JPS63236354A - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS63236354A JPS63236354A JP62069117A JP6911787A JPS63236354A JP S63236354 A JPS63236354 A JP S63236354A JP 62069117 A JP62069117 A JP 62069117A JP 6911787 A JP6911787 A JP 6911787A JP S63236354 A JPS63236354 A JP S63236354A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- gate oxide
- power supply
- supply voltage
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 230000000694 effects Effects 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、MOS FETで構成されるLSIに係
わるもので、特に内部に電源重圧降下回路を備えた半導
体装置装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an LSI composed of MOS FETs, and more particularly to a semiconductor device equipped with an internal power supply voltage drop-down circuit.
(従来の技術)
−12に、MOS FETを用いて構成されるLSI
においては、LSIチップ内の全てのMOS FET
のゲート酸化膜厚は同じに設定されている。これは製造
プロセスが最も簡単であり、しかもし81チツプ内の全
てのMOS FETが5vで動作するためである。(Prior art) -12, LSI configured using MOS FET
, all MOS FETs in the LSI chip
The gate oxide film thicknesses are set to be the same. This is because the manufacturing process is the simplest and all MOS FETs in the 81 chip operate at 5V.
しかしながら、近年のLSIの高集積化に伴って各素子
および配線の微細化が進んでおり、デザインルールが0
.8μm以下になると上記5■の動作電源電圧ではLS
Iの信頼性を保つのが困難になってきている。これは、
電源電圧を一定のままで素子を縮小すると電界が高くな
ることによる。However, as LSIs have become more highly integrated in recent years, each element and wiring have become increasingly finer, and design rules have become less
.. When it becomes 8μm or less, the operating power supply voltage of 5■ above is LS.
It is becoming difficult to maintain the reliability of I. this is,
This is because the electric field becomes higher when the device is reduced in size while keeping the power supply voltage constant.
この結果、ホットキャリア効果やゲート酸化膜の耐圧劣
化等の問題をもたらす。As a result, problems such as hot carrier effects and breakdown voltage deterioration of the gate oxide film arise.
この対策として、MOS FETをLDD構造にして
ホットキャリアに対して耐性を持たせる事はできるもの
の、これにも限界があり、ゲート酸化膜の耐圧劣化に関
しては決定的な手段がない。As a countermeasure against this problem, it is possible to make the MOS FET have an LDD structure so as to make it resistant to hot carriers, but this also has its limits, and there is no definitive measure against deterioration of the breakdown voltage of the gate oxide film.
以上のような事情から、LSIの内部電源電圧を下げる
方法が提案されている。これは外部からは5■の電源電
圧を供給し、この電源電圧をチップ内に形成した電源電
圧降下回路で3.3v程度に降下させ、内部回路をこの
降下させた電圧で作動せしめるものである。しかしなが
ら、このような構成でも入出力部には5■で動作する回
路が存在し、この回路におけるホットキャリア効果やゲ
ート酸化膜の耐圧劣化は避けられない。In view of the above-mentioned circumstances, methods have been proposed for lowering the internal power supply voltage of LSIs. In this system, a power supply voltage of 5V is supplied from the outside, this power supply voltage is lowered to approximately 3.3V by a power supply voltage drop circuit formed within the chip, and the internal circuit is operated with this lowered voltage. . However, even with such a configuration, there is a circuit in the input/output section that operates at 5.times., and hot carrier effects in this circuit and deterioration in the withstand voltage of the gate oxide film are unavoidable.
(発明が解決しようとする問題点)
上述したように従来の半導体装置では、高集積化に伴っ
てホットキャリア効果やゲート酸化膜の耐圧劣化等が発
生し、LSIの信頼性が低下する欠点がある。このよう
な欠点を除去するためにMO’S FETをLDD構
造にすることが考えられているがこれにも限界があり、
且つゲート酸化膜の耐圧劣化を防止することはできない
。そこで、LSIの内部電圧を下げる方法が提案されて
いるが、このような構成でも入出力部の回路におけるホ
ットキャリア効果やゲート酸化膜の耐圧劣化は避けられ
ない。(Problems to be Solved by the Invention) As mentioned above, conventional semiconductor devices have drawbacks such as hot carrier effects and gate oxide film breakdown voltage deterioration due to higher integration, resulting in lower LSI reliability. be. In order to eliminate these drawbacks, it has been considered to make the MO'S FET an LDD structure, but this also has its limitations.
