JPS6323913Y2 - - Google Patents
Info
- Publication number
- JPS6323913Y2 JPS6323913Y2 JP1984027390U JP2739084U JPS6323913Y2 JP S6323913 Y2 JPS6323913 Y2 JP S6323913Y2 JP 1984027390 U JP1984027390 U JP 1984027390U JP 2739084 U JP2739084 U JP 2739084U JP S6323913 Y2 JPS6323913 Y2 JP S6323913Y2
- Authority
- JP
- Japan
- Prior art keywords
- wave
- heating
- roller
- heating coil
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 68
- 239000004020 conductor Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 description 16
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000007542 hardness measurement Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- General Induction Heating (AREA)
- Heat Treatment Of Articles (AREA)
Description
【考案の詳細な説明】
本考案は周面に波高の高い波型が連続的に形成
されている長尺大径ローラの表面を波底以上の深
さまで焼入れする場合の加熱コイルに関する。[Detailed Description of the Invention] The present invention relates to a heating coil for use in hardening the surface of a long, large-diameter roller whose circumferential surface is continuously formed with high-height corrugations to a depth equal to or higher than the bottom of the corrugations.
例えば長尺の棒材や管材を軸方向送りする場合
の駆動ローラは、第1図に示す如く当該駆動ロー
ラRの周面に連続的な波型が形成されていて、被
移送材Mが周方向へ転動するのを防止するように
している。当該駆動ローラRは被移送材が大径
M1の場合には波頂が、また小径M2の場合には波
腹乃至波底近傍が被移送材と接触して回動するの
で、少くとも波型全体に耐摩耗性が付与されてい
ることが望ましい。 For example, when a long bar or tube is fed in the axial direction, the drive roller R has a continuous wave pattern on its circumferential surface, as shown in FIG. This is to prevent it from rolling in any direction. The drive roller R has a large diameter for the transported material.
In the case of M 1 , the crest of the wave, and in the case of small diameter M 2 , the antinode or the vicinity of the wave bottom contact the transferred material and rotate, so at least the entire corrugation is imparted with wear resistance. It is desirable to be present.
ところで、この種駆動ローラの波型は一般に波
高が20mm以上もある。それ故、周面が平滑面であ
る通常の棒材や管材の表面を誘導加熱焼入れする
場合と同様に、第2図aに示す如くローラRを軸
回転せしめつつ、単巻もしくは複巻の公知形状加
熱コイルC′を当該ローラRの周方向に巻回して相
対移動させて周面を順次加熱し、これに追随する
冷却環Jから噴射される冷却流体で被加熱面を順
次急冷焼入れするようにしても(たとえ周波数を
種々変えた加熱でも)、波頂部分に磁束が集中す
るため、波型全体を加熱しようとすれば、波頂近
傍が過熱してしまう。これがため、やむを得ず波
頂近傍が適正焼入れ温度に昇温した時点で急冷焼
入れして第2図bにhで示す硬化層を形成するに
とどまり、波型の中腹から波底にかけては硬化層
の形成がないまま使用せざるを得ず、従つて移送
対象が大径.小径共用の場合には耐用時間の延長
は望めない。もし、是否とも波型全体に硬化層を
形成したい場合には、全体焼入れ方法がとられる
が、この場合にはローラ全体を電気炉等で所定焼
入れ温度まで加熱のうえ冷却焼入するので、処理
時間に長時間を費すばかりでなく、極めて大きな
焼入れ歪が発生するので、その矯直工程が必須と
なる。 By the way, the wave height of this type of drive roller is generally 20 mm or more. Therefore, in the same way as when induction heating and hardening the surface of a normal bar or tube material with a smooth circumferential surface, the roller R is rotated on its axis as shown in FIG. The shaped heating coil C' is wound in the circumferential direction of the roller R and moved relative to it to sequentially heat the circumferential surface, and the heated surface is sequentially rapidly cooled and quenched with the cooling fluid injected from the cooling ring J that follows this. However, since the magnetic flux is concentrated at the crest of the wave (even if heating is performed at various frequencies), if an attempt is made to heat the entire waveform, the area near the crest of the wave will overheat. For this reason, it is unavoidable that the area near the wave crest is rapidly cooled and quenched to form the hardened layer shown by h in Figure 2b when the temperature rises to the appropriate quenching temperature, and a hardened layer is formed from the midpoint to the bottom of the wave. Therefore, the object to be transferred has a large diameter. In the case of shared use with small diameters, extension of service life cannot be expected. If it is desired to form a hardened layer on the entire corrugated shape, the entire roller is hardened, but in this case, the entire roller is heated in an electric furnace to a specified hardening temperature and then cooled and hardened. Not only does it take a long time, but it also causes extremely large quenching distortions, so a straightening process is essential.
