[go: up one dir, main page]

JPS63229461A - electrophotographic photoreceptor - Google Patents

electrophotographic photoreceptor

Info

Publication number
JPS63229461A
JPS63229461A JP6241487A JP6241487A JPS63229461A JP S63229461 A JPS63229461 A JP S63229461A JP 6241487 A JP6241487 A JP 6241487A JP 6241487 A JP6241487 A JP 6241487A JP S63229461 A JPS63229461 A JP S63229461A
Authority
JP
Japan
Prior art keywords
charge
photoreceptor
charge generation
generation layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6241487A
Other languages
Japanese (ja)
Inventor
Koji Tsukamoto
浩司 塚本
Tomosumi Kamisaka
友純 上坂
Tsuneo Watanuki
恒夫 綿貫
Norio Saruwatari
紀男 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6241487A priority Critical patent/JPS63229461A/en
Publication of JPS63229461A publication Critical patent/JPS63229461A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概 要〕 少なくとも電荷発生層と電荷輸送層とを支持体上に有す
る電子写真感光体において、支持体の表面粗度を電荷発
生層の膜厚と同程度以下、すなわち0.5S以下にする
ことにより、支持体上に電荷発生層を塗工する際に問題
となる電荷発生物質の凝集等の塗工欠陥を防1ヒし、こ
の塗工欠陥によって発生する帯電・感度・残留電位など
のむら等によるかぶりなどの印字欠陥を抑える。
Detailed Description of the Invention [Summary] In an electrophotographic photoreceptor having at least a charge generation layer and a charge transport layer on a support, the surface roughness of the support is equal to or less than the thickness of the charge generation layer, In other words, by setting the temperature to 0.5S or less, coating defects such as aggregation of charge-generating substances, which can be a problem when coating a charge-generating layer on a support, can be prevented, and the charging caused by these coating defects can be prevented. - Suppresses printing defects such as fogging due to unevenness in sensitivity, residual potential, etc.

〔産業上の利用分野〕[Industrial application field]

本発明は、カールソンプロセスを応用した複写機やプリ
ンタなどに広く応用できる電子写真感光体に関する。
The present invention relates to an electrophotographic photoreceptor that can be widely applied to copying machines, printers, etc. that apply the Carlson process.

〔従来の技術〕[Conventional technology]

カールソンプロセスは、帯電、露光、現像、転写、およ
び定着の各工程から成り、これらの繰り返しによって印
刷物を得る。帯電は、光導電性を有する感光体の表面に
正または負の均一静電荷を施す。続く露光プロセスでは
、レーザ光などを照射して特定部分の表面電荷を消去す
ることによって感光体上に画像情報に対応した静電潜像
を形成する0次に、この潜像をトナーと呼ばれる粉体イ
ンクによって静電的に現像することにより、感光体上に
トナーによる可視像を形成する。最後に、このトナー像
を記録紙上に静電的に転写し、熱、光、または圧力など
によって融着させることにより印刷物を得る。
The Carlson process consists of charging, exposure, development, transfer, and fixing steps, and by repeating these steps, printed matter is obtained. Charging applies a uniform positive or negative electrostatic charge to the surface of a photoconductive photoreceptor. In the subsequent exposure process, an electrostatic latent image corresponding to the image information is formed on the photoconductor by irradiating it with a laser beam or the like to erase the surface charge in a specific area.Next, this latent image is transferred to a powder called toner. A visible toner image is formed on the photoreceptor by electrostatic development with the body ink. Finally, this toner image is electrostatically transferred onto recording paper and fused using heat, light, pressure, etc. to obtain a printed matter.

光導電性を有する感光体として、セレン系に代表される
無機感光体が広く使用されていた。この無機感光体は、
感度が高い上に機械的摩耗に強く、高速・大型機に適し
ているという特長を有する反面、真空萎着法で製造しな
ければならないこと、人体に有害であるため回収する必
要があることなどの理由によりコストが高く、メインテ
ナンスフリーの小型・低価格機への適用が困難であると
いう問題点を有していた。
Inorganic photoreceptors typified by selenium-based photoreceptors have been widely used as photoreceptors having photoconductivity. This inorganic photoreceptor is
Although it has the characteristics of being highly sensitive, resistant to mechanical wear, and suitable for high-speed, large-scale machines, it must be manufactured using a vacuum shrinkage method, and must be recovered because it is harmful to the human body. For these reasons, the cost is high and it is difficult to apply it to maintenance-free, small, low-cost machines.