Moreover, deterioration of the breakdown voltage of the gate oxide film cannot be prevented. Therefore, methods have been proposed to lower the internal voltage of the LSI, but even with such a configuration, hot carrier effects in the input/output circuit and deterioration of the breakdown voltage of the gate oxide film cannot be avoided.
この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、高集積化によって微細化され
てもホットキャリア効果やゲート酸化膜の耐圧劣化を確
実に低減でき、信頼性を向上できる半導体装置を提供す
ることである。This invention was made in view of the above circumstances,
The purpose is to provide a semiconductor device that can reliably reduce hot carrier effects and breakdown voltage deterioration of a gate oxide film and improve reliability even when miniaturized due to high integration.
[発明の構成]
(問題点を解決するための手段と作用)すなわち、この
発明においては、上記の目的を達成するために、MOS
FETのゲート酸化膜をLSIの内部で2種類以上
用いており、外部から供給される電源電圧で作動される
入出力回路部におけるMOS FETのゲート酸化膜
厚を、電源電圧降下回路で降下した電圧で作動される内
部回路のMOS FETのゲート酸化膜厚より厚く形
成している。[Structure of the invention] (Means and effects for solving the problem) In other words, in this invention, in order to achieve the above object, a MOS
Two or more types of FET gate oxide films are used inside the LSI, and the gate oxide film thickness of MOS FETs in the input/output circuit section operated by externally supplied power supply voltage is determined by the voltage dropped by the power supply voltage drop circuit. The gate oxide film is formed thicker than the gate oxide film of the MOS FET in the internal circuit operated by the MOS FET.
こうすることにより、入出力回路部におけるMOS
FETのゲート絶縁膜は厚いのでホットキャリア効果や
ゲート酸化膜の耐圧の劣化を防止でき、且つ電源電圧降
下回路で内部°回路に供給する電圧を降下しているので
この内部回路を構成するMOS FETのゲート酸化
膜厚は薄くても良く、高集積化の妨げや性能低下はない
。By doing this, the MOS in the input/output circuit section
The gate insulating film of the FET is thick, which prevents hot carrier effects and deterioration of the withstand voltage of the gate oxide film, and the power supply voltage drop circuit reduces the voltage supplied to the internal circuit, making it possible to reduce the voltage supplied to the internal circuit of the MOS FET. The gate oxide film thickness may be thin, without hindering high integration or degrading performance.
(実施例)
以下、この発明の一実施例について図面を参照して説明
する。第2図は、電源電圧降下回路を有する半導体装置
の回路構成例を示している。第2図において、11はL
SIチップで、このチップ11内には5■の電源電圧で
動作し外部とデータの授受を行なう入出力回路部12、
この入出力回路部12を介して供給される5vの電源電
圧を例えば3.3Vに降下させる電源電圧降下回路13
、及びこの電源電圧降下回路13によって降下された電
圧が供給されて作動されるセル及び周辺回路14の3つ
の回路ブロックが内蔵されている。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 2 shows an example of a circuit configuration of a semiconductor device having a power supply voltage drop circuit. In Figure 2, 11 is L
This chip 11 is an SI chip, and the chip 11 includes an input/output circuit section 12 that operates with a power supply voltage of 5 cm and exchanges data with the outside.
A power supply voltage drop circuit 13 that drops the 5V power supply voltage supplied via this input/output circuit section 12 to, for example, 3.3V.
, and a cell and peripheral circuit 14 that are operated by being supplied with the voltage dropped by the power supply voltage drop circuit 13.