本考案は上述の問題点を解消する目的でなされ
たものであつて、処理時間が短時間ですみ、かつ
焼入れ歪の発生が殆んどない誘導加熱手段によつ
てロールの波型全体に焼入れ硬化層を形成可能な
波型ローラ移動加熱用コイルを提供するものであ
る。 The present invention was developed to solve the above-mentioned problems, and the entire corrugation of the roll is hardened by induction heating means that requires a short processing time and hardly causes hardening distortion. A corrugated roller moving heating coil capable of forming a hardened layer is provided.
本考案にかかる波型ローラ移動加熱コイルを第
3図aおよびbに示す一実施例に従つて説明す
る。 The corrugated roller moving heating coil according to the present invention will be explained according to an embodiment shown in FIGS. 3a and 3b.
加熱コイルCは図示の如く平行加熱導体1aお
よび1bと斜行加熱導体2aおよび2bとから構
成されている。上記平行加熱導体1aおよび1b
は被処理ローラRの軸線Xを対称軸として、それ
ぞれローラRの波頂と所定間隙をへだてて軸方向
に所定長さ延在する導体である。上記斜行加熱導
体2aは上記平行加熱導体1aの図示上方端と平
行加熱導体1bの図示下方端とを結び、ローラR
の波頂と所定間隙をへだてて楕円の長径半截周曲
線を画く導体であり、例えば中間位置で絶縁材3
により電気的に絶縁され、電源Eのそれぞれのリ
ード4および4がそれぞれの絶縁端部近傍に接続
されている。上記斜行加熱導体2bは上記平行加
熱導体1bの図示上方端と平行加熱導体1aの図
示下方端とを結び、ローラRの波頂と所定間隙を
へだてて楕円の長径半截周曲線を画く導体であ
る。従つて当該加熱コイルCは電源Eに接続する
リード4−斜行加熱導体2aの一方半部−平行加
熱導体1b−斜行加熱導体2b−平行加熱導体1
a−斜行加熱導体2aの他方半部−リード4なる
閉回路が構成されることとなる。勿論リード4と
の接続部を斜行加熱導体2の中間位置に限定する
ものではなく、平行加熱導体1にリード4との接
続部をもつてきてもよい。 As shown, the heating coil C is composed of parallel heating conductors 1a and 1b and oblique heating conductors 2a and 2b. The parallel heating conductors 1a and 1b
are conductors each extending a predetermined length in the axial direction apart from the wave crest of the roller R with a predetermined gap, with the axis X of the roller R being treated as the axis of symmetry. The diagonal heating conductor 2a connects the illustrated upper end of the parallel heating conductor 1a and the illustrated lower end of the parallel heating conductor 1b, and connects the roller R
It is a conductor that draws an elliptical major axis semicircular curve with a predetermined gap between the wave crest and the insulating material 3 at an intermediate position.
The leads 4 and 4 of the power supply E are connected near the respective insulated ends. The diagonal heating conductor 2b is a conductor that connects the illustrated upper end of the parallel heating conductor 1b and the illustrated lower end of the parallel heating conductor 1a, and forms an elliptical major axis semicircumferential curve with a predetermined gap from the wave crest of the roller R. be. Therefore, the heating coil C has a lead 4 connected to a power source E, one half of the diagonal heating conductor 2a, a parallel heating conductor 1b, a diagonal heating conductor 2b, and a parallel heating conductor 1.
A closed circuit consisting of the other half of the diagonal heating conductor 2a and the lead 4 is formed. Of course, the connection portion with the lead 4 is not limited to the intermediate position of the diagonal heating conductor 2, and the connection portion with the lead 4 may be provided on the parallel heating conductor 1.