これに代わるものとして開発されたのが有機感光体であ
る。有機感光体は、塗布法によって製造できるため、量
産によるコスト低減が容易である上に、無機感光体に比
べて材料選択範囲が広いため存置性の無い化合物を選ぶ
ことができ、ユーザ廃棄によるメインテナンスフリー化
も可能であるという特長を持つ。
Organic photoreceptors have been developed as an alternative to this. Organic photoreceptors can be manufactured by a coating method, which makes it easy to reduce costs through mass production.In addition, compared to inorganic photoreceptors, there is a wider range of materials to choose from, so it is possible to select non-retentive compounds, making maintenance easier due to user disposal. It has the feature that it can be made free.

初期に開発されたポリビニルカルバゾール系感光体やフ
タロシアニン分散型感光体に代表される単層型感光体は
、ダイマー形成等によるキャリアトラップが存在するこ
と、および発生した正・負のキャリアが同一層中を移動
するため移動中に再結合により消失してしまうこと等に
より高い感度を得るのが困難であった。これを解決する
ものとして、第1図に示すように、電荷発生層と電荷輸
送層とに多層分離した積層型感光体が開発された。
Single-layer photoreceptors, such as the early developed polyvinyl carbazole photoreceptors and phthalocyanine-dispersed photoreceptors, are characterized by the presence of carrier traps due to dimer formation, and the fact that positive and negative carriers generated are in the same layer. It has been difficult to obtain high sensitivity due to factors such as disappearance due to recombination during movement. To solve this problem, a laminated photoreceptor was developed, as shown in FIG. 1, which has a charge generation layer and a charge transport layer separated into multiple layers.

ここで、電荷発生層は入射光を吸収して電子・正孔ベア
(キャリアベア)を発生させる機能を有し、電荷輸送層
は、電荷発生層で発生したキャリアの片方を感光体表面
まで輸送して静電潜像を形成させる機能を持つ。このよ
うにすると、電荷輸送層中を移動するキャリアは正また
は負のどちらか片方のみであるために再結合によるキャ
リア消滅は無く、表面電荷を有効に消失させることがで
きる。
Here, the charge generation layer has the function of absorbing incident light and generating electron/hole bears (carrier bears), and the charge transport layer transports one of the carriers generated in the charge generation layer to the surface of the photoreceptor. It has the function of forming an electrostatic latent image. In this case, since only one of the positive and negative carriers moves in the charge transport layer, there is no carrier disappearance due to recombination, and the surface charge can be effectively eliminated.

また、感光体の機能を二つの層に分離したことにより、
それぞれの機能に最適な化合物をほぼ独立に選択するこ
とが可能となり、感度、分光特性、帯電保持性、高速応
答性、機械的耐摩耗性などの緒特性を飛躍的に向上させ
ることができた。
In addition, by separating the functions of the photoreceptor into two layers,
It has become possible to select the optimal compound for each function almost independently, and we have been able to dramatically improve basic properties such as sensitivity, spectral characteristics, charge retention, high-speed response, and mechanical abrasion resistance. .

このような機能分離積層型感光体の特徴を十分引き出す
ためには、電荷発生層はなるべく薄りする必要がある。
In order to fully bring out the features of such a functionally separated laminated photoreceptor, the charge generation layer needs to be as thin as possible.