第1図は上記第2図の回路における入出力回路部12と
セル及び周辺回路14を構成するMOSFETの断面構
成を示している。第1図において、15はP型のシリコ
ン基板、16は3.3Vの電圧が印加されるN型のウェ
ル領域、17は5vの電圧が印加されるN型のウェル領
域、18は膜厚が12nmのゲート酸化膜、19は膜厚
が20nmのゲート酸化膜、20.20−はソース領域
、21.21−はドレイン領域、22はゲート電極、2
3は素子分離用酸化膜で、図示する如く入出力回路部1
2を構成するMOS FETのゲート酸化膜19は、
セル及び周辺回路14を構成するMOS FETのゲ
ート酸化gl18より厚く形成されている。FIG. 1 shows a cross-sectional configuration of MOSFETs forming the input/output circuit section 12 and the cell and peripheral circuits 14 in the circuit shown in FIG. In FIG. 1, 15 is a P-type silicon substrate, 16 is an N-type well region to which a voltage of 3.3V is applied, 17 is an N-type well region to which a voltage of 5V is applied, and 18 is a film thickness. 12 nm gate oxide film, 19 is a gate oxide film with a film thickness of 20 nm, 20.20- is a source region, 21.21- is a drain region, 22 is a gate electrode, 2
3 is an oxide film for element isolation, and as shown in the figure, the input/output circuit section 1
The gate oxide film 19 of the MOS FET 2 constitutes
It is formed thicker than the gate oxidation layer 18 of the MOS FET constituting the cell and peripheral circuit 14.
次に、上述した構成の半導体装置の製造方法について第
3図(a)〜(d)を参照して説明する。Next, a method for manufacturing a semiconductor device having the above-described structure will be described with reference to FIGS. 3(a) to 3(d).
まず、(a)図に示すように、通常のCMOSプロセス
を用いてP型のシリコン基板15にN型のウェル領域1
6.17を形成する。次に素子分離用の酸化膜23を選
択的に形成した後、この素子分離用酸化膜23で分離さ
れた素子領域上のシリコン基板15上にゲート酸化g1
24を12nm程度の厚さに形成する。First, as shown in FIG.
6.17 is formed. Next, after selectively forming an oxide film 23 for element isolation, a gate oxide layer G1 is formed on the silicon substrate 15 on the element region separated by this oxide film 23 for element isolation.
24 is formed to have a thickness of about 12 nm.
次に、セル及び周辺回路14を構成するMOSFETの
ゲート絶縁膜24を選択的にエツチングして除去し、シ
リコン基板15を露出させると(b)図に示すようにな
る。Next, the gate insulating film 24 of the MOSFET constituting the cell and peripheral circuit 14 is selectively etched and removed to expose the silicon substrate 15, as shown in FIG.
その後、再び熱酸化を行なってセル及び周辺回路14の
上記露出されたシリコン基板15上に膜厚が約12nm
のゲート酸化膜18を形成する。この際、入出力回路部
12のゲート酸化gI24は約20nmの膜厚のゲート
酸化膜19に成長し、(C)図に示すようになる。After that, thermal oxidation is performed again to form a film with a thickness of about 12 nm on the exposed silicon substrate 15 of the cell and peripheral circuit 14.
A gate oxide film 18 is formed. At this time, the gate oxide gI24 of the input/output circuit section 12 grows into a gate oxide film 19 with a thickness of about 20 nm, as shown in FIG.
以降は、通常のCMOSプロセスと同様であり、ポリシ
リコンゲート22を形成した後、このポリシリコンゲー
ト22をマスクとしてN型及びP型を形成する不純物の
イオン注入をそれぞれ選択的に行ない、Nチャネル型M
O3FETのソース領域20′、ドレイン領域21−1
及びPチャネル型MO3FETのソース領域20.ドレ
イン領域21をそれぞれ形成する((d)図図示)。The subsequent steps are similar to normal CMOS processes. After forming the polysilicon gate 22, using the polysilicon gate 22 as a mask, ions of impurities forming N-type and P-type are selectively implanted to form an N-channel. Type M
Source region 20' and drain region 21-1 of O3FET
and the source region 20 of the P-channel MO3FET. Drain regions 21 are formed respectively (as shown in the figure (d)).
