JPS6323246B2 - - Google Patents
Info
- Publication number
- JPS6323246B2 JPS6323246B2 JP55131420A JP13142080A JPS6323246B2 JP S6323246 B2 JPS6323246 B2 JP S6323246B2 JP 55131420 A JP55131420 A JP 55131420A JP 13142080 A JP13142080 A JP 13142080A JP S6323246 B2 JPS6323246 B2 JP S6323246B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- sheet
- annealing
- furnace
- metal sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 239000012736 aqueous medium Substances 0.000 claims description 9
- 239000010731 rolling oil Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 42
- 239000010959 steel Substances 0.000 description 42
- 238000005238 degreasing Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000010422 painting Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- XLYOFNOQVPJJNP-DYCDLGHISA-N deuterium hydrogen oxide Chemical compound [2H]O XLYOFNOQVPJJNP-DYCDLGHISA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は金属薄板、特に冷間圧延された鋼鉄薄
板の表面の品質を改善することを目的とする連続
熱処理方法に関する。
工業的実施においては、冷間圧延された鋼鉄の
薄板は(鋼鉄の製造とインゴツトまたはフラブの
熱間圧延の後)熱間圧延された帯鋼を酸洗いし、
次いで所望の厚さになるまで冷間圧延し、そして
最後に鋼鉄の機械的性質を回復するため焼きなま
しを行ない、そしてこれに所望の最終表面外観を
付与し引張り曲線の水平部分をなくすためにスキ
ン・パス処理を行なうことによつて得られる。
熱間圧延に続くこれらすべての操作は鋼板の最
終表面状態を調節する。従つて、酸洗い後の不十
分な濯ぎは表面にその後の汚染の種を残す。同様
に、圧延油の選択は、そし焼なましがよく適応さ
れなければこの油が鋼板表面から取り去られない
ため極めて重要である。
数人の著者は、鋼の薄板表面の清潔さ特に沈着
した炭素の量はこの鋼板の燐酸塩被覆処理に対す
る適応性および塗装後の塩分を含む霧による腐蝕
に対する抵抗性への適応性を明らかにするための
重要なパラメーターであることを十分に示した。
この表面の清潔さは種々な方法、たとえばスコツ
チ・テープ試験によつて明らかにすることができ
る。この方法においては鋼板の表面に透明な粘着
テープを貼り付け、鋼板の沈着物を含んだテープ
をはがす。スコツチ・テープを通る光の吸収を測
定して鋼板表面の沈着物を定量する。このような
方法はあらゆる性質の表面沈着物の量を測定す
る、例えば埃(ほこり)、炭素、やすりくず、な
どの痕跡を測定する。
同様に広く行なわれているもう一つの表面性質
測定法は鋼鉄表面に存在する全炭素量を定量する
ことを目的としている。この方法は無機材料のタ
ンポンを用いて塩酸で鋼板の表面を洗いそしてこ
れを酸と反応させ、そして遊離したCO2の量を測
定するものである。このようにして、鋼鉄の表面
に種々な形で存在している全炭素量をmg/m2とし
て測定する。同様に、試験を標準化する目的で噴
射による脱脂法で塩酸洗浄を予め行なつてもよ
い。これは存在するかも知れない保護油を除去
し、鋼を形成直後でかつ燐酸塩処理法および最終
の塗装前の状態にするためである。この方法は
「フオード試験」と呼ばれるよく知られた試験方
法である。
鋼鉄の表面の他の分析方法はイオン微量分析
機、オージエ分光分析機などで行なわれる。これ
らは表面に存在するあらゆる化学元素とそれらの
含有量の深さにおける変化を検出することができ
る。
これらの技術は鉄以外の元素、即ち用いられた
浴(洗浄、酸洗い、濯ぎ、脱脂)に由来する元素
や鋼鉄自体に由来する元素によつて起こり得る汚
染を看破することができる。
上に述べたように、鋼鉄の表面における炭素の
存在は塗装された鋼板の塩分を含んだ霧による腐
蝕に対する抵抗力を弱めることは現在よく知られ
ている。この炭素は大部分圧延油に由来する。現
在の実施においては、圧延後圧延油は鋼板の表面
から除去されていないで、ベル炉中での焼なまし
(バツチ焼なまし)過程中において蒸発する。し
かし、そのような焼なましの後で表面の炭素量を
測定するとき、りん酸塩被覆や塗装(塩分を含ん
だ霧に曝露)の望ましくない結果を生ずる看過し
得ない汚染が認められる。
たとえばオルトけい酸ナトリウムの溶接中での
電解による脱脂を予め行なつて製品を連続焼なま
しすることによつて重大な進歩が得られる。
簡単な連続焼なましにおいては、加熱は実際
N2/H2の雰囲気中で行なわれ、そして油は蒸発
する時間がない。何故なら加熱は非常に速いから
である。これに反し、公知のいくつかの方法にお
