[go: up one dir, main page]

JPS63229122A - Preparation of gas permeable membrane - Google Patents

Preparation of gas permeable membrane

Info

Publication number
JPS63229122A
JPS63229122A JP62328802A JP32880287A JPS63229122A JP S63229122 A JPS63229122 A JP S63229122A JP 62328802 A JP62328802 A JP 62328802A JP 32880287 A JP32880287 A JP 32880287A JP S63229122 A JPS63229122 A JP S63229122A
Authority
JP
Japan
Prior art keywords
gas permeable
gas
sheet
permeable membrane
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62328802A
Other languages
Japanese (ja)
Other versions
JPH0668157B2 (en
Inventor
Yoshihiko Shirakawa
白川 喜彦
Satoru Motoo
本尾 哲
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAKAWA SEISAKUSHO KK
Original Assignee
SHIRAKAWA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAKAWA SEISAKUSHO KK filed Critical SHIRAKAWA SEISAKUSHO KK
Priority to JP62328802A priority Critical patent/JPH0668157B2/en
Publication of JPS63229122A publication Critical patent/JPS63229122A/en
Publication of JPH0668157B2 publication Critical patent/JPH0668157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To increase pressure resistance of a gas permeable membrane by piling a specific sheet A to be used as a carrier of a reactive layer and a specific sheet B to be used as a gas permeable membrane, bringing into contact, and hot-pressing after drying and heat treating. CONSTITUTION:Fine particles used as a catalyst carrier, fine particles for a binder material and a fluid lubricant are kneaded to prepare a paste of kneaded substance, and a sheet 1 used as a carrier of a reactive layer is prepared by pressurizing the kneaded substance. On the other hand, electrically conductive fine particles, fine particles for the binder material and a liquid lubricant are kneaded to prepare a paste of kneaded substance, and a sheet 2 used as a gas permeable layer is prepared by pressurizing and molding said kneaded substance into a sheet-shaped mold. Then, after said sheets 1 and 2 are piled, brought into contact, bonded and turned into a thin sheet, the drying treatment and the heat treatment are carried out successively, said sheet being pressed to be thinner, and a gas permeable membrane is prepared.

Description

【発明の詳細な説明】 U産業上の利用分野」 本発明は、水溶液の電気分解装置の電極等に好適に用い
られるガス透過性を有する模の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a pattern having gas permeability that is suitably used as an electrode of an aqueous solution electrolyzer.

「従来の技術6およびその問題点」 水溶液の電気分解等に用いられる電解装置は、従来、溶
液が貯えられる容器と、この容器内に設けられた陰極お
よび陽極と、これら陽極、陰極に生じた電解生成物の混
合を防止するために両極間に設けられた隔膜とからなる
ものであった。
"Conventional technology 6 and its problems" Conventionally, an electrolysis device used for electrolysis of an aqueous solution, etc. has a container in which the solution is stored, a cathode and an anode provided in this container, and a It consisted of a diaphragm provided between the two electrodes to prevent mixing of electrolyzed products.

そして、この種の電解装置の隔膜には、一般にアスベス
ト等が圧縮成形されてなるものが用いられている。
The diaphragm of this type of electrolytic device is generally made of compression molded material such as asbestos.

ところが、アスベストは発ガン性を有する等の問題が指
摘されており、このような隔膜を備えた電解装置の設置
には、様々な制限が伴う不満があった。
However, problems such as asbestos being carcinogenic have been pointed out, and the installation of electrolyzers equipped with such diaphragms has been dissatisfied with various restrictions.

このような問題に対処するためにガス透過性と導電性と
を合わせ持つ膜を用いることが提案されている。
In order to deal with these problems, it has been proposed to use a membrane that has both gas permeability and electrical conductivity.

ところが、従来の製造方法でこの種の膜を製造する場合
、膜に良好なガス透過性と導電性を付与しようとすると
、膜の耐圧強度が大幅に低下してしまう不満があった。
However, when manufacturing this type of membrane using conventional manufacturing methods, there has been a dissatisfaction that when attempting to impart good gas permeability and conductivity to the membrane, the pressure resistance strength of the membrane is significantly reduced.

「発明の目的」 本発明は上記事情に鑑みてなされたもので、良好なガス
透過性と導電性を有しかつ優れた耐圧強度を有するガス
浸透膜を製造できる製造方法を提供することを目的とす
る。
``Object of the Invention'' The present invention was made in view of the above circumstances, and an object thereof is to provide a manufacturing method capable of manufacturing a gas permeable membrane that has good gas permeability and conductivity, and has excellent pressure resistance. shall be.