このような製造方法によれば、5■で動作する入出力回
路部12のMOS FETのゲート酸化膜19を、電
源電圧降下回路13で降下させた電圧で作動されるMO
S FETのゲート酸化膜18よりも厚くできる。こ
のような構成では、入出力回路部12を構成するMOS
FETはゲート酸化膜厚が厚いことによりホットキ
ャリア効果やゲート酸化膜の耐圧劣化を防止でき、セル
及び周辺回路14は電′rA電圧を低下させたことによ
りホットキャリア効果やゲート酸化膜の耐圧劣化を防止
でき、LSIチップ11を構成する回路全体のMOSF
ETの信頼性を大幅に向上できる。例えば上述した実施
例のように、入出力回路部12を構成するMOS F
ETのゲート酸化膜19が20nrrrr5Vの電圧が
印加される場合には、このMOSFETのゲート酸化膜
にかかる電界は2.5MV/cm、セル及び周辺回路1
4を構成するMOSFETのゲート酸化膜18が12n
mで3゜3vの電圧が印加される場合の電界は2.75
MV/cmであり、どちらも一般に信頼性を保証できる
と言われている3〜5MV/cm以下の電界であり、充
分高い信頼性が得られる。According to such a manufacturing method, the gate oxide film 19 of the MOS FET of the input/output circuit section 12 that operates at 5.
It can be made thicker than the gate oxide film 18 of SFET. In such a configuration, the MOS forming the input/output circuit section 12
FETs can prevent hot carrier effects and breakdown voltage deterioration of the gate oxide film by having a thick gate oxide film, and the cell and peripheral circuit 14 can prevent hot carrier effects and breakdown voltage degradation of the gate oxide film by lowering the electric voltage. The MOSF of the entire circuit constituting the LSI chip 11 can be prevented.
The reliability of ET can be greatly improved. For example, as in the embodiment described above, the MOS F constituting the input/output circuit section 12
When a voltage of 20nrrrr5V is applied to the gate oxide film 19 of the ET, the electric field applied to the gate oxide film of this MOSFET is 2.5MV/cm, and the cell and peripheral circuit 1
The gate oxide film 18 of the MOSFET constituting 4 is 12n
When a voltage of 3°3V is applied at m, the electric field is 2.75
MV/cm, and both have an electric field of 3 to 5 MV/cm or less, which is generally said to be able to guarantee reliability, and sufficiently high reliability can be obtained.
更に、この発明の構成では、LSIのインターフェイス
として5■を使用できるので、今までのTTLコンパチ
ブルを崩さずに使用できるという効果も得られる。Furthermore, in the configuration of the present invention, since 5.5 can be used as an LSI interface, it is possible to use the conventional TTL compatibility without breaking down.
[発明の効果]
1ス上説明したようにこの発明によれば、高集積化によ
って微細化されてもホットキャリア効果やゲート酸化膜
の耐圧劣化を確実に低減でき、信頼性を向上できる半導
体装置が冑られる。[Effects of the Invention] As explained in the first paragraph, the present invention provides a semiconductor device that can reliably reduce the hot carrier effect and breakdown voltage deterioration of the gate oxide film and improve reliability even when miniaturized due to high integration. I'm disappointed.
第1図はこの発明の一実施例に係わる半導体装置の断面
構成を示す図、第2図は上記第1図の装置の回路構成を
示すブロック図、第3図は上記第1図に示した半導体装
置の製造方法を説明するための図である。
11・・・LSIチップ、12・・・入出力回路部、1
3・・・電源電圧降下回路、14・・・セル及び周辺回
路、18・・・セル及び周辺回路を構成するMOS
FETのゲート酸化膜、19・・・入出力回路部を構成
する〜10SFETのゲート酸化膜。FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a circuit configuration of the device shown in FIG. 1, and FIG. 3 is a diagram showing the circuit configuration of the device shown in FIG. FIG. 3 is a diagram for explaining a method for manufacturing a semiconductor device. 11... LSI chip, 12... Input/output circuit section, 1
3...Power supply voltage drop circuit, 14...Cell and peripheral circuit, 18...MOS constituting the cell and peripheral circuit
Gate oxide film of FET, 19... Gate oxide film of ~10 SFET constituting the input/output circuit section.