いては、連続焼なましは、大概はアルカリ媒質中
で行なわれる脱脂操作によつて先行される。圧延
油は炉の中へはいる前に除去されるから、表面の
清潔さは明らかに優れている。そして静止炉中で
作られた非常に清潔な鋼板についてはたとえば1
mg/m2〜8mg/m2である表面に存在する全炭素に
関しては特にその清潔さは優れている。しかし上
に述べたように、表面の炭素量のそのような減少
は、種々な著者によれば塗料の耐久力を改善する
が、その改善はまだ僅かであることが認められ
る。
本発明の目的は正にこのような状態を矯正する
ことである。
本発明者等は、鋼の帯の連続電気メツキにしば
しば用いられる様式の、裸炎の加熱による連続焼
なましの、燐酸塩被覆処理と塗装処理を含む、自
動車車体用の鋼板に関する出願を行なつた。この
様式の加熱は、亜鉛浴の入口において表面に酸化
物の痕跡が全くないことをとりわけ必要とする電
気メツキの見地から表面の準備には非常に適して
いることが知られている。炉の種類によつては、
この加熱方式はある程度酸化的であり、この炉を
通過することによつて生じるかも知れない酸化物
は続く焼なまし−電気メツキの段階の過程で雰囲
気の気体の水素で還元されなければならない。
本発明の方法は、脱脂されていない帯鋼、即ち
圧延油が裸炎の炉の中で簡単に燃焼または蒸発せ
しめられたもの、はアルカリ脱脂後焼なまされた
帯鋼よりも明らかに良好な燐酸塩被覆処理および
塗装に対する挙動を持つているという全く予期し
ない確証事実にもとづいている。本発明者等はそ
の研究を追究しながら、燃焼を注意深く調節する
ことにより、極めて清潔な酸化されていないそし
て燐酸塩被覆処理および塗装後、塩分を含んだ霧
に対して特に良好な抵抗性のある帯鋼を製造し得
ることに注目した。以下の実施例と図面は、焼な
まし前のアルカリ浴での脱脂によつて生じ、そし
て本来燐酸塩被覆反応を遅らせると思われる
SiO2のフイルムが存在しないことにもとづくこ
の思いがけないこの効果を理解するのを助けるで
あろう。
金属の薄板を加熱操作を含む連続熱処理と次い
で急冷操作を加える、本発明の目的たる本方法
は、加熱操作が金属の再結晶温度以上でかつA3
変態点以下のある温度で行なわれ、かつ脱脂され
ていない薄板、即ち少なくとも一部分圧延油を再
び塗られた薄板に加熱操作が加えられること、お
よびこの加熱は、少なくとも初期において裸炎の
炉の中で、好ましくは不完全燃焼の炉の中で行な
われること、および急冷は好ましくは75℃以上の
温度において水性媒体中に滞留する工程を含有す
ることを特徴とする。
本明細書においては「水性媒体」という表現
は、制限的に、純粋な水の浴を意味せず、それは
如何なる目的であろうと、物質を溶液状および/
または懸濁状態で含有する、飽和または不飽和の
あらゆる水性媒体に同様に拡大することはもちろ
んである。
水性媒体は静止浴、撒水管または噴霧管の単独
または好ましくは、これらの手段の二つまたは三
つよりなり、それらの順序は問わない。
水性媒体の温度は、機械的性質が薄板全般に均
一に分布するようにするため、および薄板の平滑
性がすぐれているようにするため、75℃以上とす
べきである。またこの温度の上限は水性媒体がた
とえミスト噴霧の形であるときでさえも、液体の
ままでなければならぬことから沸点である。
本発明方法の応用はそのほか必要に応じて、処
理される種々な製品に適応されることができる。
同様に、ある場合においては、脱脂されていな
い薄板の裸炎炉での処理の予期しない効果は更に
改良されることができる。特に機械的性質に関し
ては、急冷につづいて、薄板を200〜500℃の温度
での析出工程に付してもよい。
薄板の表面品質の、すでに重要なこの第一の改
善のほかに、本発明は更に他の利点を示してい
る。
酸化性の媒質での(極めて弱い水準において
も)鋼鉄を加熱するとき、鉄よりも酸化しやすい
マンガン、クロム、燐……などのようなある種の
元素が表面へ移動することは知られている。この
ようにして、ある種の元素(鋼鉄の中に極めて僅
かしか存在しないものでも)で鋼鉄の表面富化が
起こる。このようにして、0.3%のマンガンを含
有している軟鋼はベル炉での焼なまし後、最表面
において15%程度のマンガン含有量を示すことが
できる。しかもそれはたとえその焼なましが
N2/H2の保護雰囲気のもとで低い露点と低いO2
含有量で行なわれてもそうである。気体のH2O
とO2の残存含有量はマンガンを表面に引き寄せ
るに十分であり、非常に長い時間(数時間)と高
温(700℃)はこの現象を極めて顕著にした。
原則として、連続焼なましの場合、高温での滞
在時間は非常に短いから(数分)、容積に由来す
る元素での表面の汚染は極めて僅かになるであろ
う。
しかし本発明者等は表面における富化の減少は
アルカリ脱脂を行なわないときにしか得られない
ことを証明した。何故ならアルカリ脱脂は容積中
に存在する合金元素の分離に原因する酸化電位を
生ずる残存シリカのフイルムを表面に残す効果も
持つているからである。
第1図は、アルカリ脱脂後に連続焼なましされ
た鋼はマンガンの看過し得ない富化によつて表面
が影響されているが、予め脱脂されずして裸炎の
炉の中で連続焼なましを受けた同様な鋼鉄では
Mnの含有量は僅かな増加しか示されていない事
実をよく説明している。
この図(この図ではNCN電子の数は縦座標に
示され、結合エネルギーEVは横座標に示されて
いる)は連続焼なましされた二種類の軟鋼につい
て最表面で測定された標準化されたスペクトルを
示す。一つは焼なまし前に脱脂したもの(A鋼)、
もう一つは本発明の方法により裸炎の炉の中で行
なわれた脱脂である(B鋼)。
本発明者等はこの富化が減少する予期しない効