上記の如き構成からなる本考案加熱コイルcで
は、平行加熱導体1aおよび1bから発生する磁
束φ1が第4図aに示すようにローラRの軸直角
方向となるので、波頂、波腹および波底の別なく
遠近の差はあるがほぼ均等に透過し、また斜行加
熱導体2aおよび2bから発生する磁束φ2が第
4図bに示すように波型に斜行して透過する。そ
のうえ本考案加熱コイルCの特徴は被処理ローラ
Rを軸方向所定長さ範囲にわたつて囲繞している
ので、当該範囲を全体的に磁気的閉ループゾーン
内に収容するとともに、平行加熱導体1と斜行加
熱導体2との接続部近傍の波型全体(例えばRで
示す部分の波型全体)を局部的に相逆行する電流
が流れることから生ずる磁気的閉ループ内に収容
する点にある。 In the heating coil c of the present invention constructed as described above, the magnetic flux φ 1 generated from the parallel heating conductors 1a and 1b is perpendicular to the axis of the roller R as shown in FIG. Regardless of the wave bottom, the magnetic flux φ 2 is transmitted almost uniformly, although there is a difference in distance, and the magnetic flux φ 2 generated from the diagonal heating conductors 2a and 2b is transmitted diagonally in a wave pattern as shown in FIG. 4b. Moreover, the heating coil C of the present invention is characterized in that it surrounds the roller R to be treated over a predetermined length range in the axial direction. The point is that the entire waveform in the vicinity of the connection with the diagonal heating conductor 2 (for example, the entire waveform in the portion indicated by R) is housed in a magnetic closed loop caused by the flow of locally countercurrent currents.
従つて被処理ローラRを軸回転せしめつつ、当
該ローラRと通電中の加熱コイルCとを所定速度
で相対移動せしめれば、加熱コイルCの対向する
ローラRの周面は順次全周にわたり波頂.波腹.
波底の別なくほぼ均一に所定焼入れ温度に加熱さ
れ、例えば加熱コイルCに追随する図示しない冷
却環から冷却流体を噴射することによりローラR
周面の波型全体は順次焼入れされ、硬化層が形成
される。 Therefore, if the roller R to be processed is rotated around its axis and the roller R and the heating coil C which is energized are moved relative to each other at a predetermined speed, the circumferential surface of the roller R facing the heating coil C will be sequentially waved over the entire circumference. Top. Antinode of the wave.
The roller R is heated almost uniformly to a predetermined hardening temperature regardless of the wave bottom, for example, by injecting cooling fluid from a cooling ring (not shown) that follows the heating coil C.
The entire circumferential corrugation is sequentially hardened to form a hardened layer.
本考案加熱コイルCを用いて行つた大径長尺の
波型ローラ焼入れ実施例を下記に示す。 An example of hardening a large diameter and long corrugated roller using the heating coil C of the present invention is shown below.
実施例
〇 被処理材
材質;SCMnCr3相当材
素材硬さ Hs38〜40
寸法;外径…303mm
内径…200mm
長さ…1350mm
波高…20mm
波長…76mm
〇 焼入れ装置
電源;3KHz 600KW
加熱コイル;本考案加熱コイル
平行加熱導体長さ…300mm
冷却装置;追随形冷却環
〇 熱処理方法;上記被処理材を軸回転させつ
つ、被処理材を一方端から他方端にかけて
加熱コイルと相対移動させ、相対移動に従
つて加熱された被処理材の周面を急冷焼入
れした。相対移動速度は2mm/secであり、
使用した冷却流体は0.5%PVA溶液であつ
た。急冷前の被処理材の周面温度は波頂部
分で950〜960℃を、波底部分で920〜930℃
を示していた。Example〇 Material to be treated Material: SCMnCr3 equivalent material Material hardness Hs38~40 Dimensions: Outer diameter…303mm Inner diameter…200mm Length…1350mm Wave height…20mm Wavelength…76mm 〇 Quenching device Power source: 3KHz 600KW Heating coil: Inventive heating coil Parallel heating conductor length: 300mm Cooling device: Tracking type cooling ring Heat treatment method: While rotating the above-mentioned material to be treated, the material to be treated is moved relative to the heating coil from one end to the other, and as the material moves relative to the heating coil. The peripheral surface of the heated material to be treated was rapidly cooled and hardened. The relative movement speed is 2mm/sec,
The cooling fluid used was a 0.5% PVA solution. The surrounding surface temperature of the material to be treated before quenching is 950 to 960℃ at the wave crest and 920 to 930℃ at the wave bottom.
It was showing.
