[go: up one dir, main page]

JPS63231256A - Calibration data processing method for sample electrolyte measurement using ion-selective electrodes - Google Patents

Calibration data processing method for sample electrolyte measurement using ion-selective electrodes

Info

Publication number
JPS63231256A
JPS63231256A JP62065031A JP6503187A JPS63231256A JP S63231256 A JPS63231256 A JP S63231256A JP 62065031 A JP62065031 A JP 62065031A JP 6503187 A JP6503187 A JP 6503187A JP S63231256 A JPS63231256 A JP S63231256A
Authority
JP
Japan
Prior art keywords
potential
sample
measurement
calibration
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62065031A
Other languages
Japanese (ja)
Inventor
Etsuo Ozaki
尾崎 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP62065031A priority Critical patent/JPS63231256A/en
Publication of JPS63231256A publication Critical patent/JPS63231256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、標準液゛と検体について参照電極とイオン選
択性電極との間の電位を測定し標準液の測定電位より校
正電位を求め検体の電解質の量を測定するイオン選択性
電極を用いた検体電解質測定の校正データ処理法に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention measures the potential between a reference electrode and an ion-selective electrode for a standard solution and a sample, calculates a calibration potential from the measured potential of the standard solution, and calculates the calibration potential for the sample. This invention relates to a calibration data processing method for measuring electrolyte in a sample using an ion-selective electrode that measures the amount of electrolyte in a sample.

〔従来の技術〕[Conventional technology]

第4図はイオン選択性電極を用いた血中電解質測定シス
テムの1例を示す図であり、11はサンプラ、12と2
0はポンプ、13はフローセル、14はイオン選択電瓶
、15は参照電極、16はコントローラ、17は増幅器
、18はADC(アナログ−デジタルコンバータ)、1
9はデータ処理部、21は排液槽を示す。
FIG. 4 is a diagram showing an example of a blood electrolyte measurement system using an ion-selective electrode, in which 11 is a sampler, 12 and 2
0 is a pump, 13 is a flow cell, 14 is an ion selection bottle, 15 is a reference electrode, 16 is a controller, 17 is an amplifier, 18 is an ADC (analog-digital converter), 1
9 is a data processing section, and 21 is a drain tank.

第4図において、イオン選択電極14と参照電極15と
の間には、その測定される血中の電解質の星に対応した
電位差が得られる6従って、コントローラ16の制御の
下に、フローセル13へ標準液と検体とを切り換えて送
り、それぞれの電位を増幅器17、ADC18を通して
データ処理部19に取り込むことによって、標準液の測
定電位を校正電位として検体の電解質の量を測定するこ
とができる。血中電解質測定されるものには、Na” 
、K” 、Ca”、C1−、Co、”−等があり、−m
に高い検出精度が要求されている。
In FIG. 4, a potential difference corresponding to the electrolyte star in the blood to be measured is obtained between the ion selection electrode 14 and the reference electrode 15. Therefore, under the control of the controller 16, the flow cell 13 is By switching between sending the standard solution and the sample and taking their potentials into the data processing unit 19 through the amplifier 17 and ADC 18, the amount of electrolyte in the sample can be measured using the measured potential of the standard solution as a calibration potential. Blood electrolytes measured include Na”
, K", Ca", C1-, Co, "-, etc., -m
High detection accuracy is required.

第5図は血中電解質測定システムの動作タイミングと出
力波形を示す図、第6図はデータ処理部の構成例を示す
図である。
FIG. 5 is a diagram showing the operation timing and output waveform of the blood electrolyte measurement system, and FIG. 6 is a diagram showing an example of the configuration of the data processing section.

上記血中電解質測定システムでは、コントローラ16に
より第5図ta+に示すような動作タイミングによりサ
ンプラ11、ポンプ12(PZ)、20 (P、 )を
切り換えて標準液と検体をフローセル13へ送ると、こ
の動作に対応してイオン選択電極14と参照電極15と
の間には、第5図(blに示すような電位差が現れる。
In the above blood electrolyte measurement system, when the controller 16 switches the sampler 11, pump 12 (PZ), 20 (P, ) according to the operation timing shown in FIG. Corresponding to this operation, a potential difference as shown in FIG. 5 (bl) appears between the ion selection electrode 14 and the reference electrode 15.

そこで、データ処理部では、第6図に示すようにコント
ローラ16からの測定タイミング信号に従ってホールド
回路22にこの電位差をホールドして標準液と検体の測
定値を順次レジスタ23に記憶する。そして、演算回路
24により標準液の測定電位を校正電位として検体の濃
度を演算しファイル25へ格納する。
Therefore, in the data processing section, this potential difference is held in the hold circuit 22 according to the measurement timing signal from the controller 16, as shown in FIG. 6, and the measured values of the standard solution and the sample are sequentially stored in the register 23. Then, the arithmetic circuit 24 calculates the concentration of the specimen using the measured potential of the standard solution as a calibration potential and stores it in the file 25.

上記のようなイオン選択性電極を用いた検体電解質測定
では、いずれの機種でも測定精度を上げるために1検体
測定毎あるいは数検体測定毎に内部標準液で校正が行な
われる。従って、同一濃度の検体を測定した場合にはそ
れぞれ第7図(al、(blに示すような検体と内部標
$液のレベル信号波形が得られる。
In measuring a sample electrolyte using an ion-selective electrode such as the one described above, calibration is performed using an internal standard solution every time one sample is measured or every several samples are measured in order to improve measurement accuracy in any model. Therefore, when measuring specimens with the same concentration, level signal waveforms of the specimen and internal standard solution as shown in FIGS. 7(al and bl) are obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のような検体電解質測定では、測定
をくり返した場合、電極の種類によっては、内部標準液
の校正電位が必ずしも一定にはならず、第8図に示すよ
うに校正電位が最初の電位から徐々に上1−するドリフ
トが見られる場合がある。この原因としては、電極の応
答特性、サンプル中の特殊成分の吸着、温度変動などが
考えられる。この傾向は、特に4級アンモニウムイオン
交換体を用いたC1電極に顕著に見られる。このドリフ
トは少なからず、測定精度に影響を及ぼし、特に測定ス
ピードを早めた場合にその影響は著しい。
However, in the above-mentioned sample electrolyte measurement, depending on the type of electrode, the calibration potential of the internal standard solution does not always remain constant when measurements are repeated, and as shown in Figure 8, the calibration potential is not always the same as the initial potential. In some cases, a drift gradually upwards from 1- is observed. Possible causes of this include the response characteristics of the electrode, adsorption of special components in the sample, and temperature fluctuations. This tendency is particularly noticeable in the C1 electrode using a quaternary ammonium ion exchanger. This drift has a considerable effect on measurement accuracy, and the effect is particularly significant when the measurement speed is increased.

本発明は、上記の問題点を解決するものであって、内部
標準液の校正電位にドリフトがあっても高い測定精度が
得られるイオン選択性電極を用いた検体電解質測定の校
正データ処理法を提供することを目的とするものである
The present invention solves the above-mentioned problems, and provides a calibration data processing method for analyte electrolyte measurement using an ion-selective electrode that provides high measurement accuracy even if there is a drift in the calibration potential of an internal standard solution. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明のイオン選択性電極を用いた検体電解
質測定の校正データ処理法は、標準液と検体について参
照NFfxとイオン選択性電極との間の電位を測定し標
準液の測定電位より校正電位を求め検体の電解質の量を
測定するイオン選択性電極を用いた検体電解質測定の校
正データ処理法であって、検体測定前後の標準液の測定
電位より演算して校正電位を求めることを特徴とする。
For this purpose, the calibration data processing method for sample electrolyte measurement using the ion-selective electrode of the present invention measures the potential between the reference NFfx and the ion-selective electrode for the standard solution and sample, and calculates the calibration potential from the measured potential of the standard solution. This is a calibration data processing method for sample electrolyte measurement using an ion-selective electrode that calculates the amount of electrolyte in the sample and measures the amount of electrolyte in the sample, and is characterized by calculating the calibration potential from the measured potential of a standard solution before and after sample measurement. do.

〔作用〕[Effect]

本発明のイオン選択性電極を用いた検体電解質測定の校
正データ処理法では、検体測定前後の標準液の測定電位
より演算して校正電位を求めるので、検体測定時に対応
する校正電位を求めることができる。しかも、各種測定
条件によりドリフトが異なる場合にも、そのドリフトを
曲線等により近似させて校正電位を求めることによって
、より精度の高い測定が可能になる。
In the calibration data processing method for analyte electrolyte measurement using the ion-selective electrode of the present invention, the calibration potential is calculated from the measured potential of the standard solution before and after the analyte measurement, so it is possible to find the corresponding calibration potential at the time of the analyte measurement. can. Furthermore, even if the drift differs depending on various measurement conditions, more accurate measurement can be achieved by approximating the drift using a curve or the like to obtain the calibration potential.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係るイオン選択性電極を用いた検体電
解質測定の校正データ処理法の1実施例を説明するため
の図、第2図及び第3図は校正電位の演算例を示す図で
ある。
FIG. 1 is a diagram for explaining one embodiment of the calibration data processing method for measuring analyte electrolytes using the ion-selective electrode according to the present invention, and FIGS. 2 and 3 are diagrams showing examples of calculation of the calibration potential. It is.

