claims (1)
液槽に縦向きあるいは斜状に設けた分離筒内に供
給し、貯液槽内の液体を分離筒内を経て貯液槽に
還流させ、該液体を利用して比重大の粒子と比重
小の粒子とに選別する選別装置であつて、前記分
離筒は下端に下開口部が設けられかつ上端に上開
口部が設けられた筒状をなし、分離筒内には下部
側が小径のコーン形状の選別筒が縦向きに複数個
配設されるとともに、前記分離筒には粒子混在物
を分離筒内に供給する供給手段が設けられ、比重
大の粒子を下開口部側に、比重小の粒子を上開口
部側に分離せしめる構造としたことを特徴とする
粒子混在物の選別装置。 A particle mixture containing particles with different specific gravity is supplied into a separation cylinder installed vertically or obliquely in a liquid storage tank, and the liquid in the liquid storage tank is returned to the liquid storage tank through the separation cylinder. , a sorting device that uses the liquid to separate particles with high specific gravity and particles with low specific gravity, wherein the separation tube has a cylindrical shape with a lower opening at the lower end and an upper opening at the upper end. A plurality of cone-shaped sorting cylinders each having a small diameter on the lower side are arranged vertically in the separation cylinder, and the separation cylinder is provided with a supply means for supplying particle inclusions into the separation cylinder, A particle inclusion sorting device characterized by having a structure in which particles with a specific gravity are separated into a lower opening side and particles with a small specific gravity are separated into an upper opening side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7603086U JPS6323955Y2 (en) | 1986-05-20 | 1986-05-20 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7603086U JPS6323955Y2 (en) | 1986-05-20 | 1986-05-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62187647U JPS62187647U (en) | 1987-11-28 |
JPS6323955Y2 true JPS6323955Y2 (en) | 1988-07-01 |
Family
ID=30922730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7603086U Expired JPS6323955Y2 (en) | 1986-05-20 | 1986-05-20 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6323955Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4732683B2 (en) * | 2003-12-29 | 2011-07-27 | ユニバーサル・バイオ・リサーチ株式会社 | Target substance detection method |
-
1986
- 1986-05-20 JP JP7603086U patent/JPS6323955Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62187647U (en) | 1987-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10189027B2 (en) | High capacity separation of metals from auto shredder residue | |
US3064806A (en) | Apparatus for wet sizing of solid materials | |
US5234111A (en) | Flotation machine | |
GB2078138A (en) | "Sink-float" separation of plastics from waste material | |
US4070274A (en) | Coarse concentrated iron ore for catalytic purposes | |
US5377845A (en) | Method of separating pulp containing magnetic constituents in a wet-magnetic, low-intensity concurrent separator and apparatus therefor | |
US20020157992A1 (en) | Alternating current magnetic separator | |
EP2221108A2 (en) | Method and use of an apparatus for the separation of particles | |
US6722503B2 (en) | Integrally formed separator/screen feedbox assembly | |
US2353152A (en) | Method of concentrating minerals | |
AU4169096A (en) | Mineral separator | |
CN101203316A (en) | equipment for separating solids from liquids | |
CN110624683A (en) | Mineral dressing shaker | |
JPS6323955Y2 (en) | ||
Gill | Gravity concentration | |
US3687284A (en) | Reconditioning of suspensions used in the separation of minerals | |
US5361910A (en) | Modified mineral jig | |
RU2064344C1 (en) | Magneto-gravitational separator | |
RU2049561C1 (en) | Apparatus for separation of mixes of granular materials | |
US3599791A (en) | Hydraulic sorting apparatus | |
CN2162297Y (en) | Rotary vibration type belt chute with weir | |
RU2077388C1 (en) | Jigging machine | |
US1434386A (en) | Apparatus for concentrating ores | |
CN114917682B (en) | Blast furnace dust removal ash separation system | |
CN210546625U (en) | Calcium carbonate ore washing sorting system |