Claims (1)
、外部から供給される電源電圧に基づいて作動されるM
OSFETのゲート絶縁膜厚を、前記電源電圧降下回路
によつて降下された電圧に基づいて作動されるMOSF
ETのゲート絶縁膜厚より厚く形成したことを特徴とす
る半導体装置。In a MOS type semiconductor device equipped with a power supply voltage drop circuit, an M operating based on an externally supplied power supply voltage is used.
The gate insulating film thickness of the OSFET is adjusted based on the voltage dropped by the power supply voltage drop circuit.
A semiconductor device characterized in that it is formed thicker than a gate insulating film of an ET.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62069117A JP2635577B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62069117A JP2635577B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9008647A Division JPH09186244A (en) | 1997-01-21 | 1997-01-21 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63236354A true JPS63236354A (en) | 1988-10-03 |
JP2635577B2 JP2635577B2 (en) | 1997-07-30 |
Family
ID=13393378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62069117A Expired - Lifetime JP2635577B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2635577B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433365A (en) * | 1990-05-30 | 1992-02-04 | Fuji Photo Film Co Ltd | Manufacture of semiconductor device |
US6664148B2 (en) | 1999-09-17 | 2003-12-16 | Nec Corporation | Integrated circuit device with switching between active mode and standby mode controlled by digital circuit |
KR100383203B1 (en) * | 1997-02-26 | 2004-05-31 | 가부시끼가이샤 도시바 | Flash EPEPROM |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184052A (en) * | 1984-10-01 | 1986-04-28 | Nec Corp | semiconductor equipment |
JPS61160968A (en) * | 1985-01-10 | 1986-07-21 | Sumitomo Electric Ind Ltd | Semiconductor device and its manufacturing method |
-
1987
- 1987-03-25 JP JP62069117A patent/JP2635577B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184052A (en) * | 1984-10-01 | 1986-04-28 | Nec Corp | semiconductor equipment |
JPS61160968A (en) * | 1985-01-10 | 1986-07-21 | Sumitomo Electric Ind Ltd | Semiconductor device and its manufacturing method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433365A (en) * | 1990-05-30 | 1992-02-04 | Fuji Photo Film Co Ltd | Manufacture of semiconductor device |
KR100383203B1 (en) * | 1997-02-26 | 2004-05-31 | 가부시끼가이샤 도시바 | Flash EPEPROM |
US6972446B1 (en) | 1997-02-26 | 2005-12-06 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device and flash EEPROM |
US6664148B2 (en) | 1999-09-17 | 2003-12-16 | Nec Corporation | Integrated circuit device with switching between active mode and standby mode controlled by digital circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2635577B2 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5241208A (en) | Semiconductor device comprising an analogue element and a digital element | |
JP3206026B2 (en) | Semiconductor device having high voltage MISFET | |
JPS60100469A (en) | Semiconductor device | |
US6188111B1 (en) | Dual gate semiconductor device for shortening channel length | |
JPS6119164A (en) | Supplementary integrated circuit and method of producing same | |
JPS63236354A (en) | semiconductor equipment | |
JP4765014B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPS60169163A (en) | Semiconductor device | |
US6639287B2 (en) | Semiconductor integrated circuit device | |
JPH0287568A (en) | Manufacturing method of semiconductor device | |
JPH01309367A (en) | Semiconductor device | |
JPH09186244A (en) | Semiconductor device | |
JPH08288379A (en) | Semiconductor device and manufacturing method thereof | |
JP3138263B2 (en) | Method for manufacturing semiconductor device | |
US6380594B1 (en) | Semiconductor device | |
JPH11345886A (en) | Circuit for preventing electrostatic breakdown of semiconductor devices | |
JP2635577C (en) | ||
JP3226252B2 (en) | Method for manufacturing semiconductor device | |
JP2728424B2 (en) | Semiconductor integrated circuit device | |
JP2002222869A (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
JPS61131476A (en) | semiconductor equipment | |
JPS5975653A (en) | Method for manufacturing semiconductor integrated circuit device | |
JPS5837946A (en) | Mis type semiconductor integrated circuit device | |
JPH03175670A (en) | Manufacture of semiconductor device | |
JPS6281051A (en) | Semiconductor device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |