[go: up one dir, main page]

JPS63236321A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPS63236321A
JPS63236321A JP62070719A JP7071987A JPS63236321A JP S63236321 A JPS63236321 A JP S63236321A JP 62070719 A JP62070719 A JP 62070719A JP 7071987 A JP7071987 A JP 7071987A JP S63236321 A JPS63236321 A JP S63236321A
Authority
JP
Japan
Prior art keywords
exposure
light
optical system
reflecting mirror
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070719A
Other languages
Japanese (ja)
Inventor
Shigeru Okamura
茂 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62070719A priority Critical patent/JPS63236321A/en
Publication of JPS63236321A publication Critical patent/JPS63236321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 第1の反射光学系により、シンクロトロン放射光の一部
を用いマスクを照射露光し、更にこれとは別に、放射光
入射中心軸と僅かに傾いた軸を対称軸とした、第1の反
射光学系と180°回転対称の第2の反射光学系で、放
射光の他の一部を用いマスクを照射露光ことにより、反
射角変化による露光量変化を補正し、露光の均一性を増
加するX線露光装置。
[Detailed Description of the Invention] [Summary] The first reflective optical system irradiates and exposes a mask using part of the synchrotron radiation, and furthermore, separate from this, a part of the synchrotron radiation is used to irradiate the mask with an axis slightly inclined to the central axis of incidence of the synchrotron radiation. By irradiating and exposing the mask using the other part of the synchrotron radiation using the first reflective optical system and the second reflective optical system having 180° rotational symmetry with the axis of symmetry, the change in exposure amount due to the change in the reflection angle is suppressed. X-ray exposure equipment that corrects and increases exposure uniformity.

〔産業上の利用分野〕[Industrial application field]

本発明はシンクロトロン放射光(Synchrotro
nRadiation)によるX線露光装置に係わり、
詳しくは露光の均一性を増加する方法を備えたX線露光
装置に関する。
The present invention utilizes synchrotron radiation (Synchrotron radiation).
nRadiation) related to X-ray exposure equipment,
More particularly, the present invention relates to an X-ray exposure apparatus equipped with a method for increasing exposure uniformity.

光速に近い速さの電子が円軌道のような加速度を受ける
運動を行うとき、円軌道の切線方向に赤外線からX線に
至る広範囲の波長領域にまたがる連続電磁波を放出する
。これがシンクロトロン放射光である。
When electrons moving at a speed close to the speed of light are accelerated along a circular orbit, they emit continuous electromagnetic waves spanning a wide range of wavelengths from infrared to X-rays in the tangential direction of the circular orbit. This is synchrotron radiation.

一方、軟X線を用いるリソグラフィによれば、紫外線露
光におけるような回折の影響や、電子線露光におけるよ
うなレジスト中に入射した電子の散乱に基づく問題が少
なく、高解像度を得ることが出来る。しかし、電子線励
起型X線源では、光束が発敗し且つ低輝度であるため、
スループットが低く実用が困難であった。
On the other hand, lithography using soft X-rays has fewer problems due to the influence of diffraction as in ultraviolet exposure or scattering of electrons incident on the resist as in electron beam exposure, and high resolution can be obtained. However, with electron beam excitation type X-ray sources, the luminous flux is broken and has low brightness, so
The throughput was low and it was difficult to put it into practical use.

このシンクロトロン放射光、即ち放射光中の軟X線を利
用すると、その強度が強く、安定で、指向性もよいため
、リソグラフィ用線源として最適である。
When this synchrotron radiation light, that is, the soft X-rays in the synchrotron radiation light is used, it is optimal as a radiation source for lithography because it is strong, stable, and has good directivity.

然しなから、電子蓄積リング中を周回する電子より放射
される光は接線方向にのみ放射されるので、この放射光
の上下方向の拡がりは、l mrad程度の拡がりとな
る。そのため水平方向に薄く広がった帯状の光束が得ら
れるだけで、2次元的な拡がりをもつマスクパターンを
一括転写することが出来ない欠点がある。
However, since the light emitted by the electrons circulating in the electron storage ring is emitted only in the tangential direction, the vertical spread of this emitted light is about 1 mrad. Therefore, only a band-shaped light beam spread thinly in the horizontal direction is obtained, but there is a drawback that a mask pattern having a two-dimensional spread cannot be transferred all at once.