上記焼入れ済被処理材は電気炉で所定時
間の焼もどし処理を施した。 The above-mentioned hardened material was subjected to tempering treatment for a predetermined time in an electric furnace.
〇 確性試験;熱処理済被処理材から試料を切出
し、第5図aに示す如く、波頂および波底
それぞれの表面から軸直角方向へかけて断
面の硬さ測定を行つた。測定は表面から
0.5mmの深さから0.5mmごとに行い、波頂か
らの測定値をA、または波底からの測定値
をBで示す折線グラフとして第5図bに示
す。また第5図cには形成された有効硬化
層(Hs65以上)パターンを交叉斜線Hで、
硬化層(Hs55以上)パターンを斜線hで
示す。〇 Accuracy test: A sample was cut out from the heat-treated material, and the hardness of the cross section was measured from the surface of each wave crest and wave bottom in the direction perpendicular to the axis, as shown in Figure 5a. Measure from the surface
The measurement was carried out every 0.5 mm from a depth of 0.5 mm, and the measured value from the wave crest is shown as A, and the measured value from the wave bottom is shown as B in Figure 5b. In addition, in Fig. 5c, the formed effective hardened layer (Hs65 or higher) pattern is indicated by crossed diagonal lines H.
The hardened layer (Hs55 or higher) pattern is indicated by diagonal lines h.
以上の確性試験結果から、本考案加熱コイルが
大径波型ローラ周面を波頂、波腹、波底の別なく
波底を含む表面から相当深さまでをほぼ均一に所
定焼入れ温度まで加熱することが可能であり、従
つて当該波型ローラの波型全体を焼入れし、十分
な厚みの硬化層を波型にそつて形成しうることが
確認された。 From the above reliability test results, the heating coil of the present invention can almost uniformly heat the circumferential surface of the large-diameter corrugated roller to the predetermined hardening temperature from the surface to a considerable depth, including the wave bottom, regardless of the wave crest, wave antinode, or wave bottom. It has been confirmed that it is possible to harden the entire corrugation of the corrugated roller and form a sufficiently thick hardened layer along the corrugation.
一方本考案加熱コイルは、本考案者がこれを完
成する過程で行つた多数の実験と比較することに
よつて、その効果の顕著なことを更に証明しう
る。以下に比較実験例を示す。 Meanwhile, the remarkable effectiveness of the heating coil of the present invention can be further demonstrated by comparing it with numerous experiments conducted by the inventor during the process of perfecting the heating coil. Examples of comparative experiments are shown below.
比較実験例 1
〇 供試体Tp…前記実施例と同一材質および同
一寸法
〇 電源…前記実施例と同じ
〇 加熱コイル…第6図に示される如き端面加熱
型コイルFc
軸方向平行導体fp長さ;300mm
周方向弧状導体fa周角度;100゜
〇 加熱方法……供試体Tpを軸回転せしめつつ
加熱コイルFcを図示の如く供試体Tpの波
頂と5mmの間隙をへだてて対向させた状態
で5分間通電し、回転中の周面を定位置加
熱した。Comparative Experimental Example 1 〇 Specimen Tp...Same material and same dimensions as the previous example 〇 Power source...Same as the above example 〇 Heating coil...End face heating type coil Fc as shown in Fig. 6 Axial direction parallel conductor fp length; 300mm Circumferential arc-shaped conductor fa circumferential angle: 100゜〇 Heating method: While rotating the specimen Tp, the heating coil Fc is placed opposite the wave crest of the specimen Tp with a gap of 5 mm as shown in the figure. Electricity was applied for a minute to heat the rotating peripheral surface in place.
〇 実験結果……赤熱するまで昇温するに至ら
ず、大径部材には現行最大出力クラスの電
源を用いても端面加熱型コイルの非効率性
から、加熱を進行せしめることが不可能な
ことが判明した。〇 Experimental results: The temperature did not rise to the point where it became red hot, and it was impossible to proceed with heating due to the inefficiency of the end heating type coil even if a current maximum output class power source was used for large diameter members. There was found.
