[go: up one dir, main page]

JPS63229821A - Manufacture of mask for x-ray lithography - Google Patents

Manufacture of mask for x-ray lithography

Info

Publication number
JPS63229821A
JPS63229821A JP62064736A JP6473687A JPS63229821A JP S63229821 A JPS63229821 A JP S63229821A JP 62064736 A JP62064736 A JP 62064736A JP 6473687 A JP6473687 A JP 6473687A JP S63229821 A JPS63229821 A JP S63229821A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
oxide film
silicon
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064736A
Other languages
Japanese (ja)
Inventor
Shunichi Kobayashi
俊一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62064736A priority Critical patent/JPS63229821A/en
Publication of JPS63229821A publication Critical patent/JPS63229821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To prevent a mask from being cracked or the like, by a method wherein the mask whose metal pattern is buried into a silicon oxide film in the central part of the mask is constituted completely symmetrical in order to suppress the stress strain due to a difference in the coefficient of thermal expansion at a silicon substrate, the silicon oxide film and the metal pattern. CONSTITUTION:A recessed part 13 is made down to nearly half the depth of a silicon substrate 10 and one face of the substrate including the recessed part 13 is oxidized so as to form a silicon oxide film 14; after that, groove patterns corresponding to mask patterns are made at the film 14; a metal layer composed of gold, tantalum or the like having the big X-ray absorptivity is buried into the groove patterns so as to form metal patterns 16. In succession, a poly-crystalline silicon film 17 is deposited on the surface of the recessed part containing the metal patterns 16; it is oxidized and is united with the film 14. Then, another recessed part 19 which reaches the film 14 from the other face at the corresponding part is made in the mask pattern formation region of the substrate 10; a polycrystalline silicon film 20 is deposited on the surface of the recessed part under the same condition as the film 17. Lastly, the film 20 is transformed into a silicon oxide film which is united with a silicon oxide film 15 under the same condition as in the case of the film 14; at the same time, the surface of the metal patterns is covered with silicon oxide.

Description

【発明の詳細な説明】 本発明は、半導体工業に於て用いられるX!aリングラ
フィ川マ用クの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an X! The present invention relates to a method of manufacturing an a-line graphic river mask.

([l)従来技術 近年、゛1′−導体技術の進歩は目ざ1Fシく、集積回
路においてもより高い集積度、つまり素子の微細化が求
められている。現在一般に行なわれているフォトリソグ
ラフィに対しては、x1itリングラフィに大きな期待
が掛けられている。X線リングラフィに用いられるマス
クとしては、例えば、IEEE ELECTORON 
DEVICE LE’fTER5、VOL、ELD−6
NO,7JULY 19g5 P、353〜に示されて
いる(第10図参照)、同図に於て、(1)はマスクを
支持するシリコン基板で、その片面に窒化シリコン膜か
らなるベース層(3)が形成されており、その上にX線
を吸収する、金、タンタル、タングステン等の重金属か
ら成る金属パターン(2)が形成されている。〈4)は
この金属パターン(2)を保護すると共に、該パターン
(2)から出る光電子を吸収する為の光電子吸収膜で、
酸化シリコン膜、窒化シリコン膜、或いはポリイミド樹
脂膜などから成っている。
([l) Prior Art In recent years, advances in 1'-conductor technology are on the verge of rapid progress, and even in integrated circuits, there is a demand for a higher degree of integration, that is, miniaturization of elements. Compared to the currently commonly used photolithography, high expectations are placed on x1it lithography. As a mask used for X-ray phosphorography, for example, IEEE ELECTORON
DEVICE LE'fTER5, VOL, ELD-6
NO, 7 JULY 19g 5 P, 353 ~ (see Figure 10). In the same figure, (1) is a silicon substrate that supports a mask, and on one side of it is a base layer (3) made of a silicon nitride film. ) is formed, and a metal pattern (2) made of heavy metal such as gold, tantalum, tungsten, etc., which absorbs X-rays, is formed thereon. <4) is a photoelectron absorption film for protecting the metal pattern (2) and absorbing photoelectrons emitted from the pattern (2),
It is made of a silicon oxide film, a silicon nitride film, a polyimide resin film, or the like.