第1図において、lは測定装置、2はコントローラ、3
はホールド回路、4はシフトレジスタ、5は演算回路、
6はファイルを示す。測定装置lは、第4図に示すよう
なイオン選択性1を極を用いた血中電解質測定装置であ
り、測定装置1、コントローラ2、ホールド回路3は、
それぞれ第6図と同じものである。シフトレジスタ4は
、3点の測定データを記憶するものであり、コントロー
ラ2の制御によりホールド回路3で標準液の測定電位、
検体の測定電位、再び標準液の測定電位が順次ホールド
されると、この3点のデータがシフトレジスタ4に記憶
される。演算回路5は、こ孔らのデータを読み込み、検
体前後の標準液の測定電位から校正電位を演算し、該校
正電位に基づいて検体の電位すなわち電解質の量を演算
測定する。
In FIG. 1, l is the measuring device, 2 is the controller, and 3
is a hold circuit, 4 is a shift register, 5 is an arithmetic circuit,
6 indicates a file. The measuring device 1 is a blood electrolyte measuring device using an ion selectivity 1 pole as shown in FIG. 4, and the measuring device 1, controller 2, and hold circuit 3 are as follows:
Each is the same as in Figure 6. The shift register 4 stores measurement data at three points, and under the control of the controller 2, the hold circuit 3 stores the measured potential of the standard solution,
When the measured potential of the specimen and the measured potential of the standard solution are held in sequence, the data of these three points are stored in the shift register 4. The calculation circuit 5 reads these data, calculates a calibration potential from the measured potentials of the standard solution before and after the specimen, and calculates and measures the potential of the specimen, that is, the amount of electrolyte, based on the calibration potential.

ここで検体測定後の標準、・夜の測定電位は、シフトレ
ジスタ4でシフトされることにより次の検体では前の標
準液の測定電位となり、その検体に続いて標準液の測定
が行われると、同様にして校正電位の演算及び電解質の
量の演算測定が行われることになる。
Here, the standard and night measurement potential after the sample measurement is shifted by the shift register 4 to become the measurement potential of the previous standard solution for the next sample, and when the standard solution is measured following that sample. Calculation of the calibration potential and calculation and measurement of the amount of electrolyte are performed in the same manner.

更に、校正処理を具体的に説明すると、毎回内部標$液
で校正する場合には、第2図+a+に示すように検体測
定前の校正電位Aのみでなく、検体測定後の校正電位C
(従来法では、次の検体の校正電位)も用い、それらの
差をヘースラインのドリフトとみなして検体測定点での
校正電位を算出する。通常、物性の異なるサンプル(水
溶液と血清検体、温度差のある検体等〉が検出部に導入
されると、第2図(′b)に示すようにドリフトする。
Furthermore, to explain the calibration process in detail, when calibrating with the internal standard solution each time, as shown in Figure 2+a+, not only the calibration potential A before sample measurement, but also the calibration potential C after sample measurement.
(In the conventional method, the calibration potential of the next specimen) is also used, and the difference between them is regarded as a drift of the Haese line to calculate the calibration potential at the specimen measurement point. Normally, when samples with different physical properties (an aqueous solution and a serum sample, a sample with a temperature difference, etc.) are introduced into the detection section, they drift as shown in FIG. 2('b).

このことから、この波形を第2図(alの曲線β、に示
すようにシュミレーションして演算し校正電位を求める
ことにより、測定条件に即した構成電位の演算が可能と
なる。この場合のシュミレーションは、測定条件等に応
じて開数を用いてもよいし、予めシュミレーション曲線
を設定しておいてもよい。
From this, by simulating and calculating this waveform as shown in Figure 2 (curve β in al) and calculating the calibration potential, it becomes possible to calculate the constituent potential in accordance with the measurement conditions. A numerical value may be used depending on the measurement conditions, or a simulation curve may be set in advance.

また、ドリフトは、必ずしも上記のようなシュミレーシ
ョン曲Mp lを用いな(でも、第2図(alや第3図
に示す直23 p−zを用いてもよい。校正電位は、校
正点A、Cの中間を取ってもよいし、検体測定点に対応
する時間の点を取ってもよい。
In addition, for the drift, it is not necessary to use the above-mentioned simulation music Mp1 (but it is also possible to use the direct 23 pz shown in FIG. 2 (al) or FIG. 3. You may take the middle point of C, or you may take the time point corresponding to the sample measurement point.

なお、本発明は、上記の実施例に限定されるものではな
(、種々の変形が可能である。例えば上記の実施例では
、ホールド回路やシフトレジスタを用いて各点の測定電
位を記憶し演算したが、all定タイミイングに従って
ADCを制御し、ADCから出力される標準液と検体の
測定電位データを順次メモリに取り込んだ後、検体測定
点の前後の電位を読み出して校正電位を演算してもよい
し、その他の手法を採用してもよい。また、ドリフトア
ップの場合について説明したが、ドリフトダウンについ
ても同様の演算を行うことによって校正できることはい
うまでもない。
Note that the present invention is not limited to the above-mentioned embodiment (and various modifications are possible. For example, in the above-mentioned embodiment, the measured potential at each point is stored using a hold circuit or a shift register. However, after controlling the ADC according to all constant timing and sequentially importing the measured potential data of the standard solution and sample output from the ADC into the memory, the potentials before and after the sample measurement point are read out and the calibration potential is calculated. Alternatively, other methods may be adopted.Furthermore, although the case of drift up has been described, it goes without saying that calibration can be performed for drift down by performing similar calculations.

C発明の効果〕 以上の説明から明らかなように、本発明によれば、内部
標準液で校正を行う際、検体測定の前後における内部標
準液の測定電位を用い演算を行って校正電位を求めるの
で、ドリフトの発生する条件に応して的確な校正ができ
、より精度の高い測定が可能となる。
C. Effects of the Invention] As is clear from the above description, according to the present invention, when performing calibration with an internal standard solution, the calibration potential is obtained by performing calculations using the measured potentials of the internal standard solution before and after sample measurement. Therefore, accurate calibration can be performed according to the conditions under which drift occurs, and more accurate measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るイオン選択性電極を用いた検体電
解質測定の校正データ処理法の1実施例を説明するため
の図、第2図及び第3図は校正電位の演算例を示す図、
第4図はイオン選択性電極を用いた血中電解質測定シス
テムの1例を示す図、第5図は血中電解質測定システム
の動作タイミングと出力波形を示す図、第6図はデータ
処理部の構成例を示す図、第7図は測定波形の例を示す
図、第8図はドリフトの見られる測定波形の例を示す図
である。 1・・・測定装置、2・・・コントローラ、3・・・ホ
ールド回路、4・・・シフトレジスタ、5・・・演算回
路、6・・・ファイル。 出 願 人  日本電子株式会社 代理人 弁理士 阿 部 龍 吉(外2名)第2図 第牛図
FIG. 1 is a diagram for explaining one embodiment of the calibration data processing method for measuring analyte electrolytes using the ion-selective electrode according to the present invention, and FIGS. 2 and 3 are diagrams showing examples of calculation of the calibration potential. ,
Figure 4 shows an example of a blood electrolyte measurement system using ion-selective electrodes, Figure 5 shows the operation timing and output waveform of the blood electrolyte measurement system, and Figure 6 shows the data processing unit. FIG. 7 is a diagram showing an example of a measurement waveform, and FIG. 8 is a diagram showing an example of a measurement waveform in which drift is observed. DESCRIPTION OF SYMBOLS 1... Measuring device, 2... Controller, 3... Hold circuit, 4... Shift register, 5... Arithmetic circuit, 6... File. Applicant: JEOL Co., Ltd. Agent: Patent attorney Ryukichi Abe (2 others) Figure 2: Cow diagram

Claims (2)

【特許請求の範囲】[Claims] (1)標準液と検体について参照電極とイオン選択性電
極との間の電位を測定し標準液の測定電位より校正電位
を求め検体の電解質の量を測定するイオン選択性電極を
用いた検体電解質測定の校正データ処理法であって、検
体測定前後の標準液の測定電位より演算して校正電位を
求めることを特徴とするイオン選択性電極を用いた検体
電解質測定の校正データ処理法。
(1) Sample electrolyte using an ion-selective electrode that measures the potential between the reference electrode and the ion-selective electrode for the standard solution and the sample, calculates the calibration potential from the measured potential of the standard solution, and measures the amount of electrolyte in the sample. A calibration data processing method for measurement of a sample electrolyte using an ion-selective electrode, the method comprising calculating a calibration potential from the measured potential of a standard solution before and after measurement of the sample.
(2)検体測定前後の標準液の測定電位間での推移線を
設定し、該推移線上の点を校正電位とすることを特徴と
する特許請求の範囲第1項記載のイオン選択性電極を用
いた検体電解質測定の校正データ処理法。
(2) The ion selective electrode according to claim 1, wherein a transition line is set between the measurement potentials of the standard solution before and after the sample measurement, and a point on the transition line is set as a calibration potential. Calibration data processing method for sample electrolyte measurement used.
JP62065031A 1987-03-19 1987-03-19 Calibration data processing method for sample electrolyte measurement using ion-selective electrodes Pending JPS63231256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065031A JPS63231256A (en) 1987-03-19 1987-03-19 Calibration data processing method for sample electrolyte measurement using ion-selective electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065031A JPS63231256A (en) 1987-03-19 1987-03-19 Calibration data processing method for sample electrolyte measurement using ion-selective electrodes

Publications (1)

Publication Number Publication Date
JPS63231256A true JPS63231256A (en) 1988-09-27

Family

ID=13275200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065031A Pending JPS63231256A (en) 1987-03-19 1987-03-19 Calibration data processing method for sample electrolyte measurement using ion-selective electrodes

Country Status (1)

Country Link
JP (1) JPS63231256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517769A (en) * 2008-03-24 2011-06-16 デジタル ジェノミクス インコーポレイテッド Method for electrically detecting physiologically active substance and biochip for the same
JP2018146586A (en) * 2017-03-07 2018-09-20 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for determining analyte concentration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840698A (en) * 1981-09-04 1983-03-09 株式会社三協精機製作所 Bar graph display for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840698A (en) * 1981-09-04 1983-03-09 株式会社三協精機製作所 Bar graph display for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517769A (en) * 2008-03-24 2011-06-16 デジタル ジェノミクス インコーポレイテッド Method for electrically detecting physiologically active substance and biochip for the same
JP2018146586A (en) * 2017-03-07 2018-09-20 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for determining analyte concentration

Similar Documents

Publication Publication Date Title
CA2087720C (en) Method for analytically utilizing microfabricated sensors during wet-up
KR950019728A (en) Ion concentration measuring device and ion concentration measuring method
ATE153133T1 (en) METHOD AND DEVICE FOR MEASURING OPTICAL PROPERTIES OF BIOLOGICAL SAMPLES
Ross Jr SOLID-STATE AND LIQUID MEMBRANE
CN108918636B (en) Measuring device
JP3537478B2 (en) A method of measuring the pH value of a test solution with a glass electrode measurement cell and simultaneously calibrating the measurement cell
Pelleg et al. Determination of Na+ and K+ in urine with ion-selective electrodes in an automated analyzer
US4461998A (en) Ion selective measurements
JP2019536009A (en) Method and apparatus for simultaneously detecting a wide range of protein concentrations
JPS63231256A (en) Calibration data processing method for sample electrolyte measurement using ion-selective electrodes
CN102645477A (en) Iterative operation method for measuring concentration by aid of ion-selective electrode
DE3782715D1 (en) METHOD FOR DETERMINING THE CONCENTRATION RATIO OF LITHIUMIONS TO SODRIUMIONS AND DEVICE FOR CARRYING OUT THIS METHOD.
JP3174188B2 (en) Gas identification device
Vanysek The Chalkboard: The Glass pH Electrode
RU2167416C2 (en) Method and device for determining hydrogen ion concentration
JP3096823B2 (en) Solution concentration measurement method
CN114812859A (en) Liquid temperature data acquisition method and device, storage medium and electronic equipment
Bakker et al. How do pulsed amperometric ion sensors work? A simple PDE model
US20120000796A1 (en) Measurement Device and Method Utilizing the Same
JP3138774B2 (en) pH measuring device and its calibration method
US9039974B2 (en) Biological sample measuring device
JP3076384B2 (en) Ion concentration analyzer
JPS5811878A (en) Measuring device for switch
SU1744650A1 (en) Method for determination of osmolarity of blood serum and device
JPS62168045A (en) Component measuring method