比較実施例 2
〇 供試体Tp…前記実施例と同一材質および同
一寸法
〇 電源…前記実施例と同じ
〇 加熱コイル…第7図に示される如き供試体
Tpの周面を斜めに2巻きした形状のコイ
ルSc
傾斜角;30゜
〇 加熱方法……供試体Tpを軸回転せしめつつ
通電中の加熱コイルと相対移動させて移動
加熱した。相対移動速度は2.5mm/gecであ
つた。Comparative Example 2 〇 Specimen Tp...Same material and same dimensions as the previous example 〇 Power source...Same as the above example 〇 Heating coil...Specimen as shown in Fig. 7
Coil Sc in the shape of two diagonal turns around the circumferential surface of Tp Inclination angle: 30゜〇 Heating method: The specimen Tp was rotated around its axis and moved relative to the current heating coil to heat the specimen. The relative movement speed was 2.5 mm/gec.
〇 実験結果……移動加熱された供試体Tpの周
面は波頂が1200〜1300℃にまで加熱が進み
オーバーヒート状態となつたが、波底は
750〜780℃にしか昇温せず、焼入れが不可
であることが判明した。〇 Experimental results...The circumferential surface of the moving-heated specimen Tp was heated to a temperature of 1200 to 1300℃ at the wave crest, resulting in an overheated state, but the wave bottom was
It was found that the temperature could only rise to 750-780°C and quenching was impossible.
上記比較実験例を含む多数の実験を経て完成し
た本考案波型ローラ移動加熱コイルは前述の如
く、所定範囲のローラを全体的に磁気的閉ループ
ゾーン内に収容することによつて発生する磁束を
高効率で利用するとともに、平行加熱導体および
斜行加熱導体それぞれの発生する磁束の方向性を
適切に利用し、かつ波型を部分的に磁気的閉ルー
プ内に収容して順次移動加熱することとなるの
で、波底を含む表面から相当深さまでをほぼ均一
に加熱しうることが特徴である。 As mentioned above, the wave-shaped roller moving heating coil of the present invention, which was completed through numerous experiments including the above-mentioned comparative experiment example, suppresses the magnetic flux generated by accommodating a predetermined range of rollers entirely within a magnetic closed loop zone. In addition to using it with high efficiency, the directionality of the magnetic flux generated by the parallel heating conductor and the diagonal heating conductor is appropriately utilized, and the waveform is partially accommodated in a magnetic closed loop to sequentially move and heat the waveform. Therefore, it is characterized by being able to heat almost uniformly from the surface including the wave bottom to a considerable depth.
尚、電源設備と被処理ローラ径との関係におい
て、1回の移動加熱で被処理周面を所定焼入れ温
度にまで昇温し得ない場合には、焼入れのための
本加熱および急冷に先だつて所定出力による通電
下に1回ないし複数回の予熱移動加熱を施せばよ
い。 In addition, if the temperature of the peripheral surface to be treated cannot be raised to the specified quenching temperature by one movement heating due to the relationship between the power supply equipment and the diameter of the roller to be treated, Preheating transfer heating may be performed one or more times while energizing with a predetermined output.
本考案は、大径波型ローラ周面に焼入れ歪の発
生せしめず、短時間で波頂.波腹.波底の別なく
十分な深さの焼入れ硬化層の形成を可能とするの
で、大径波型ローラの製造コストの引下げと耐用
時間の延長に資するものとしてその効果は大であ
る。 This invention does not cause quenching distortion on the circumferential surface of the large-diameter corrugated roller, and the wave crest can be achieved in a short time. Antinode of the wave. Since it is possible to form a hardened layer of sufficient depth regardless of the corrugation bottom, it is highly effective in contributing to lowering the manufacturing cost and extending the service life of large-diameter corrugated rollers.
第1図は本考案実施対象である大径波型ローラ
の正面図、第2図aおよびbはそれぞれ従来形加
熱コイルを用いた焼入れ状態を示す正面図および
部分断面図、第3図aおよびbはそれぞれ本考案
波型ローラ移動加熱コイルの正面図および斜視
図、第4図aおよびbはそれぞれ本考案の作用を
説明する部分断面図および部分正面図、第5図
a,bおよびcはそれぞれ本考案を実施した波型
ローラの硬さ測定位置を示す部分断面図、硬さ測
定値の折線グラフおよび硬化層傾向を示す部分断
面図、第6図および第7図はそれぞれ比較実験例
を示す斜視図である。
1a,1b……平行加熱導体、2a,2b……
斜行加熱導体、C……波型ローラ移動加熱用コイ
ル、R……波型ローラ。
Fig. 1 is a front view of a large-diameter corrugated roller to which the present invention is applied, Figs. 2 a and b are a front view and a partial sectional view showing the quenched state using a conventional heating coil, and Figs. 3 a and 4b is a front view and a perspective view, respectively, of the corrugated roller moving heating coil of the present invention, FIGS. A partial cross-sectional view showing the hardness measurement position of the corrugated roller in which the present invention was implemented, a partial cross-sectional view showing a line graph of hardness measurement values, and a partial cross-sectional view showing the tendency of the hardened layer, and FIGS. 6 and 7 respectively show comparative experimental examples. FIG. 1a, 1b...Parallel heating conductor, 2a, 2b...