果を確認した。実際、本発明の方法によつて得ら
れた鋼板は大気による腐蝕および貯蔵過程中の錆
のピンホールに対して非常によく耐えた。需要者
に引き渡すよう用意された鋼板の上に腐蝕のピン
ホールによる屑が存在することは重大であるか
ら、このような改善は非常に重要である。
本発明の方法の特殊な実施態様は表面品質に更
に別の改善をもたらしている。この実施態様は加
熱中または加熱後に行なわれる酸性媒体中での処
理よりなつている。このような処理は、表面汚染
痕跡が残存炭素に由来しても、圧延油に由来して
も、あるいは鋼鉄の容積から来る元素の残存富化
に由来しても、表面汚染のあらゆる痕跡を殆ど完
全に除去することができる。
このような操作は焼なましの一つの酸化工程
(水性媒体中での急冷、制限された持続時間酸化
性気体への曝露)後に行なわれるのが好都合であ
る。この工程によつて生ずる薄い酸化被膜を除去
すると、すでに平均化された表面汚染の水準に到
達することができる。
用いられる酸は好ましくは有機酸であり、特に
蟻酸またはそれを主成分とするのが好ましい。そ
れは急速冷却の後または最終冷却の後に行なうの
が好都合である。
次の実施例は本発明者等によつて既に別に特許
請求された処理(沸騰水浴への浸漬よりなる)の
後のこの操作の結果を示す。第1表においては、
急冷後すでに非常に僅かしか汚染されていない鋼
鉄の表面(従つて急冷前も同様である、何故なら
急冷は蒸溜水中で行なわれたから)が、用いた酸
洗い処理によつて更に明らかに改善されているこ
とが見られる。この実施例においては、最表面に
存在する炭素の量はフオード試験法によつて測定
された。
The present invention relates to a continuous heat treatment method aimed at improving the surface quality of metal sheets, in particular cold rolled steel sheets. In industrial practice, cold rolled steel sheets are prepared by pickling hot rolled steel strips (after steel production and hot rolling into ingots or slabs);
It is then cold rolled to the desired thickness and finally annealed to restore the mechanical properties of the steel and skinned to give it the desired final surface appearance and eliminate the horizontal portion of the tensile curve. - Obtained by performing pass processing. All these operations following hot rolling adjust the final surface condition of the steel sheet. Therefore, insufficient rinsing after pickling leaves seeds for subsequent contamination on the surface. Similarly, the selection of rolling oil is extremely important as this oil will not be removed from the steel plate surface unless the annealing is well adapted. Several authors have shown that the cleanliness of the steel plate surface, especially the amount of deposited carbon, determines the suitability of this steel plate to phosphate coating treatments and its resistance to corrosion by salty fog after painting. It has been sufficiently shown that this is an important parameter for
The cleanliness of this surface can be determined by various methods, such as the Scotch tape test. In this method, a transparent adhesive tape is applied to the surface of a steel plate, and the tape containing deposits on the steel plate is removed. Deposits on the surface of the steel plate are quantified by measuring the absorption of light passing through the Scotch tape. Such methods measure the amount of surface deposits of any nature, e.g. traces of