このため、光路中に反射鏡を設け、この反射鏡を微小揺
動させて帯状の放射光を鉛直方向に往復走査すると云う
手段が考えられている。この帯状の放射光光束の大きさ
は、反射鏡位置で大兄、高さ5mm、幅50mm程度で
ある。
For this reason, a method has been considered in which a reflecting mirror is provided in the optical path and the reflecting mirror is slightly oscillated to scan the band-shaped emitted light back and forth in the vertical direction. The size of this belt-shaped emitted light beam is approximately 5 mm in height and 50 mm in width at the reflecting mirror position.

このとき、放射光が反射鏡へ入射する角度は迎角(入射
角の余角)が1.56以下の浅い角度でなければ、充分
な反射率が得られない。また、この範囲内であっても、
迎角の僅かな変化によって反射される放射光の強度、波
長が変わり、必要とする露光領域が均一な露光が出来な
いと云う問題がある。露光が均一であることは、微細加
工に対しては重要な条件であるため、この点の改善が夙
に望まれている。
At this time, sufficient reflectance cannot be obtained unless the angle at which the emitted light is incident on the reflecting mirror is a shallow angle with an angle of attack (complementary angle to the angle of incidence) of 1.56 or less. Also, even within this range,
There is a problem in that a slight change in the angle of attack changes the intensity and wavelength of the reflected radiation, making it impossible to uniformly expose the required exposure area. Uniform exposure is an important condition for microfabrication, and improvements in this respect have been desired for a long time.

〔従来の技術〕[Conventional technology]

第3図は従来例におけるX線露光装置を説明するだめの
模式図で、(a)は露光装置斜視図、(b)は露光領域
図である。
FIG. 3 is a schematic diagram for explaining a conventional X-ray exposure apparatus, in which (a) is a perspective view of the exposure apparatus, and (b) is an exposure area diagram.

第3図(a)において、放射光1は図示する線を光束の
中心光とし、その入射方向は水平なZ・1−2・2方向
で、その拡がりは反射光学系に入射する前は、スリット
で輝度分布の不均一な部分をカットして高さ方向に約5
mm、横方向に約50mm程度である。この放射光lが
図の左側より第1反射鏡(平面鏡)2の下面に入射され
る。この第1反射鏡2はZ・1−Z・2方向に垂直な水
平軸X・1−X・2を軸として微小角度回転し得るもの
で、この第1反射鏡2への放射光1の入射状況はこの図
の左上に示す如くである。
In FIG. 3(a), the synchrotron radiation 1 has the line shown as the center light of the luminous flux, its incident direction is the horizontal Z-1-2-2 direction, and its spread is as follows before entering the reflective optical system. Cut the uneven part of the brightness distribution with a slit and cut it in the height direction by about 5
mm, approximately 50 mm in the lateral direction. This emitted light l is incident on the lower surface of the first reflecting mirror (plane mirror) 2 from the left side of the figure. This first reflecting mirror 2 can be rotated by a small angle around a horizontal axis X, 1-X, 2 perpendicular to the Z, 1-Z, 2 direction, and the emitted light 1 to this first reflecting mirror 2 is The incident situation is as shown in the upper left of this figure.

第1反射鏡2に迎角θ(θ= l 4 mrad )で
入射し、反射された放射光1は円筒面を鏡面とする第2
反射鏡(トロイダル鏡)3に同程度の微小迎角で入射し
反射され、反射光6−1となってX線用のマスク4の面
上に、横に細長い第1の露光スポットPAの領域を形成
する。これによりマスク4の後方に設置された半導体ウ
ェーハ等の基板5に、マスクのパターンが転写される。
The reflected radiation 1 enters the first reflecting mirror 2 at an angle of attack θ (θ=l 4 mrad), and the reflected radiation 1 enters the second reflecting mirror 2, which has a cylindrical surface as a mirror surface.
It enters the reflecting mirror (toroidal mirror) 3 at the same small angle of attack and is reflected, and becomes reflected light 6-1, which forms a horizontally elongated first exposure spot PA area on the surface of the X-ray mask 4. form. As a result, the pattern of the mask is transferred onto a substrate 5 such as a semiconductor wafer placed behind the mask 4.

第2反射鏡3をトロイダル鏡とするのは、水平方向に発
散する放射光を絞るためである。
The reason why the second reflecting mirror 3 is a toroidal mirror is to narrow down the emitted light that diverges in the horizontal direction.