それは、あまり厚過ぎると、電荷発生層中で発生したキ
ャリアが電荷輸送層に注入される以前に、電荷発生層中
で再結合をおこして消滅してしまう確立が高くなるため
である。一般に電荷発生層は電荷発生物質をバインダー
樹脂中に細かく均一分散して形成されるため、膜厚の下
限は電荷発生物質の粒径程度、すなわち0.01〜0.
3μm程度である。しかし、あまり薄いと入射光の吸収
効率がおちてしまうので、電荷発生層の膜厚としては1
μm以下、好ましくは0.05〜0.5μmとするのが
良い。
This is because if it is too thick, there is a high probability that carriers generated in the charge generation layer will recombine and disappear in the charge generation layer before being injected into the charge transport layer. Generally, a charge generation layer is formed by finely and uniformly dispersing a charge generation substance in a binder resin, so the lower limit of the film thickness is about the particle size of the charge generation substance, that is, 0.01 to 0.0.
It is about 3 μm. However, if it is too thin, the absorption efficiency of incident light will decrease, so the thickness of the charge generation layer should be 1
The thickness is preferably 0.05 to 0.5 μm, preferably 0.05 to 0.5 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図に示すように、電子写真感光体の導電性支持体2
の表面粗度1が0.5s以上、すなわち0.5μm以上
の表面粗さを有する場合は、電荷発生層3を塗工すると
、電荷発生物質の粒径が相対的に小さいので、この粒子
が支持体表面2の凹部に凝集して、電荷発生IJ3の膜
厚分布が発生し易い問題があった。このような電荷発生
層の膜厚むらは、感光体の帯電むらや感度むらの原因と
なり、プリンタ等に搭載して印字する際、濃度むらやか
ぶりの原因となる。
As shown in FIG. 2, a conductive support 2 of an electrophotographic photoreceptor
If the surface roughness 1 is 0.5s or more, that is, 0.5μm or more, when the charge generation layer 3 is applied, the particle size of the charge generation substance is relatively small, so the particles There was a problem in that the charge-generating IJ3 tended to aggregate in the concave portions of the support surface 2, resulting in uneven thickness distribution of the charge-generating IJ3. Such uneven thickness of the charge generation layer causes uneven charging and sensitivity of the photoreceptor, and causes uneven density and fog when mounted on a printer or the like for printing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、少なくとも電荷発生層と電荷輸送層とを
導電性支持体上に有する機能分離積層型感光体において
、この導電性支持体の表面粗度を0.5s以下とするこ
とにより解決することができる。
The above problem can be solved by controlling the surface roughness of the conductive support to 0.5s or less in a functionally separated laminated photoreceptor having at least a charge generation layer and a charge transport layer on the conductive support. be able to.

〔作 用〕[For production]

本発明の電子写真感光体は、導電性支持体の表面粗度を
電荷発生層の膜厚と同程度以下にしであるため、電荷発
生物質の凝集は起こらず、したがって帯電電位や感度な
どの電子写真特性にむらのない感光体となり、かぶりや
濃度むらの無い電子写真感光体を得ることができる。
In the electrophotographic photoreceptor of the present invention, since the surface roughness of the conductive support is made to be equal to or less than the thickness of the charge generation layer, aggregation of the charge generation substance does not occur, and therefore, the charge potential, sensitivity, etc. A photoreceptor with uniform photographic properties can be obtained, and an electrophotographic photoreceptor without fog or uneven density can be obtained.

本発明の導電性支持体としては、引抜法等の公知の方法
でつくられた金属シリンダー表面を、ダイヤモンド等で
切削あるいは研磨することによって得られる。
The conductive support of the present invention can be obtained by cutting or polishing the surface of a metal cylinder made by a known method such as a drawing method with a diamond or the like.

電荷発生層中の電荷発生物質としては公知のものを使用
することができ、例えば、ビスアゾ系化合物、トリスア
ゾ系化合物、ペリレン系化合物、インジゴ系化合物、シ
アニン系化合物、スクアリリウム系化合物、フタロシア
ニン系化合物などを用いることができる。電荷発生層は
、支持体上にこれらの電荷発生物質を蒸着するか、ある
いはバインダー樹脂と共に溶媒中に分散、あるいは溶解
させたものを塗布・乾燥させることにより形成する。バ
インダー樹脂としては、ポリエステル、ポリビニルアル
コール、ポリビニルブチラール、ポリアミド等を用いる
。溶媒としては、用いる電荷発生物質とバインダー樹脂
を考慮して選択するが、テトラヒドロフラン、ジオキサ
ン、メタノール、エタノール、ジクロルメタン、ジクロ
ルエタン、トルエン、キシレンなど各種有機溶媒を単独
あるいは混合して用いることができる。支持体への塗布
方法としては、浸漬コート、スプレーコート、ワイヤー
バーコード、ドクターブレードコートなどで塗布できる
。膜厚は一般に0.01〜1μmであるが、0.05〜
0.5μmとするのが望ましい。
Known charge generating substances in the charge generating layer can be used, such as bisazo compounds, trisazo compounds, perylene compounds, indigo compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, etc. can be used. The charge generating layer is formed by vapor depositing these charge generating substances on a support, or by coating and drying a mixture dispersed or dissolved in a solvent together with a binder resin. As the binder resin, polyester, polyvinyl alcohol, polyvinyl butyral, polyamide, etc. are used. The solvent is selected in consideration of the charge generating substance and binder resin used, and various organic solvents such as tetrahydrofuran, dioxane, methanol, ethanol, dichloromethane, dichloroethane, toluene, and xylene can be used alone or in combination. The coating method on the support may be dip coating, spray coating, wire barcode coating, doctor blade coating, or the like. The film thickness is generally 0.01 to 1 μm, but 0.05 to 1 μm.
It is desirable that the thickness be 0.5 μm.