「問題点を解決するための手段」 本発明の製造方法では、以下の工程によりガス浸透膜を
作成する。
"Means for Solving the Problems" In the manufacturing method of the present invention, a gas permeable membrane is created through the following steps.

■ 触媒の担体となる微粒子とバインダー材料の微粒子
と液状潤滑剤とを混練してペースト状の混合物を作成し
、このものを加圧してシート状に成形し、反応層の担体
となるシート八を作成する。
■ Create a paste-like mixture by kneading fine particles that will serve as a carrier for the catalyst, fine particles of a binder material, and a liquid lubricant, and pressurize this mixture to form a sheet to form a sheet that will serve as a carrier for the reaction layer. create.

これと共に、導電性を有す微粒子とバインダー材料の微
粒子と液状潤滑剤とを混練してペースト状の混合物を作
成し、このものを加圧してシート状に成形し、ガス浸透
層となるシートBを作成する。
At the same time, conductive fine particles, binder material fine particles, and liquid lubricant are kneaded to create a paste-like mixture, which is then pressurized and formed into a sheet. Sheet B becomes the gas permeable layer. Create.

■ これらシートA、Bを重ね合わせて圧接し、接合し
つつ薄肉化する。
■ These sheets A and B are overlapped and pressed together, and the thickness is reduced while being joined.

■ 次いで、このものに乾燥処理を施す。■ Next, this material is subjected to a drying process.

■ 次いでさらに、このものに熱処理を施す。■ Next, this material is further subjected to heat treatment.

■ このらのをホットプレスしてさらに薄肉化する。■ Hot press these roe to make them even thinner.

第1図は、本発明のガス浸透膜の製造方法によって製造
されるガス浸透膜の一例を示すもので、図中符号1は反
応層、符号2はガス浸透層である。
FIG. 1 shows an example of a gas permeable membrane manufactured by the gas permeable membrane manufacturing method of the present invention, in which reference numeral 1 represents a reaction layer and reference numeral 2 represents a gas permeable layer.

反応層lは担体に触媒が担持固定されてなるもので、こ
の反応11の担体は上記シートAから形成される。また
、ガス浸透層2は上記シートBから形成される。
The reaction layer 1 is formed by supporting and fixing a catalyst on a carrier, and the carrier for this reaction 11 is formed from the sheet A described above. Further, the gas permeable layer 2 is formed from the sheet B described above.

反応ff1lの担体となるシートAを作成するために用
いる“触媒の担体をなる微粒子“には、アルミナ(Ai
2*Os)、シリカ(Sift)等のセラミックスから
なる微粒子や、有機高分子化合物からなる微粒子あるい
は導電性を有する材料からなる微粒子など各種のものを
利用できる。中でも、導電性微粒子は、反応T!J1の
電気抵抗を小さくできる点で好ましく用いられる。その
ような導電性微粒子には、鉄、アルミニウム、銀、銅、
金等の金属、無定形炭素、黒鉛等の炭素、ジルコニアセ
ラミックス、 β−アルミナセラミックス、ホウ素化合
物[ランタンポライド(L a[3s)、 チタンポラ
イド(’r iB z) ]等の導電性セラミックスな
ど種々のものを挙げることができる。その中でも、炭素
は、優れた撥水性と耐食性を有し、得られるガス浸透膜
が長寿命でかつ良好な耐薬品性を有するものとなるので
好ましく用いられる。
Alumina (Ai
Various types of particles can be used, such as fine particles made of ceramics such as 2*Os) and silica (Sift), fine particles made of organic polymer compounds, and fine particles made of conductive materials. Among them, conductive fine particles have a reaction T! It is preferably used because it can reduce the electrical resistance of J1. Such conductive particles include iron, aluminum, silver, copper,
Metals such as gold, amorphous carbon, carbon such as graphite, zirconia ceramics, β-alumina ceramics, conductive ceramics such as boron compounds [lanthanum polide (La[3s), titanium polide ('r iB z)], etc. I can list the following. Among them, carbon is preferably used because it has excellent water repellency and corrosion resistance, and the resulting gas permeable membrane has a long life and good chemical resistance.

この導電性微粒子としては、粒径0,5μl以下らのが
好適に用いられる。粒径が0.5μ次を越えると、作成
されるがガス浸透膜の反応層lに口径の大きな孔が形成
される不都合を生じる。
As the conductive fine particles, those having a particle size of 0.5 μl or less are preferably used. If the particle size exceeds 0.5 μm, there will be an inconvenience that large pores will be formed in the reaction layer l of the gas permeable membrane.