ついで、第1反射鏡2が矢印の方向に微小回転して点線
で示す位置に来ると、この第1反射鏡2における迎角は
θ+Δθとなり、点線で示す反射光として出射される。
Next, when the first reflecting mirror 2 slightly rotates in the direction of the arrow and comes to the position shown by the dotted line, the angle of attack at the first reflecting mirror 2 becomes θ+Δθ, and the reflected light is emitted as shown by the dotted line.

この反射放射光は更に第2反射鏡3で反射されて反射光
6−2としてマスク4に第2の露光スポットP、を形成
する。
This reflected radiation is further reflected by the second reflecting mirror 3 to form a second exposure spot P on the mask 4 as reflected light 6-2.

従って、マスク面走査のため第1反射鏡2が矢印の方向
に回転すると、露光スポットは、第1の露光スポットP
Aより第2の露光スポットPRと形を変えながら矢印の
方向に移動する。 尚、電子蓄積リングから取り出した
放射光中には強いγ線を含んでいて、これが直進してい
るので、放射光の入゛射方向Z・1−Z・2方向を中心
とする横に細長い領域は避けて露光領域を形成するよう
にする。
Therefore, when the first reflecting mirror 2 rotates in the direction of the arrow to scan the mask surface, the exposure spot changes to the first exposure spot P.
From A, it moves in the direction of the arrow while changing its shape to the second exposure spot PR. Note that the synchrotron radiation taken out from the electron storage ring contains strong gamma rays, which travel in a straight line. The area is avoided to form an exposed area.

第3図(b)において、第1の露光スポットPAは上に
曲がった円弧状形状で横幅約80mm、縦幅約5mmで
ある。第2の露光スポットP8も第1の露光スポットP
Aと同じように上に曲がった円弧状で、縦幅も約5mm
位であるが1、その横幅は約45mmと狭くなる。
In FIG. 3(b), the first exposure spot PA has an upwardly curved arc shape and has a horizontal width of about 80 mm and a vertical width of about 5 mm. The second exposure spot P8 is also the same as the first exposure spot P.
Like A, it has an upwardly curved arc shape, and the vertical width is about 5 mm.
1, but its width is narrow, about 45 mm.

第1反射鏡2の回転により、露光スポットは矢印で示す
ように下から上に移動し、第1露光スポツトPAと第2
R光スポツトPBに挾まれた領域が露光領域8となる。
As the first reflecting mirror 2 rotates, the exposure spot moves from bottom to top as shown by the arrow, and the first exposure spot PA and second exposure spot
The area between the R light spots PB becomes the exposure area 8.

第1の露光スポットPAは浅い迎角側における反射光な
ので、第2の露光スポットPRよりも、より多くの短波
長放射光を含み、そのため放射光強度も約10〜20%
大となる。このため、この露光領域8において、下方で
露光強度が大で、上方では小と云う露光量むらを生ずる
。微細加工においては、露光量むらはパターン寸法のむ
らの原因となるため、照射露光量は極力均一化する必要
がある。
Since the first exposure spot PA is reflected light at a shallow angle of attack, it contains more short-wavelength radiation than the second exposure spot PR, and therefore the radiation intensity is about 10 to 20%.
Becomes large. Therefore, in this exposure region 8, the exposure intensity is high in the lower part and small in the upper part, which causes unevenness in the amount of exposure. In microfabrication, the exposure amount must be made as uniform as possible because the unevenness of the exposure amount causes unevenness in pattern dimensions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

露光スポットでマスク面を走査するため反射鏡を回転す
ると、反射鏡に入射する放射光が浅い迎角のときは、露
光強度大で、大きい迎角のときは小になると云う露光量
むらがある。この露光量むらをなくする。
When the reflector is rotated to scan the mask surface with the exposure spot, there is an unevenness in the exposure intensity: when the radiation light incident on the reflector has a shallow angle of attack, the exposure intensity is large, and when the angle of attack is large, the exposure intensity is small. . Eliminate this unevenness in exposure.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、シンクロトロン放射光なる放射光
を用いて、基板上にマスクのパターンを投影露光する装
置において、前記放射光の一部の第1ブロックの放射光
を受光し、この受光した放射光を反射鏡の入射角度を変
化させて偏向し、マスク上のパターンを照射走査する第
1反射光学系を有し、前記放射光の入射中心軸方向に対
し微小角度傾けた方向を回転対称軸とする、前記第1反
射光学系と180°回転対称の第2反射光学系を有し、
該第2反射光学系に、前記放射光の他の一部の第2ブロ
ックの放射光を受光し、この受光した放射光を反射鏡の
入射角度を変化させて偏向し、マスク上のパターンを照
射走査する本発明によるX線露光装置により達成される
The solution to the above problem is that in an apparatus that projects and exposes a mask pattern onto a substrate using synchrotron radiation, a part of the first block of synchrotron radiation is received. The first reflecting optical system deflects the emitted light by changing the incident angle of a reflecting mirror to irradiate and scan the pattern on the mask, and rotates in a direction tilted by a small angle with respect to the direction of the central axis of incidence of the emitted light. a second reflective optical system having rotational symmetry of 180° with the first reflective optical system, the axis of symmetry being 180° rotationally symmetrical;
The second reflective optical system receives the second block of radiation, which is another part of the radiation, and deflects the received radiation by changing the incident angle of the reflecting mirror, thereby forming a pattern on the mask. This is achieved by an X-ray exposure device according to the invention that scans the irradiation.