電荷輸送層は、ヒドラゾン化合物、ピラゾリン化合物、
トリニトロフルオレノン等の電荷輸送物質をバインダー
樹脂中に相溶させて形成する。バインダー樹脂としては
、ポリカーボネート、ポリスチレン、ポリアクリロニト
リル、アクリル−スチレン、ポリエステル、ポリスルホ
ンなど公知のものが使用できる。溶媒は、用いるバイン
ダー樹脂によって適宜選択する。塗布方法は、電荷発生
層の場合と同様の方法を用いることができる。膜厚は一
般に5〜50μmであるが、10〜25μmとするのが
望ましい。
The charge transport layer is made of a hydrazone compound, a pyrazoline compound,
It is formed by dissolving a charge transporting substance such as trinitrofluorenone in a binder resin. As the binder resin, known binder resins such as polycarbonate, polystyrene, polyacrylonitrile, acrylic-styrene, polyester, and polysulfone can be used. The solvent is appropriately selected depending on the binder resin used. As the coating method, the same method as in the case of the charge generation layer can be used. The film thickness is generally 5 to 50 μm, preferably 10 to 25 μm.

〔実施例〕〔Example〕

皇JiJl 引抜法で作成した表面粗度5Sのアルミニウムシリンダ
ーの表面をダイヤモンド研磨し、第1図に示すように表
面粗度1が約0.1sの導電性支持体2とした。この上
に、重量部で、塩化アルミニウムフタロシアニン1部、
ポリビニルブチラール1部、メタノール18部を硬質ガ
ラスピーズと硬質ガラスポットを用いて24時間分散混
合したものを浸漬法により塗布し、その後乾燥させて膜
厚約0.3μmの電荷発生層3とした。
The surface of an aluminum cylinder with a surface roughness of 5S prepared by the pultrusion method was diamond-polished to obtain a conductive support 2 with a surface roughness 1 of approximately 0.1s as shown in FIG. On top of this, 1 part by weight of aluminum chloride phthalocyanine,
A mixture of 1 part of polyvinyl butyral and 18 parts of methanol was dispersed and mixed for 24 hours using hard glass beads and a hard glass pot, which was coated by a dipping method and then dried to form a charge generation layer 3 having a thickness of about 0.3 μm.

次に、重量部で、下記構造式で表されるヒドラゾン化合
物の1部、ポリカーボネート1部をテトラヒドロフラン
9部に溶解させ、さきの電荷発生層3上に浸漬法により
塗布し、90℃で1時間乾燥させて膜厚約18μmの電
荷輸送層4を形成し、感光体を得た。
Next, 1 part of a hydrazone compound represented by the following structural formula and 1 part of polycarbonate are dissolved in 9 parts of tetrahydrofuran in parts by weight, and the solution is coated on the charge generation layer 3 by a dipping method and heated at 90°C for 1 hour. It was dried to form a charge transport layer 4 having a thickness of about 18 μm, and a photoreceptor was obtained.

この感光体ドラムを半導体レーザープリンタに搭載して
印字試験を行ったところ、鮮明でかぶりの無い印字が得
られた。
When this photoreceptor drum was installed in a semiconductor laser printer and a printing test was conducted, clear and fog-free printing was obtained.

1較■ 導電性支持体として、引抜加工のみの表面粗度5sのも
のを用いた以外は、実施例と同様にして感光体を得た。
Comparison 1: A photoreceptor was obtained in the same manner as in Example, except that a conductive support having a surface roughness of 5 s that was only subjected to drawing was used.

この感光体は白地の部分全体にかぶりを生じており、し
かも、所どころに電荷発生物質の凝集によると思われる
黒点が発生していた。
This photoreceptor had fog over the entire white background, and black spots appeared here and there that were thought to be caused by aggregation of charge-generating substances.

〔発明の効果〕〔Effect of the invention〕

表面粗度0.5s以下の導電性支持体を用いた機能分離
積層型感光体を用いることにより、かぶり等の印字むら
の無い電子写真感光体を得ることができる。
By using a functionally separated laminated photoreceptor using a conductive support with a surface roughness of 0.5 s or less, an electrophotographic photoreceptor without uneven printing such as fog can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感光体の模式的断面図であり、第2図
は従来の感光体の模式的断面図である。 1・・・表面粗度、  2・・・導電性支持体、3・・
・電荷発生層、 4・・・電荷輸送層。 本発明の感光体 の断面図 ココ一 ココ一 従来技術の感光体 表面粗度 導電性支持体 電荷発生層 電荷輸送層
FIG. 1 is a schematic sectional view of a photoreceptor of the present invention, and FIG. 2 is a schematic sectional view of a conventional photoreceptor. 1... Surface roughness, 2... Conductive support, 3...
- Charge generation layer, 4... Charge transport layer. Cross-sectional view of the photoreceptor of the present invention Photoreceptor of the prior art Surface roughness Conductive support Charge generation layer Charge transport layer

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも電荷発生層と電荷輸送層とを円筒状の
導電性支持体上に有する機能分離積層型感光体において
、この導電性支持体の表面粗度が0.5s以下であるこ
とを特徴とする電子写真感光体。
(1) A functionally separated laminated photoreceptor having at least a charge generation layer and a charge transport layer on a cylindrical conductive support, characterized in that the conductive support has a surface roughness of 0.5s or less. An electrophotographic photoreceptor.
JP6241487A 1987-03-19 1987-03-19 electrophotographic photoreceptor Pending JPS63229461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6241487A JPS63229461A (en) 1987-03-19 1987-03-19 electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6241487A JPS63229461A (en) 1987-03-19 1987-03-19 electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPS63229461A true JPS63229461A (en) 1988-09-26

Family

ID=13199467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6241487A Pending JPS63229461A (en) 1987-03-19 1987-03-19 electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPS63229461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376243A1 (en) * 2002-06-28 2004-01-02 Ricoh Company Electrophotographic photoreceptor, method for manufacturing and image forming apparatus using the photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376243A1 (en) * 2002-06-28 2004-01-02 Ricoh Company Electrophotographic photoreceptor, method for manufacturing and image forming apparatus using the photoreceptor

Similar Documents

Publication Publication Date Title
JPS6235673B2 (en)
US5310612A (en) Image-holding member and production method thereof, method for forming image-forming master using the image-holding member and the forming apparatus, and image-forming method using them
US3723110A (en) Electrophotographic process
JPH04289867A (en) Electrophotographic sensitive body
JPS63229461A (en) electrophotographic photoreceptor
JPH04174859A (en) electrophotographic photoreceptor
JPH01219838A (en) electrophotographic photoreceptor
JPH0419750A (en) Electrophotographic sensitive body
JPH03155558A (en) electrophotographic photoreceptor
JPH01142641A (en) electrophotographic photoreceptor
JPH0572749A (en) Production of image holding member
JPH0456866A (en) electrophotographic photoreceptor
JPH04328562A (en) electrophotographic photoreceptor
JPS63231354A (en) electrophotographic photoreceptor
JPH0456865A (en) Electrophotographic sensitive body
JPH04328561A (en) Electrophotographic sensitive body
JPH04147264A (en) Electrophotographic sensitive body
JPH0419752A (en) Electrophotographic sensitive body
JPH0247666A (en) Electrophotographic sensitive body
JPH0248670A (en) electrophotographic photoreceptor
JPH04155348A (en) Electrophotography photosensitive body
JPH0269763A (en) electrophotographic photoreceptor
JPH04328563A (en) electrophotographic photoreceptor
JPH03105347A (en) electrophotographic photoreceptor
JPH02308258A (en) Electrophotographic sensitive body