dust, carbon, shavings, etc. Another similarly widely used surface property measurement method aims to quantify the total amount of carbon present on the steel surface. This method uses an inorganic tampon to wash the surface of a steel plate with hydrochloric acid, reacts it with the acid, and measures the amount of CO 2 liberated. In this way, the total amount of carbon present in various forms on the surface of the steel is determined in mg/m 2 . Similarly, cleaning with hydrochloric acid may be carried out in advance by spray degreasing for the purpose of standardizing the test. This is to remove any protective oil that may be present and to bring the steel to its as-formed condition and prior to phosphating and final painting. This method is a well-known test method called the "ford test." Other methods for analyzing steel surfaces include ion microanalyzers and Augier spectrometers. They can detect any chemical elements present at the surface and changes in their content at depth. These techniques can detect contamination that can occur with elements other than iron, ie, elements originating from the baths used (washing, pickling, rinsing, degreasing) or from the steel itself. As mentioned above, it is now well known that the presence of carbon on the surface of steel reduces the resistance of painted steel sheets to corrosion by salty fog. This carbon comes mostly from rolling oil. In current practice, the rolling oil is not removed from the surface of the steel sheet after rolling, but evaporates during the annealing (batch annealing) process in a bell furnace. However, when measuring the carbon content of the surface after such annealing, unnoticeable contamination is observed, resulting in undesirable consequences of phosphate coatings and painting (exposure to salt-laden mist). Significant advances can be made, for example, by prior electrolytic degreasing during welding of sodium orthosilicate, followed by continuous annealing of the product. In simple continuous annealing, the heating is actually
It is carried out in an atmosphere of N 2 /H 2 and the oil does not have time to evaporate. This is because heating is very fast. On the contrary, in some known processes, the continuous annealing is preceded by a degreasing operation, which is mostly carried out in an alkaline medium. Since the rolling oil is removed before entering the furnace, surface cleanliness is clearly superior. And for a very clean steel plate made in a static furnace, e.g.