〔作用〕[Effect]

放射光の一部を第1反射光学系で受光し、この第1反射
光学系による露光領域を形成すると同時に、放射光入射
方向より僅かに傾けた軸を回転対称軸とした第1反射光
学系と1806回転対称の第2反射光学系に、放射光の
別の一部を受光し、この第2反射光学系による露光領域
を、前記第1反射光学系による露光領域と重ねて形成す
るもので、第1反射光学系で形成される露光強度分布と
、第2反射光学系で形成されるそれは丁度逆になるため
、露光強度むらが打ち消され均一な露光を得ることが出
来る。
A first reflective optical system that receives a part of the synchrotron radiation by a first reflective optical system, forms an exposure area by the first reflective optical system, and has an axis of rotational symmetry with an axis slightly tilted from the direction of incidence of the synchrotron radiation. Another part of the emitted light is received by a second reflective optical system having 1806 rotational symmetry, and the exposed area by the second reflective optical system is formed to overlap the exposed area by the first reflective optical system. Since the exposure intensity distribution formed by the first reflective optical system and that formed by the second reflective optical system are exactly opposite, uneven exposure intensity can be canceled out and uniform exposure can be obtained.

(実施例〕 第1図は本発明におけるXvA露光装置を説明するため
の模式図で、(a)は露光装置斜視図、(b)は露光領
域図である。
(Example) FIG. 1 is a schematic diagram for explaining an XvA exposure apparatus according to the present invention, in which (a) is a perspective view of the exposure apparatus, and (b) is an exposure area diagram.

第1図(a)において、第1反射鏡2と第2反射鏡3で
構成される第1反射光学系10の作用は、従来例におけ
る反射光学系の作用と殆ど同じである。
In FIG. 1(a), the operation of a first reflective optical system 10 composed of a first reflective mirror 2 and a second reflective mirror 3 is almost the same as that of a conventional reflective optical system.

この図において、その中心光の入射方向が水平なZ・1
−Z・2方向である放射光1の光束の右(放射光進行方
向より見て)半分の第1ブロックの放射光即ち右側放射
光1−1を第1反射鏡(平面鏡)2の下面で受光する。
In this figure, the incident direction of the central light is horizontal Z・1
- The right half of the first block of synchrotron radiation 1 (as seen from the synchrotron radiation traveling direction), which is the Z. Receive light.

この第1反射鏡2はZ・1−Z・2方向に垂直な水平軸
X−1−X・2を軸として微小角度回転し得るもので、
この第1反射鏡2への右側放射光1−1は微小迎角で入
射し、反射された放射光は円筒面を鏡面とする第2反射
鏡(トロイダル鏡)3に同程度の微小迎角で入射し反射
され、反射光6−1となってマスク4の面上に横に細長
い、右側放射光の第1の露光スポットPAを形成する。
This first reflecting mirror 2 can rotate by a small angle around a horizontal axis X-1-X-2 perpendicular to the Z-1-Z-2 direction.
The right side radiation light 1-1 enters the first reflecting mirror 2 at a small angle of attack, and the reflected radiation light enters the second reflecting mirror (toroidal mirror) 3 whose cylindrical surface is a mirror surface at a similar small angle of attack. The reflected light 6-1 forms a horizontally elongated first exposure spot PA of the right-side emitted light on the surface of the mask 4.

第2反射鏡3においては、下向きに入射する放射光束を
上方に反射するだけでなく、僅かに左方向に偏向させる
The second reflecting mirror 3 not only reflects the downwardly incident radiant beam upward, but also slightly deflects it to the left.

これによりマスク4の後方に設置された半導体ウェー八
等の基板5に、マスクのパターンが転写される。
As a result, the pattern of the mask is transferred onto the substrate 5, such as a semiconductor wafer 8, placed behind the mask 4.

ついで、第1反射鏡2が矢印の方向に微小回転すると、
第1反射鏡2を出た反射光は点線で示す反射光として出
射される。この反射放射光は更に第2反射鏡3で反射さ
れて反射光6−2としてマスク4に投射され、右側放射
光の第2の露光スポットPgを形成する。
Then, when the first reflecting mirror 2 rotates slightly in the direction of the arrow,
The reflected light exiting the first reflecting mirror 2 is emitted as reflected light indicated by a dotted line. This reflected radiation is further reflected by the second reflecting mirror 3 and projected onto the mask 4 as reflected light 6-2, forming a second exposure spot Pg of the right side radiation.

右側放射光の第1の露光スポットPAが右側放射光の第
2の露光スポットPRよりも横方向への拡がりが大きく
、又露光強度が大であることは従来例と同様である。
As in the conventional example, the first exposure spot PA of the right side emitted light has a wider spread in the lateral direction and has a higher exposure intensity than the second exposure spot PR of the right side emitted light.

ついで、放射光1の光束の左半分である第2ブロックの
放射光即ち左側放射光1−2に対しては、第1反射光学
系と同じ構成である、第3反射鏡12と第4反射鏡13
で構成された第2反射光学系20を用いて反射偏向する
。第2反射光学系20は第1反射光学系10に対して次
のように設置される。
Next, for the second block of synchronized light, which is the left half of the luminous flux of the synchronized light 1, that is, the left synchronized light 1-2, a third reflective mirror 12 and a fourth reflective mirror, which have the same configuration as the first reflective optical system, are used. Mirror 13
Reflection and deflection are performed using a second reflection optical system 20 configured as follows. The second reflective optical system 20 is installed with respect to the first reflective optical system 10 as follows.

放射光1の光束の中心軸方向であるZ・1−Z・2方向
に対し微小角度δだけ下方に傾いたW・1−W・2軸を
回転対称軸とする、前記の第1反射光学系10と180
6回転対称に第2反射光学系20を設置する。尚、W・
1−W・2軸は第1反射鏡2および第3反射鏡120回
転軸であるX−1−X・2軸とZ・1−Z・2軸の交点
9を通るものである。
The above-mentioned first reflection optical system has a rotationally symmetrical axis of the W-1-W-2 axis which is tilted downward by a minute angle δ with respect to the Z-1-Z-2 direction which is the central axis direction of the luminous flux of the synchrotron radiation 1. Series 10 and 180
The second reflective optical system 20 is installed six-fold symmetrically. Furthermore, W.
The 1-W.2 axis passes through the intersection 9 of the X-1-X.2 axis and the Z.1-Z.2 axis, which are the rotation axes of the first reflecting mirror 2 and the third reflecting mirror 120.

このようにすると、左側放射光1−2は第3反射鏡(平
面鏡)12の上面に微小迎角で入射し、上方に反射され
る。この反射光は下面を円筒反射面とする第4反射鏡(
トロイダル鏡)13に同程度の微小迎角で入射し僅かに
右側に曲がるように反射偏向され、反射光7−1となっ
てマスク4の面上に、左側放射光の第1の露光スボ7ト
QAが、右側放射光の第1の露光スポットPAと重なる
ように形成される。しかし、この左側放射光の第1の露
光スポットQ、は相対的に大きい迎角で形成されている
ので、右側放射光の第2の露光スポットPRと同程度の
拡がりの大きさで、下に曲がった円弧状の形状である。
In this way, the left side emitted light 1-2 is incident on the upper surface of the third reflecting mirror (plane mirror) 12 at a small angle of attack, and is reflected upward. This reflected light is transmitted to a fourth reflecting mirror (with a cylindrical reflecting surface on the lower surface)
The light enters the toroidal mirror (toroidal mirror) 13 at the same small angle of attack, is reflected and deflected slightly to the right, becomes reflected light 7-1, and is reflected onto the surface of the mask 4 at the first exposure slot 7 of the left side emitted light. A spot QA is formed so as to overlap the first exposure spot PA of the right-side emitted light. However, since the first exposure spot Q of the left-side radiation light is formed at a relatively large angle of attack, it has the same spread size as the second exposure spot PR of the right-side radiation light, and is downwardly exposed. It has a curved arc shape.

ついで、第3反射鏡12が矢印の方向に微小回転すると
、第3反射鏡12を出た反射鏡は点線で示す反射光とし
て出射される。この反射光は更に第4反射鏡13で反射
されて反射光7−2とし←てマスク4に投射され、左側
放射光の第2の露光スポットQBを形成する。第3反射
鏡12は、この回転により放射光迎角が小さくなるので
、左側放射光の第2の露光スポットQ、は左側放射光の
第1の露光スポットQaより横方向の拡がりが大きくな
ると同時に露光強度も大となる。
Then, when the third reflecting mirror 12 is slightly rotated in the direction of the arrow, the reflecting mirror exiting the third reflecting mirror 12 is emitted as reflected light shown by a dotted line. This reflected light is further reflected by the fourth reflecting mirror 13 and projected onto the mask 4 as reflected light 7-2, forming a second exposure spot QB of the left-side emitted light. As the third reflecting mirror 12 is rotated, the angle of attack of the radiation light becomes smaller, so that the second exposure spot Q of the left radiation light becomes wider in the lateral direction than the first exposure spot Qa of the left radiation radiation. The exposure intensity also increases.

第1図(b)において、右側放射光による露光領域8−
1は、従来例で述べたように図の下方領域で短い波長の
放射光をより多(含むため、この領域において露光強度
が大である。
In FIG. 1(b), the exposure area 8-
1, as described in the conventional example, the lower region of the figure contains more emitted light with short wavelengths, so the exposure intensity is high in this region.

また、逆に左側放射光による露光領域8−2は図の上方
領域において、短い波長の放射光をより多く含むため、
露光強度が大である。
On the other hand, the exposure region 8-2 by the left-side synchrotron radiation contains more short-wavelength synchrotron radiation in the upper region of the diagram.
Exposure intensity is high.

合成露光領域は両者を重ね合わせた形となるため、露光
が均一化され露光むらがなくなる。
Since the composite exposure area has a shape in which both are superimposed, exposure is made uniform and uneven exposure is eliminated.

第2図は本発明におけるX線露光装置を説明するための
平面模式図である。
FIG. 2 is a schematic plan view for explaining the X-ray exposure apparatus according to the present invention.

この図は、前の第1図で述べた事項をより鮮明にするた
めのもので、上方よりみた図である。
This figure is intended to make the matters described in Figure 1 clearer, and is a view from above.

この図において、11は電子蓄積リングで、加速された
電子は電子パンチ(塊)14となって軌道を周回してお
り、偏向されて加速度を受けるときは、接線方向に放射
光を放出する。
In this figure, reference numeral 11 denotes an electron storage ring, in which accelerated electrons orbit in the form of an electron punch (lump) 14, and when deflected and subjected to acceleration, it emits synchrotron radiation in the tangential direction.

この放射光の光束の拡がりは上下方向には1mrad程
度であるが、横方向には30mrad程度あり、この右
側半分の右側放射光1−1は第1反射光学系1.0に導
かれ、この第1反射光学系10の平面鏡の第1反射鏡2
の下面に入射、下方に反射され、左右方向には直進する
。この放射光は更にトロイダル鏡である第2反射鏡3に
入射して上方に曲げられると同時に拡がりが若干絞られ
、且つ全体の光束は左に曲げられる。
The spread of the luminous flux of this synchrotron radiation is about 1 mrad in the vertical direction, but about 30 mrad in the horizontal direction, and this right half of the right synchrotron radiation 1-1 is guided to the first reflection optical system 1. The first reflecting mirror 2 of the plane mirror of the first reflecting optical system 10
The light is incident on the lower surface of the , is reflected downward, and travels straight in the left and right directions. This emitted light further enters the second reflecting mirror 3, which is a toroidal mirror, and is bent upward, at the same time its spread is slightly narrowed and the entire luminous flux is bent to the left.

左側放射光1−2に対しては、右側放射光1−1に対し
てとは丁度逆の作用が、第2反射光学系20でなされる
For the left side emitted light 1-2, the second reflection optical system 20 performs an operation exactly opposite to that for the right side emitted light 1-1.

上記実施例においては、前段の第1、第3反射鏡を平面
鏡とし、後段の第2、第4反射鏡を凹面トロイダル鏡と
したが、前後段共に平面鏡の組合せ、或いは一部に凸面
鏡を使用したものでも本発明は同等の効果を得ることは
云うまでもない。
In the above embodiment, the first and third reflecting mirrors in the front stage were plane mirrors, and the second and fourth reflecting mirrors in the rear stage were concave toroidal mirrors. It goes without saying that the present invention can obtain the same effect even if

また、露光走査のため回転さす反射鏡も前段のものでな
く、後段のものであってもよい。
Furthermore, the reflecting mirror rotated for exposure scanning may not be the one at the front stage, but may be at the rear stage.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、放射光を用いるX線露光に
おいて、本発明によれば、入射する放射光の光束を左右
に二分割し、放射光放射面に対して略対称的な光路を辿
らした後、再び重ね合わすことにより、露光領域を均一
に照射し露光むらをなくすることが出来る。
As explained in detail above, in X-ray exposure using synchrotron radiation, according to the present invention, the luminous flux of the incident synchrotron radiation is divided into two left and right, and the optical path is traced approximately symmetrically with respect to the synchrotron radiation surface. After that, by overlapping them again, the exposed area can be uniformly irradiated and uneven exposure can be eliminated.

これにより、微細加工がより容易に実施出来るようにな
る。
This allows microfabrication to be carried out more easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるX線露光装置を説明するための
模式図で、(a)は露光装置斜視図、(b)は露光領域
図、 第2図は本発明におけるX線露光装置を説明するための
平面模式図、 第3図は従来例におけるX線露光装置を説明するための
模式図で、(a)は露光装置斜視図、(b)は露光領域
図である。 これら図において、 ■は放射光、 1−1は第1ブロックの放射光(右側放射光)1−2は
第2ブロックの放射光(左側放射光)2は第1反射鏡(
平面鏡)、 3は第2反射鏡(トロイダル鏡)、 4はマスク、 5は基板(ウェーハ)、 6−1,6−2.7−1.7−2は反射光、8は露光領
域、 8−1は右側放射光による露光領域、 8−12は左側放射光による露光領域、9は交点、 10は第1反射光学系、 11は電子蓄積リング、 12は第3反射鏡、 13は第4反射鏡、 20は第2反射光学系、 PAは右側放射光の第1の露光スポット、p、は右側放
射光の第2の露光スポット、QAは左側放射光の第1の
露光スポット、QBは左側放射光の第2の露光スポット
(a)*光査(買凛畔ネp2図           
       クトI/1)λ先スポットF8°2Eジ
4罠り26(々1“A巴の′$2f)n尤ス木〜ト Q8メLイ炉り方交:脅丁先の 8−、    ’$2n献7ボ“1 1;よろflfA堝糺 (b) 1翼オドぐ員1或D1 本発明1;RけろA線n尤聚111免明1ろための趨式
図箪 1 G 半発明にお′17ろX倉卑n先羨!E名免明1ろbめ0
平酌淳莫民図12 図 (α)露光裟[P+視図 <b)露光傾票図
FIG. 1 is a schematic diagram for explaining the X-ray exposure apparatus according to the present invention, (a) is a perspective view of the exposure apparatus, (b) is an exposure area diagram, and FIG. 2 is a schematic diagram for explaining the X-ray exposure apparatus according to the present invention. FIG. 3 is a schematic diagram for explaining a conventional X-ray exposure apparatus, in which (a) is a perspective view of the exposure apparatus, and (b) is an exposure area diagram. In these figures, ■ is synchrotron radiation, 1-1 is synchrotron radiation from the first block (right radiation) 1-2 is radiation from the second block (left radiation) 2 is radiation from the first reflecting mirror (
3 is a second reflecting mirror (toroidal mirror), 4 is a mask, 5 is a substrate (wafer), 6-1, 6-2.7-1.7-2 is reflected light, 8 is an exposure area, 8 -1 is the exposure area by the right side synchrotron radiation, 8-12 is the exposure area by the left side synchrotron radiation, 9 is the intersection, 10 is the first reflection optical system, 11 is the electron storage ring, 12 is the third reflection mirror, 13 is the fourth reflection mirror Reflector, 20 is the second reflective optical system, PA is the first exposure spot of the right side emitted light, p is the second exposure spot of the right side emitted light, QA is the first exposure spot of the left side emitted light, and QB is the first exposure spot of the left side emitted light. Second exposure spot of left synchrotron radiation (a)
Act I/1) λ destination spot F8° 2E Ji 4 Trap 26 (each 1 "A Tomoe's '$2f) n 弤 S tree ~ To Q 8 Me L I Furnace Orientation: Threat 8-, ' $2n contribution 7bo "1 1; Yoro flfA 砝纺(b) 1 wing odd member 1 or D1 Present invention 1; I'm jealous of the 2017 x Kurabei! E name explanation 1 Robme 0
Atsushi Heijo Momin Figure 12 Figure (α) Exposure [P+ view <b) Exposure tilt diagram