また、シートAを作成するために用いるバインダ材料と
しては、低融点金属や有機高分子化合物等のバインダー
機能を有するものを各種利用できるが、通常有機高分子
化合物が好適に用いられる。
Further, as the binder material used to create the sheet A, various materials having a binder function such as low melting point metals and organic polymer compounds can be used, but organic polymer compounds are usually preferably used.

好適な有機高分子化合物としては、フッ素樹脂、ケイ素
樹脂、ポリエチレン、ポリプロピレン、ポリアクリロニ
トリル、ポリ塩化ビニル、ポリカーボネート、ポリエチ
レンテレフタレート等種々の合成樹脂材料を利用するこ
とができる。中でもポリテトラフルオロエチレン(PT
FE)、ポリクロロトリフルオロエチレン、ポリビニリ
デンフルオライド、四フッ化エヂレンー六フッ化プロピ
レン共重合体等のフッ素樹脂等は好適である。その中で
も特にPTFEは、酸にもアルカリにも侵されない優れ
た耐食性を有すると共に優れた撥水性を有し、得られる
ガス浸透膜が長寿命でかつ耐薬品性を有するものとなる
ので、好ましく用いられる。
As suitable organic polymer compounds, various synthetic resin materials such as fluororesin, silicone resin, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polycarbonate, and polyethylene terephthalate can be used. Among them, polytetrafluoroethylene (PT)
Fluororesins such as FE), polychlorotrifluoroethylene, polyvinylidene fluoride, and tetrafluoroethylene-hexafluoropropylene copolymer are suitable. Among them, PTFE is particularly preferably used because it has excellent corrosion resistance that is not attacked by acids or alkalis, and has excellent water repellency, and the resulting gas permeable membrane has a long life and chemical resistance. It will be done.

シートAから形成される反応WItは、水溶液と適度に
接触し得るように、親水性の部分と撥水性の部分が網目
状に微細に分布した構造であることが望ましい。そのよ
うな構造の反応r!Itを形成するためには、前記シー
トAを作成する際に親水性の微粒子と撥水性の微粒子と
を混合して用いる。
It is desirable that the reaction WIt formed from the sheet A has a structure in which hydrophilic portions and water-repellent portions are finely distributed in a network so that it can appropriately contact the aqueous solution. The reaction of such a structure r! In order to form It, hydrophilic fine particles and water-repellent fine particles are mixed and used when producing the sheet A.

このような微粒子としては、例えば撥水性のものとして
一般のカーボンブラック、親水性のものとしてVulc
anX C−72n Cm水性カーボン、商品名:バル
カンキャボット社製)などを挙げることができる。
Such fine particles include, for example, general carbon black as a water-repellent particle, and Vulc as a hydrophilic particle.
anX C-72n Cm aqueous carbon (trade name: manufactured by Vulcan Cabot), and the like.

上記触媒の担体となる微粒子とバインダーとなる微粒子
とを混練する際に用いる液体潤滑剤としては、これら微
粒子を溶解しない溶剤であれば各種利用できるが、ナフ
サ等の有機溶剤が好適に用いられる。
As the liquid lubricant used when kneading the fine particles that serve as the catalyst carrier and the fine particles that serve as the binder, various solvents can be used as long as they do not dissolve these fine particles, but organic solvents such as naphtha are preferably used.

これら微粒子と液体潤滑剤とからなる混合物は、加圧成
形されてシートAとされるが、このシートAの厚さは、
目的とするガス浸透膜の反応5tの厚さよりもかなり厚
く設定される。
The mixture consisting of these fine particles and liquid lubricant is pressure-formed to form sheet A, and the thickness of sheet A is as follows:
It is set considerably thicker than the reaction 5t thickness of the target gas permeable membrane.

上記ガス浸透r?12を形成するシートBを作成する際
に用いる導電性微粒子には、反応T!ilとなるシート
Aを作成する材料として挙げた導電性微粒子と同様のも
の、すなわち銀、銅、金等の金属や無定形炭素、黒鉛等
の炭素などからなる微粒子を挙げることができる。
The above gas permeation r? The conductive fine particles used to create sheet B forming sheet 12 have a reaction T! Examples of the material for creating sheet A, which is il, include the same conductive particles as those mentioned above, that is, particles made of metals such as silver, copper, and gold, and carbon such as amorphous carbon and graphite.

こシートBを作成するときに用いる導電性微粒子は、粒
径0.1μ肩以下ものが好適である。粒径が0.1μ!
を越えると、ガス浸透層2に口径の大きな孔が形成され
る不都合を生じる。
The conductive fine particles used in preparing this sheet B preferably have a particle size of 0.1 μm or less. Particle size is 0.1μ!
If it exceeds this, a problem arises in that large-diameter pores are formed in the gas permeable layer 2.