The cleanliness is particularly good with respect to the total carbon present on the surface, which is between mg/m 2 and 8 mg/m 2 . However, as mentioned above, although such a reduction in the amount of surface carbon improves the durability of the paint according to various authors, the improvement is still found to be small. The purpose of the present invention is to correct precisely this situation. The inventors have filed an application relating to steel sheets for automobile bodies, including continuous annealing by open flame heating, phosphate coating and painting, in the manner often used for continuous electroplating of steel strips. Summer. This mode of heating is known to be very suitable for preparing surfaces from an electroplating point of view, which requires inter alia that the surface be free of any traces of oxides at the entrance to the zinc bath. Depending on the type of furnace,
This mode of heating is to some extent oxidative, and any oxides that may result from passing through the furnace must be reduced with atmospheric gaseous hydrogen during the subsequent annealing-electroplating step. The method of the invention shows that undegreased strip steel, i.e. in which the rolling oil has been simply combusted or evaporated in an open flame furnace, is significantly better than strip steel that has been annealed after alkaline degreasing. This is based on the completely unexpected evidence that the material has excellent behavior towards phosphate coatings and coatings. Pursuing their research, the inventors have discovered that by carefully regulating the combustion, a very clean, unoxidized and phosphate coated product with particularly good resistance to salty fog after coating and painting has been discovered. It has been noted that certain strips of steel can be produced. The following examples and drawings are produced by degreasing in an alkaline bath before annealing, and which is believed to inherently retard the phosphate coating reaction.
It will help to understand this unexpected effect due to the absence of SiO 2 film. The present method, which is the object of the present invention, involves continuous heat treatment including a heating operation on a thin metal sheet, followed by a rapid cooling operation .
A heating operation is carried out at a temperature below the transformation temperature and is applied to the undegreased sheet, i.e. the sheet at least partially reapplied with rolling oil, and that this heating is carried out, at least initially, in an open-flame furnace. , preferably in a furnace with incomplete combustion, and that the quenching comprises a residence step in an aqueous medium, preferably at a temperature of 75° C. or higher. The expression "aqueous medium" as used herein does not, in a restrictive manner, mean a bath of pure water, which may be used to store substances in solution and/or for any purpose.
Of course, the same extends to any aqueous medium, saturated or unsaturated, in which it is contained or in suspension. The aqueous medium may consist of a static bath, a water spray pipe or a spray pipe, or preferably two or three of these means, regardless of their order. The temperature of the aqueous medium should be above 75° C. in order to ensure that the mechanical properties are uniformly distributed throughout the sheet and that the smoothness of the sheet is excellent. The upper limit of this temperature is also the boiling point, since the aqueous medium must remain liquid even when in the form of a mist spray. The application of the method according to the invention can also be adapted to different products to be treated, as required. Similarly, in some cases the unexpected effects of open flame furnace treatment of undegreased sheets can be further improved. In particular with regard to mechanical properties, following the quenching, the sheets may be subjected to a precipitation step at temperatures of 200 to 500°C. Besides this already important first improvement of the surface quality of the sheet metal, the invention exhibits further advantages. It is known that when heating steel in an oxidizing medium (even at very weak levels), certain elements, such as manganese, chromium, phosphorus, etc., which are more easily oxidized than iron, migrate to the surface. There is. In this way, a surface enrichment of the steel occurs with certain elements, even those present in extremely small amounts in the steel. In this way, mild steel containing 0.3% manganese can exhibit a manganese content of around 15% at the outermost surface after annealing in a bell furnace. Moreover, even if the annealing
Low dew point and low O2 under protective atmosphere of N2 / H2
The same is true even if it is done based on the content. gaseous H 2 O
The residual content of and O 2 was sufficient to attract manganese to the surface, and the very long time (several hours) and high temperature (700 °C) made this phenomenon extremely pronounced. In principle, in the case of continuous annealing, the residence time at high temperatures is very short (a few minutes), so that the contamination of the surface with volumetric elements will be very low. However, the inventors have demonstrated that a reduction in enrichment at the surface can only be obtained without alkaline degreasing. This is because alkaline degreasing also has the effect of leaving a film of residual silica on the surface which creates an oxidation potential due to the separation of alloying elements present in the volume. Figure 1 shows that steel that has been continuously annealed after alkaline degreasing has a surface affected by an unnoticeable enrichment of manganese, but is not degreased beforehand and is continuously annealed in an open-flame furnace. In similar tempered steels
This explains well the fact that the Mn content shows only a slight increase. This figure (in which the number of NCN electrons is shown on the ordinate and the binding energy EV is shown on the abscissa) shows the normalized values measured at the top surface for two continuously annealed mild steels. The spectrum is shown. One is degreased before annealing (A steel),
The other is degreasing carried out in an open flame furnace according to the method of the invention (Steel B). The inventors have identified the unexpected effect of reducing this enrichment. In fact, the steel sheets obtained by the method of the invention resisted atmospheric corrosion and rust pinholes very well during the storage process. Such improvements are very important since the presence of corrosion pinhole debris on steel plates prepared for delivery to customers is significant. A special embodiment of the method of the invention provides further improvements in surface quality. This embodiment consists of a treatment in an acidic medium during or after heating. Such treatments virtually eliminate all traces of surface contamination, whether they originate from residual carbon, from rolling oil, or from residual enrichment of elements coming from the volume of the steel. Can be completely removed. Such operations are conveniently carried out after an oxidation step of annealing (quenching in an aqueous medium, exposure to oxidizing gases for a limited duration). Removal of the thin oxide layer produced by this process makes it possible to reach an already averaged level of surface contamination. The acid used is preferably an organic acid, particularly formic acid or having formic acid as the main component. It is advantageous to carry out this after rapid cooling or after final cooling. The following example shows the results of this operation after a treatment already claimed separately by the inventors (consisting of immersion in a boiling water bath). In Table 1,
The surface of the steel, which was already very slightly contaminated after the quenching (and thus also before the quenching, since the quenching was carried out in distilled water), was further clearly improved by the pickling treatment used. It can be seen that In this example, the amount of carbon present on the outermost surface was determined by the Ford test method.
【表】
第表は夏に48時間陰で戸外に曝された鋼鉄の
場合を示す。第1の試料(A)は、アルカリ脱脂、放
射管を備えた在来の炉の中でN2/H2のもとでの
700℃での加熱、この温度で1分間維持、大気の
吹きつけ(ジエツト冷却)による500℃までの冷
却、500〜400℃の間で3分間の緩慢な冷却、およ
び大気の吹きつけによる室温までの最終冷却より
なる連続処理を受けた。第二の試料(B)は同様な処
理を受けたが、最初の冷却は水での急冷と450℃
への再加熱で置き換えられた。
三つの他の試料(C),(D),(E)は、本発明の方法に
従つて作製された。即ち、脱脂されていない鋼板
を裸炎の垂直炉中で加熱(燃焼空気の不足によつ
て還元煙を作るように燃焼を調節した)、急速冷
却、450℃1分間の過時効、および室温までの最
終冷却である。急速冷却は三つの異なつた方法で
行なわれた。即ち、
a 大気下でのジエツト冷却(試料C)(非常に
弱い酸化)
b 水での処理(D)(弱く不規則な酸化)
c 沸騰に近い温度の水浴中へ浸漬(E)(厚さ100
〜600Åの均一酸化)
である。
試料は、本発明者等によつて別に特許請求され
た方法に従つて、例えば1g/リツトルの濃度の
蟻酸浴中に5秒間浸漬することによつて酸洗いさ
れた。上記の試験による腐蝕に対する抵抗力は0
(非常に良好な抵抗力)から10(悪い抵抗力)まで
の階級で評価された。[Table] The table shows the case of steel exposed outdoors in the shade for 48 hours in summer. The first sample (A) was alkaline degreased and subjected to N 2 /H 2 in a conventional furnace equipped with a radiant tube.
Heating at 700°C, holding at this temperature for 1 minute, cooling to 500°C with air blowing (jet cooling), slow cooling between 500 and 400°C for 3 minutes, and cooling to room temperature with air blowing. It underwent a continuous process consisting of a final cooling. The second sample (B) underwent similar treatment, but the first cooling was water quenching and 450°C.
Replaced by reheating. Three other samples (C), (D), (E) were prepared according to the method of the invention. Namely, an undegreased steel plate was heated in an open-flame vertical furnace (combustion was controlled to produce reducing smoke due to lack of combustion air), rapidly cooled, overaged for 1 minute at 450°C, and heated to room temperature. This is the final cooling of the Rapid cooling was performed in three different ways. a. Jet cooling in air (Sample C) (very weak oxidation); b. Treatment with water (D) (weak and irregular oxidation); c. Immersion in a water bath at near boiling temperature (E) (thickness 100
~600 Å homogeneous oxidation). The samples were pickled according to a method separately claimed by the inventors, for example by immersion for 5 seconds in a formic acid bath at a concentration of 1 g/liter. Resistance to corrosion according to the above test is 0
Rated on a scale from (very good resistance) to 10 (poor resistance).
【表】
*印は本発明によるもの
本発明では裸炎炉、そして脱脂のないことは常
に一つの改良をもたらす。一つの酸化工程が処理
に追加されるならば、そして特に生成酸化物が均
一で100〜600Åの厚さのものであれば、この改良
は更に顕著になる。[Table] The * mark is according to the present invention In the present invention, the open flame furnace and the absence of degreasing always bring about an improvement. This improvement becomes even more pronounced if one oxidation step is added to the process, and especially if the resulting oxide is uniform and 100-600 Å thick.
第1図は、アルカリ脱脂後に連続焼なましされ
た鋼Aと本発明の方法によつて、あらかじめ脱脂
処理を受けずして裸炎の炉の中で連続焼なましさ
れた鋼Bの最表面におけるMn含量の差異を示
す。本発明方法の鋼BではMnの増加は僅かであ
ることが示されている。
Figure 1 shows the final results of Steel A, which was continuously annealed after alkaline degreasing, and Steel B, which was continuously annealed in an open flame furnace without prior degreasing by the method of the present invention. The difference in Mn content on the surface is shown. Steel B manufactured by the method of the present invention shows a slight increase in Mn.
Claims (1)
する方法であつて、 (a) 汚染された金属薄板を金属の再結晶温度以上
でかつA3変態点より下の温度で、非酸化性雰
囲気中で加熱し、上記加熱の少なくとも初期を
裸炎の炉の中で行ない、 (b) 加熱された金属薄板を急速冷却し、急速冷却
が金属板と水性媒体との接触からなり、これに
よつて上記急速冷却に酸化工程を含ませ、 (c) 冷却した金属薄板に有機酸水溶液中での浸漬
処理を受けさせる ことを特徴とする金属薄板の連続焼なまし方
法。 2 急速冷却に続いて、200℃から500℃までの温
度において薄板を炭素析出工程に付す特許請求の
範囲第1項記載の方法。 3 有機酸が蟻酸である特許請求の範囲第1項記
載の方法。 4 水性媒体は静止浴、または撒水管、または噴
霧管より構成されるか、あるいはこれら3手段の
いずれか二つまたは全部を合わせたものより構成
され、それらの順序は任意である特許請求の範囲
第1項ないし第3項のいずれか一つに記載の方
法。[Claims] 1. A method for continuously annealing a thin metal sheet contaminated with rolling oil, comprising: (a) a method for continuously annealing a thin metal sheet contaminated with rolling oil, which method comprises: (b) rapid cooling of the heated sheet metal, the rapid cooling being a reaction between the metal sheet and the aqueous medium; (c) immersing the cooled metal sheet in an organic acid aqueous solution. . 2. A method according to claim 1, in which, following rapid cooling, the sheet is subjected to a carbon deposition step at a temperature of 200°C to 500°C. 3. The method according to claim 1, wherein the organic acid is formic acid. 4. Claims in which the aqueous medium is composed of a static bath, a water spray pipe, or a spray pipe, or a combination of any two or all of these three means, and the order thereof is arbitrary. The method according to any one of paragraphs 1 to 3.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE6/4695A BE878944A (en) | 1979-09-21 | 1979-09-21 | PROCESS FOR THE CONTINUOUS HEAT TREATMENT OF METAL SHEET |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5696021A JPS5696021A (en) | 1981-08-03 |
JPS6323246B2 true JPS6323246B2 (en) | 1988-05-16 |
Family
ID=3874833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13142080A Granted JPS5696021A (en) | 1979-09-21 | 1980-09-19 | Continuous heat treatment of thin metal plate |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS5696021A (en) |
AR (1) | AR221438A1 (en) |
DD (1) | DD153134A5 (en) |
DE (1) | DE3034981A1 (en) |
MX (1) | MX154035A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529909A (en) * | 1975-07-14 | 1977-01-25 | Yasushi Matsuzaka | Filling material for concrete pile head |
JPS52156710A (en) * | 1976-06-23 | 1977-12-27 | Centre Rech Metallurgique | Continuous process for heat treatment of rolled sheet steel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU71664A1 (en) * | 1975-01-17 | 1976-12-31 |
-
1980
- 1980-04-22 MX MX18401080A patent/MX154035A/en unknown
- 1980-09-15 AR AR28252280A patent/AR221438A1/en active
- 1980-09-17 DE DE19803034981 patent/DE3034981A1/en active Granted
- 1980-09-19 JP JP13142080A patent/JPS5696021A/en active Granted
- 1980-09-19 DD DD22402280A patent/DD153134A5/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529909A (en) * | 1975-07-14 | 1977-01-25 | Yasushi Matsuzaka | Filling material for concrete pile head |
JPS52156710A (en) * | 1976-06-23 | 1977-12-27 | Centre Rech Metallurgique | Continuous process for heat treatment of rolled sheet steel |
Also Published As
Publication number | Publication date |
---|---|
AR221438A1 (en) | 1981-01-30 |
DE3034981A1 (en) | 1981-04-02 |
DE3034981C2 (en) | 1989-09-14 |
MX154035A (en) | 1987-04-08 |
JPS5696021A (en) | 1981-08-03 |
DD153134A5 (en) | 1981-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5677289B2 (en) | Method for producing coated metal strip with improved appearance | |
RU2387734C2 (en) | Method of continuous annealing and application of coating by means of hot dipping method, and system for continuous annealing and application of coating by means of hot dipping method of silica-bearing steel plate | |
US3133829A (en) | Method of applying protective coatings to metals | |
MX2012011761A (en) | Process for producing hot-rolled steel sheet and process for producing hot-dip galvanized steel sheet. | |
NL8002347A (en) | METHOD FOR CONTINUOUSLY GLOWING A COLD ROLLED STEEL STRIP. | |
JPS62274060A (en) | Molten aluminum coated chromium alloy steel | |
JP2768871B2 (en) | Melt coating method for chromium-containing steel | |
JPS5849619B2 (en) | Method for manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment properties | |
US3849176A (en) | Surface-treated steel plates high in anticorrosiveness | |
JPH0322272B2 (en) | ||
JPS6323246B2 (en) | ||
US4349393A (en) | Continuous heat treatment for metal sheet | |
US3677797A (en) | Method of forming corrosion resistant films on steel plates | |
JPH02285057A (en) | Method for continuously annealing steel sheet to be galvanized | |
JPS6028909B2 (en) | Steel plate with excellent chemical conversion treatment properties | |
US2175620A (en) | Treatment of sheets, thin bars, and the like | |
KR850000348B1 (en) | Continuous annealing of cold rolled low carbon steel strip | |
JPH0587570B2 (en) | ||
US3112231A (en) | Protective coating | |
TWI789013B (en) | Titanium material and manufacturing method of titanium material | |
EP0094808B1 (en) | Method of box-annealing steel sheet to minimize annealing stickers | |
US4582546A (en) | Method of pretreating cold rolled sheet to minimize annealing stickers | |
US5106435A (en) | Method for minimizing surface carbide formation during box annealing | |
JP2010059463A (en) | Method for producing hot-dip galvannealed steel sheet | |
KR850000579B1 (en) | Method annealing of cold steel strip |