(ハ)発明が解決しようとする問題点 然し乍ら、断る構成のマスクではシリコン基板(1)と
ベース層(3)並びに光電子吸収層(4)の熱膨張係数
の相違から応力歪みが大きくなり、転写パターンに歪み
が生じたり、転写操作を繰り返しているうちにマスク割
れが発生する恐れがある。
(c) Problems to be Solved by the Invention However, with the mask having the above structure, stress strain increases due to differences in thermal expansion coefficients between the silicon substrate (1), the base layer (3), and the photoelectron absorption layer (4), resulting in transfer There is a risk that the pattern may become distorted or the mask may crack during repeated transfer operations.

(ニ)問題点を解決するための手段 本発明は、シリコン基板のマスクパターン形成領域に該
当する個所の一表面から該基板の厚みの略1/2の深さ
までの第1の凹部を穿ち、この凹部を含む基板一表面を
酸化して酸化シリコン膜を成長諮せた後、該酸化“シリ
コン膜にマスクパターンに対応した溝パターンを穿ち、
その溝パターンにX線吸収率の大きな金属層を埋め込ん
で金属パターンを形成し、続いてこの金属パターンを有
する凹部表面に多結晶シリコン膜を堆積さげてその多結
晶シリコン膜を酸化して上記酸化シリコン膜と一体化し
た酸化シリコン膜とすると同時に上記金属パターン表面
を酸化シリコン膜で被い、次に上記シリコン基板のマス
クパターン形成領域に該当する個所の他表面から上記酸
化シリコン膜にまで達する第2の凹部を穿った後、該第
2の凹部表面に先の多結晶シリコン膜の堆積工程と同じ
条件で第2の多結晶シリコン膜を堆積させ、最後にこの
第2の多結晶シリコン膜を先の酸化工程と同じ条件で酸
化して上記醸化シリコン膜と一体化した酸化シリコン膜
とすると同時に上記金属パターン表面を酸化シリコ>J
jで被うところにある。
(d) Means for Solving the Problems The present invention provides for drilling a first recess from one surface of a silicon substrate corresponding to a mask pattern forming area to a depth of approximately 1/2 of the thickness of the substrate; After oxidizing one surface of the substrate including this recess to grow a silicon oxide film, a groove pattern corresponding to the mask pattern is bored in the silicon oxide film,
A metal layer having a high X-ray absorption rate is buried in the groove pattern to form a metal pattern, and then a polycrystalline silicon film is deposited on the surface of the recessed part having this metal pattern, and the polycrystalline silicon film is oxidized to form the oxidized At the same time as forming a silicon oxide film integrated with the silicon film, the surface of the metal pattern is covered with a silicon oxide film, and then the silicon oxide film is reached from the other surface of the silicon substrate corresponding to the mask pattern formation region. After drilling the second recess, a second polycrystalline silicon film is deposited on the surface of the second recess under the same conditions as in the previous polycrystalline silicon film deposition process, and finally this second polycrystalline silicon film is deposited. It is oxidized under the same conditions as in the previous oxidation process to form a silicon oxide film integrated with the above-mentioned fermented silicon film, and at the same time, the surface of the above-mentioned metal pattern is oxidized with silicon oxide>J.
It is located where it overlaps with j.

(ホ)作用 本発明に依って得られるマスクは表裏対称構造を有する
ので、パターン歪みやマスク割れが解消される。
(E) Function Since the mask obtained according to the present invention has a symmetrical structure on the front and back sides, pattern distortion and mask cracking are eliminated.

(へ)実施例 本発明の第1の工程は、第1図に示すように厚さ約10
0μのシリコン基板(10)の表裏両表面を酸化して約
4000人の序言の酸化シリコン膜(11)(12)を
成長させ、続いて該基板り10)の一表面のマスクパタ
ーン形成領域に該当する個所の酸化シリコン膜(11)
をパターニング除去するところある。
(f) Example In the first step of the present invention, as shown in FIG.
Both the front and back surfaces of a 0μ silicon substrate (10) are oxidized to grow about 4,000 silicon oxide films (11) and (12), and then a mask pattern forming area on one surface of the substrate (10) is grown. Silicon oxide film at the relevant location (11)
There is a way to remove it by patterning.

第2の工程は、シリコン基板(10)の一表面に残σし
た酸化シリコン膜(11)をマスクとして該基板(lO
)をその厚みの略半分まで選択除去してマスクパターン
形成領域に該当する凹部(13)を穿つところにある(
第2図)、このエツチング工程は、基板(10)を界面
活性剤を混入したKOHに60〜100分間ディッピン
グすることに依って行なわれる。
In the second step, the silicon oxide film (11) remaining on one surface of the silicon substrate (10) is used as a mask to coat the substrate (lO
) is selectively removed to approximately half its thickness and a recess (13) corresponding to the mask pattern forming area is bored (
(FIG. 2), this etching step is carried out by dipping the substrate (10) in KOH mixed with a surfactant for 60 to 100 minutes.

第3の工程は、シリコン基板(10)の表裏両面の酸化
シリコン膜(11)(12)を弗酸系のエッチャントを
用いてエツチング除去した後、再びシリコン基板(10
)を熱酸化雰囲気中に晒して凹部(13)を含むシリコ
ン基板(10)表裏両面に1μ程度の厚さの酸化シリコ
ン膜(14)(15)を成長させるところにある(第3
図)、一般にシリコン基板を熱酸化させることに依って
該基板表面に形成された熱酸化膜と基板との界面には歪
みは発生しにくく、しかもこの両者間の接着力は極めて
高いとされている。
In the third step, the silicon oxide films (11) and (12) on both the front and back surfaces of the silicon substrate (10) are removed by etching using a hydrofluoric acid-based etchant, and then the silicon substrate (10) is etched again.
) is exposed to a thermal oxidation atmosphere to grow silicon oxide films (14) and (15) with a thickness of approximately 1 μm on both the front and back surfaces of the silicon substrate (10) including the recessed portion (13) (3rd step).
In general, when a silicon substrate is thermally oxidized, distortion is unlikely to occur at the interface between the thermal oxide film formed on the surface of the substrate and the substrate, and the adhesion between the two is said to be extremely high. There is.

第4の工程は第4図に示す如く、シリコン基板(10)
の凹部(13)内の酸化シリコン膜(14)をマスクパ
ターンに対応した溝パターンを穿ち、続いてその溝パタ
ーンにX線吸収率の大きな金、タンタル、タングステン
などの重金属を埋め込んで金属パターン(16)を形成
するところにある。この工程に於ける溝パターンは、1
μ以トの厚みのフォトレジスト膜を用いた通常のフォト
レジスト技術に依って穿たれると共に、xi吸収率の大
きな重金属をこのフォトレジスト膜の表面に堆積させた
後、そのフォトレジスト膜をエツチング除去するりフト
オフ技術にて金属パターン(16)が形成される。
In the fourth step, as shown in FIG.
A groove pattern corresponding to the mask pattern is bored in the silicon oxide film (14) in the recess (13), and then a heavy metal such as gold, tantalum, or tungsten, which has a high X-ray absorption rate, is embedded in the groove pattern to form a metal pattern ( 16). The groove pattern in this process is 1
A hole is formed using a conventional photoresist technique using a photoresist film with a thickness of less than μ, and a heavy metal with a high xi absorption rate is deposited on the surface of this photoresist film, and then the photoresist film is etched. A metal pattern (16) is formed using an ablation technique.

第5の工程は第5図に示す如く、シリコン基板(10)
の凹部(13〉を有する側の酸化シリコン膜(14)表
面に500〜1000人の厚みの多結晶シリコン(17
)をデポジットするところにある。この工程に依って当
然凹部(13)内の金属パターン(16)も多結晶シリ
コン(17)で被われてしまう。
In the fifth step, as shown in FIG.
Polycrystalline silicon (17) with a thickness of 500 to 1000 is coated on the surface of the silicon oxide film (14) on the side having the recess (13).
) at the place where you deposit. Due to this process, the metal pattern (16) within the recess (13) is naturally also covered with polycrystalline silicon (17).

第6の工程は、この多結晶シリコン(17)の全てを9
80〜1100°Cの酸化雰囲気中で10〜20分間、
熱酸化するところにある(第6図)、この醸化工程の結
果、多結晶シリコン(17)は800〜tsoo人の酸
化シリコン膜となるが、その酸化シリコン膜は上記酸化
シリコン膜(14)と一体化されて一体化酸化シリコン
(18)を構成し、凹部(13)内の金属パターン(1
6)をこの一体化酸化シリ−ノン(18)内に埋設して
しまう。
In the sixth step, all of this polycrystalline silicon (17) is
in an oxidizing atmosphere at 80-1100°C for 10-20 minutes,
As a result of this fermentation process, the polycrystalline silicon (17) becomes a silicon oxide film of 800~tsoo thick (Fig. 6), but the silicon oxide film is similar to the silicon oxide film (14). to form an integrated silicon oxide (18), and the metal pattern (1) in the recess (13)
6) is buried in this integrated silicon oxide (18).

第7の工程は、第1の工程でマスクパターン形成領域に
該当させてバターニング除去したシリコン基板〈10)
の表面とは対称の位置のシリコン基板(10)の裏面の
酸化シリコン膜(15)をバターニング除去し、残存し
た酸化シリコン膜(15)をマスクとしてシリコン基板
(10)を選択エツチングして凹部(19)を穿ち、上
記酸化シリコン膜(14)と該酸化膜(14)内に埋設
された金属パターン(16)を背面から露出させるとこ
ろにある(第7図)。
The seventh step is to remove the patterning from the silicon substrate corresponding to the mask pattern forming area in the first step.
The silicon oxide film (15) on the back surface of the silicon substrate (10) at a position symmetrical to the surface of the silicon substrate (10) is removed by patterning, and the silicon substrate (10) is selectively etched using the remaining silicon oxide film (15) as a mask to form recesses. (19) to expose the silicon oxide film (14) and the metal pattern (16) buried in the oxide film (14) from the back side (FIG. 7).

第8の工程は、この基板(10)裏面からの選択エツチ
ング工程の際にマスクとして用いた酸化シリコン膜(1
5)をエツチング除去し、続いてこの新たに穿った凹部
(19)に依って露出した一体化酸化シリコン(1g 
) Jeびに金属パターン(16)の背面を上記第5の
工程と同じ条件でデポジットさせた多結晶シリコン(2
0)で被うところにある(第8図)。
The eighth step is the silicon oxide film (10) used as a mask during the selective etching step from the back surface of the substrate (10).
5) was etched away, and then the integrated silicon oxide (1g
) Polycrystalline silicon (2
0) (Fig. 8).

最後に、上記第6の工程と同様に、この多結晶シリコン
〈20)のを980〜tioo″″Cの酸化雰囲気中で
熱酸化してこの酸化処理の結果書られる酸化シリコン膜
を上記一体化酸化シリコン膜(18)と一体化し、金属
パターン(16)の背面をこの一体化階化シリコン膜(
18)内に埋め込んで本発明方、法を完了する(第9図
)。
Finally, in the same manner as in the sixth step, this polycrystalline silicon (20) is thermally oxidized in an oxidizing atmosphere of 980~tioo''''C, and the silicon oxide film formed as a result of this oxidation treatment is integrated with the above. It is integrated with the silicon oxide film (18), and the back surface of the metal pattern (16) is covered with this integrated graded silicon film (
18) to complete the method of the present invention (FIG. 9).

尚、金属パターン(16)の表面は800〜1500人
の酸化シリコン膜に依って被われているので、X線露光
時に該金属パターン(16)表面からの光電子はその酸
化シリコン膜に依って吸収されてしまうが、光電子の発
生が多い時は上記一体化酸化シリコン膜(18表裏両面
に数千人の厚みの窒化シリコン膜などの光電子吸収層を
設けるのが望ましい。
The surface of the metal pattern (16) is covered with a silicon oxide film of 800 to 1,500 layers, so photoelectrons from the surface of the metal pattern (16) are absorbed by the silicon oxide film during X-ray exposure. However, when a large number of photoelectrons are generated, it is desirable to provide a photoelectron absorption layer such as a silicon nitride film several thousand thick on both the front and back surfaces of the integrated silicon oxide film (18).

(ト)発明の効果 本発明に依って得られたX線リングラフィ用マスクは金
属パターンがマスク中央部の一体化酸化シリコン膜内に
埋設された全くの対称形であるので、シリコン基板、酸
化シリコン膜及び金属パターンの熱膨張係数の違いに依
る応力歪の発生がなくなり、転写パターンの歪みとか、
マスク割れなどの不所望な事故を防止し得る。また金属
パターンの表面は物性的に極めて安定している熱酸化に
依る酸化シリコン゛で被われているので、信頼性の高い
マスク構造が得られる。
(G) Effects of the Invention The X-ray phosphorography mask obtained according to the present invention has a completely symmetrical metal pattern embedded in the integrated silicon oxide film at the center of the mask. This eliminates stress and strain caused by the difference in thermal expansion coefficient between the silicon film and metal pattern, resulting in distortion of the transferred pattern.
Unwanted accidents such as mask cracking can be prevented. Furthermore, since the surface of the metal pattern is covered with silicon oxide produced by thermal oxidation, which is extremely stable in terms of physical properties, a highly reliable mask structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は本発明方法を工程順に示した断面図、
第10図は従来のマスク構造を示した断面図である。 (lO)・・・・シリコン基板、 (11)(12)(14)(15)・・・・酸化シリコ
ン膜、(13)(19)・・・・凹部、 (16)・・・・金属パターン膜、 (17)(20)・・・・多結晶シリコン、(18)・
・・・一体化酸化シリコン膜。
1 to 9 are cross-sectional views showing the method of the present invention in the order of steps;
FIG. 10 is a sectional view showing a conventional mask structure. (lO)...Silicon substrate, (11)(12)(14)(15)...Silicon oxide film, (13)(19)...Concavity, (16)...Metal Patterned film, (17) (20)...polycrystalline silicon, (18)...
...Integrated silicon oxide film.

Claims (2)

【特許請求の範囲】[Claims] (1)次の工程からなるX線リソグラフィ用マスクの製
造方法: ・シリコン基板のマスクパターン形成領域に該当する個
所の一表面から該基板の厚みの略1/2の深さまでの第
1の凹部を穿つ工程、 ・該凹部を含む基板一表面を酸化して酸化シリコン膜を
成長させる工程、 ・該酸化シリコン膜にマスクパターンに対応した溝パタ
ーンを穿つ工程、 ・該溝パターンにX線吸収率の大きな金属層を埋め込ん
で金属パターンを形成する工程、・少なくとも該金属パ
ターンを有する凹部表面に多結晶シリコン膜を堆積させ
る工程、 ・該多結晶シリコン膜を酸化して上記酸化シリコン膜と
一体化した酸化シリコン膜とすると同時に上記金属パタ
ーン表面を酸化シリコン膜で被う工程、 ・上記シリコン基板のマスクパターン形成領域に該当す
る個所の他表面から上記酸化シリコン膜にまで達する第
2の凹部を穿つ工程、 ・少なくとも該第2の凹部表面に先の多結晶シリコン膜
の堆積工程と同じ条件で第2の多結晶シリコン膜を堆積
させる工程、 ・この第2の多結晶シリコン膜を先の酸化工程と同じ条
件で酸化して上記酸化シリコン膜と一体化した酸化シリ
コン膜とすると同時に上記金属パターン表面を酸化シリ
コン膜で被う工程、
(1) A method for manufacturing an X-ray lithography mask comprising the following steps: - A first recess from one surface of a silicon substrate corresponding to a mask pattern formation area to a depth of approximately 1/2 of the thickness of the substrate. - A step of oxidizing one surface of the substrate including the recess to grow a silicon oxide film. - A step of drilling a groove pattern corresponding to the mask pattern in the silicon oxide film. - Adding an X-ray absorption rate to the groove pattern. a step of embedding a large metal layer to form a metal pattern, a step of depositing a polycrystalline silicon film on at least the surface of the concave portion having the metal pattern, and a step of oxidizing the polycrystalline silicon film to integrate it with the silicon oxide film. forming a silicon oxide film, and at the same time covering the surface of the metal pattern with a silicon oxide film; - drilling a second recess that reaches the silicon oxide film from another surface of the silicon substrate at a location corresponding to the mask pattern formation region; a step of depositing a second polycrystalline silicon film on at least the surface of the second recess under the same conditions as in the previous polycrystalline silicon film deposition step; - depositing this second polycrystalline silicon film in the previous oxidation step a step of oxidizing under the same conditions as to form a silicon oxide film integrated with the silicon oxide film, and simultaneously covering the surface of the metal pattern with a silicon oxide film;
(2)上記酸化シリコン膜表面に光電子吸収層を設ける
工程を含むことを特徴とした特許請求の範囲第1項記載
のX線リソグラフィ用マスクの製造方法。
The method for manufacturing an X-ray lithography mask according to claim 1, further comprising the step of: (2) providing a photoelectron absorption layer on the surface of the silicon oxide film.
JP62064736A 1987-03-19 1987-03-19 Manufacture of mask for x-ray lithography Pending JPS63229821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064736A JPS63229821A (en) 1987-03-19 1987-03-19 Manufacture of mask for x-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064736A JPS63229821A (en) 1987-03-19 1987-03-19 Manufacture of mask for x-ray lithography

Publications (1)

Publication Number Publication Date
JPS63229821A true JPS63229821A (en) 1988-09-26

Family

ID=13266729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064736A Pending JPS63229821A (en) 1987-03-19 1987-03-19 Manufacture of mask for x-ray lithography

Country Status (1)

Country Link
JP (1) JPS63229821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195344A (en) * 1995-01-13 1996-07-30 Nec Corp Aperture and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195344A (en) * 1995-01-13 1996-07-30 Nec Corp Aperture and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPS63304644A (en) Method of forming via-hole
JP2896072B2 (en) Method for forming field oxide film of semiconductor device
JPS63229821A (en) Manufacture of mask for x-ray lithography
JP2961690B2 (en) X-ray mask and manufacturing method thereof
JPS59135743A (en) Semiconductor device and its manufacturing method
JPS63229820A (en) Manufacture of mask for x-ray lithography
JPH0456254A (en) Manufacture of semiconductor device
JPS6360539B2 (en)
JPS63229818A (en) Manufacture of mask for x-ray lithography
JP2570735B2 (en) Multi-layer wiring formation method
JPS6387741A (en) Manufacture of semiconductor device
JPS63229819A (en) Manufacture of mask for x-ray lithography
JPS63232426A (en) Manufacture of mask for x-ray lithography
JPH10189606A (en) Bump of semiconductor device and manufacture thereof
JPS6254427A (en) Manufacture of semiconductor device
JPH11162845A (en) Formation of mask for semiconductor device
JPH0249017B2 (en)
JP2929603B2 (en) Semiconductor device manufacturing method and laser beam processing apparatus
JPS59213131A (en) Manufacture of x-ray exposing mask
KR930006133B1 (en) Contact hole formation method of MOS device
JPH07147225A (en) Semiconductor device and its manufacture
KR100220938B1 (en) Process for forming contact of semiconductor device
JPS61216344A (en) Manufacture of semiconductor device
JPS61276324A (en) Manufacture of semiconductor device