Diagonal heating conductor, C...corrugated roller moving heating coil, R...corrugated roller.
Claims (1)
る大径ローラの波底を含む表面から相当深さまで
焼入れする場合の加熱コイルが、上記ローラの軸
線を対称軸としてそれぞれローラの波頂と所定間
隙をへだてて軸方向に所定長さ延在可能な平行加
熱導体と、当該平行加熱導体それぞれの一方側の
一端と他方側の他端とを互いに楕円の長径半截周
曲線を画いて連結するローラの波頂と所定間隙を
へだてて対向可能な斜行加熱導体とから構成され
ていることを特徴とする波型ローラ移動加熱コイ
ル。 When hardening a large-diameter roller that has a continuous wave pattern with high wave height on its circumferential surface to a considerable depth from the surface including the wave bottom, the heating coil is used to harden the surface of a large diameter roller to a considerable depth from the surface including the wave bottom. and a parallel heating conductor that can extend a predetermined length in the axial direction with a predetermined gap between the parallel heating conductors, and one end on one side and the other end on the other side of each of the parallel heating conductors are connected to each other by drawing an elliptical long axis semicircle curve. 1. A wave-type roller moving heating coil comprising an oblique heating conductor that can face the wave crest of a roller with a predetermined gap therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984027390U JPS60141096U (en) | 1984-02-29 | 1984-02-29 | Corrugated roller moving heating coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984027390U JPS60141096U (en) | 1984-02-29 | 1984-02-29 | Corrugated roller moving heating coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60141096U JPS60141096U (en) | 1985-09-18 |
JPS6323913Y2 true JPS6323913Y2 (en) | 1988-06-30 |
Family
ID=30524298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984027390U Granted JPS60141096U (en) | 1984-02-29 | 1984-02-29 | Corrugated roller moving heating coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60141096U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7133361B2 (en) * | 2018-05-25 | 2022-09-08 | 高周波熱錬株式会社 | heating coil |
-
1984
- 1984-02-29 JP JP1984027390U patent/JPS60141096U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60141096U (en) | 1985-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4527032A (en) | Radio frequency induction heating device | |
JP2011047037A (en) | Induction heating coil, heat treatment device, and heat treatment method | |
JP3810621B2 (en) | Induction heating coil and heat treatment method for shaft member having multi-shaped heat treatment part | |
JPS6323913Y2 (en) | ||
JPH07249484A (en) | Heating inductor with lead contact | |
JP5096065B2 (en) | High frequency induction heating coil and high frequency induction heating method | |
JPS58210123A (en) | Heat treatment of clad steel pipe | |
US2673922A (en) | Partial-turn inductor coil | |
JPH04183822A (en) | Method for heating metal wire | |
JP3548523B2 (en) | High frequency induction heating coil | |
JP3270394B2 (en) | Apparatus and method for single-side quenching of flat ring-shaped workpiece | |
JPH0136905Y2 (en) | ||
JP3548522B2 (en) | High frequency induction heating coil | |
JPH0748627A (en) | Silicon steel strip with mechanically refined magnetic domain wall space | |
JP3159478B2 (en) | Method for uniform heating of steel ball surface | |
JPH0514471Y2 (en) | ||
JPH0662499U (en) | High frequency heating coil | |
JP2816361B2 (en) | Heating method for large deformed members before quenching | |
JP2005347069A (en) | Induction heating method and induction heating coil | |
JP4055853B2 (en) | Induction tempering device for crankshaft and induction tempering coil body used in the device | |
JP2587327Y2 (en) | Induction heating device inductor | |
JPS6233009Y2 (en) | ||
JPS60225392A (en) | Inductively heating method | |
JPS592105Y2 (en) | Continuous wire softening device | |
JPH046768B2 (en) |