Claims (1)

【特許請求の範囲】 シンクロトロン放射光なる放射光を用いて、基板上にマ
スクのパターンを投影露光する装置において、 前記放射光(1)の一部の第1ブロックの放射光(1−
1)を受光し、この受光した放射光を反射鏡の入射角度
を変化させて偏向し、マスク(4)上のパターンを照射
走査する第1反射光学系(10)を有し、 前記放射光(1)の入射中心軸方向(Z・1−Z・2)
に対し微小角度(δ)傾けた(W・1−W・2)方向を
回転対称軸とする、前記第1反射光学系(10)と18
0°回転対称の第2反射光学系(20)を有し、 該第2反射光学系(20)に、前記放射光(1)の他の
一部の第2ブロックの放射光(1−2)を受光し、この
受光した放射光を反射鏡の入射角度を変化させて偏向し
、マスク(4)上のパターンを照射走査することを特徴
とするX線露光装置。
[Scope of Claim] In an apparatus for projecting and exposing a mask pattern onto a substrate using synchrotron radiation, the radiation light (1-
1), the received radiation light is deflected by changing the incident angle of a reflecting mirror, and the pattern on the mask (4) is irradiated and scanned; (1) Incidence center axis direction (Z・1-Z・2)
The first reflective optical system (10) and the first reflective optical system (18) have an axis of rotational symmetry in the (W・1−W・2) direction tilted by a small angle (δ) with respect to the
It has a second reflective optical system (20) with 0° rotational symmetry, and the second reflective optical system (20) has a second block of synchronized light (1-2) which is another part of the synchronized light (1). ), the received radiation light is deflected by changing the incident angle of a reflecting mirror, and a pattern on a mask (4) is irradiated and scanned.
JP62070719A 1987-03-25 1987-03-25 X-ray exposure device Pending JPS63236321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070719A JPS63236321A (en) 1987-03-25 1987-03-25 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070719A JPS63236321A (en) 1987-03-25 1987-03-25 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPS63236321A true JPS63236321A (en) 1988-10-03

Family

ID=13439651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070719A Pending JPS63236321A (en) 1987-03-25 1987-03-25 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPS63236321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518865A (en) * 1991-12-14 1996-05-21 Basf Aktiengesellschaft Production of microstructure elements
US6289076B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518865A (en) * 1991-12-14 1996-05-21 Basf Aktiengesellschaft Production of microstructure elements
US6289076B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
US6289077B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
US6295334B1 (en) 1997-05-06 2001-09-25 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light

Similar Documents

Publication Publication Date Title
US5512759A (en) Condenser for illuminating a ringfield camera with synchrotron emission light
JP2731955B2 (en) X-ray exposure equipment
US6861656B2 (en) High-luminosity EUV-source devices for use in extreme ultraviolet (soft X-ray) lithography systems and other EUV optical systems
EP0083394B1 (en) A method and apparatus for providing a uniform illumination of an area
US5268951A (en) X-ray beam scanning method for producing low distortion or constant distortion in x-ray proximity printing
KR920001171B1 (en) X-ray lithographic system
JPS63236321A (en) X-ray exposure device
JPH02248900A (en) X-ray exposure device
JP2004117343A (en) Method and apparatus for extracting parallel X-ray beam and X-ray diffraction apparatus
JP3371510B2 (en) Illumination device and exposure device
JPS6346974B2 (en)
JPS61276223A (en) X-ray exposure
JP3013341B2 (en) X-ray irradiation optical system and X-ray projection exposure apparatus using the same
JPH0527080B2 (en)
JPH0436360B2 (en)
JPH0774840B2 (en) Synchrotron radiation device
JPS59155920A (en) X-ray exposure
JPH034200A (en) Radiant light exposure device
JPH04294300A (en) X-ray irradiation device
JPS62290131A (en) X-ray exposure method
WO2008044319A1 (en) Euv light generating apparatus and euv exposure apparatus
JPH04139716A (en) Method and devicce for x-ray exposure
JPH0552998A (en) Light exposure device
JP2001264671A (en) Pencil of light scanning device
JPH11121200A (en) Emitted light transmission device