またシートBを作成する際に用いるバインダー材料には
、有機高分子化合物が好適に用いられる。
Further, as the binder material used when creating the sheet B, an organic polymer compound is suitably used.

そのような有機高分子化合物としては、上記シートAで
挙げたものと同様のものを利用できる。
As such an organic polymer compound, those similar to those listed for Sheet A above can be used.

このようにバインダー材料として有機高分子化合物を用
いる場合、有機高分子化合物の添加量は、有機高分子化
合物にPTFE、導電性微粒子にカーボンブラックを用
いた場合を例にとると、通常、それらの合計量に対する
重量比でPTFEが10%〜Gθ%程度とされる。有機
高分子化合物の添加量が60%を越えると、形成される
ガス浸透層2の電気抵抗が大きくなるうえ、ガス浸透層
2のガス透過性が悪化する。また、添加量が10%未満
になると導電性微粒子の結合が不十分になり、ガス浸透
層2の強度が低下する。
When using an organic polymer compound as a binder material in this way, the amount of the organic polymer compound to be added is usually determined by the following: The weight ratio of PTFE to the total amount is approximately 10% to Gθ%. If the amount of the organic polymer compound added exceeds 60%, the electrical resistance of the gas permeable layer 2 to be formed will increase, and the gas permeability of the gas permeable layer 2 will deteriorate. Moreover, if the amount added is less than 10%, the bonding of the conductive fine particles becomes insufficient, and the strength of the gas permeable layer 2 decreases.

上記導電性微粒子とバインダーとなる微粒子とを混練す
る際に用いる液体潤滑剤には、シートへの場合と同様、
ナフサ等の有機溶剤が好適に用いられる。
The liquid lubricant used when kneading the conductive fine particles and the fine particles that will become the binder includes, as in the case of the sheet,
Organic solvents such as naphtha are preferably used.

これら微粒子と液体潤滑剤とからなる混合物は、加圧成
形されてシートBとされるが、このシートBの厚さは、
目的とするガス浸透膜のガス浸透層2の厚さよりもかな
り厚く設定される。
The mixture consisting of these fine particles and liquid lubricant is pressure-molded to form sheet B, and the thickness of sheet B is as follows:
The thickness is set to be considerably thicker than the thickness of the gas permeable layer 2 of the target gas permeable membrane.

以上のようにして作成されたシートA、13は重ね合わ
された後、ローラ等で圧接されて一体化されると共に薄
肉化される。
After the sheets A and 13 created as described above are overlapped, they are pressed together by a roller or the like to be integrated and thinned.

この後シートA、Bの接合されたものは、液体潤滑剤の
除去のために乾燥処理に供される。
Thereafter, the joined sheets A and B are subjected to a drying process to remove the liquid lubricant.

次ぎに、この乾燥処理されたものは熱処理に供させる為
に行なわれる処理で、バインダー微粒子が溶融する温度
より若干低い温度、P 71’ F E等のフッ素樹脂
にあってはゲル化する温度より若干低い温度で行なわれ
る。具体的には、P T F I”:をバインダーとし
た場合は280℃程度で行なわれることが望ましい。
Next, this dried material is subjected to heat treatment at a temperature slightly lower than the melting temperature of the binder fine particles, or higher than the gelling temperature for fluororesins such as P71' F E. This is done at a slightly lower temperature. Specifically, when P T F I'' is used as a binder, it is desirable that the temperature is about 280°C.

上記熱処理が終了したシートはホットプレスにより、さ
らに薄肉化される。ホットプレスの際に加える温度は、
バインダー微粒子が溶融する温度以上、PTFE等のフ
ッ素樹脂ではゲル化する温度以上で行なわれる。具体的
には、PTFEをバインダーとした場合は380℃程度
で行なわれることが望ましい。
After the heat treatment has been completed, the sheet is further thinned by hot pressing. The temperature applied during hot pressing is
This is carried out at a temperature higher than the temperature at which the binder fine particles melt, and at a temperature higher than the temperature at which the fluororesin such as PTFE gels. Specifically, when PTFE is used as a binder, it is desirable that the temperature is about 380°C.

本発明の製造方法において、シート八により形成された
部分に触媒を担持さU゛る工程を何処で行うかは特に限
定されないが、通常ホットプレス工程の後に行なわれる
In the manufacturing method of the present invention, there is no particular limitation on where the step of supporting the catalyst on the portion formed by the sheet 8 is carried out, but it is usually carried out after the hot pressing step.

触媒を担持せしめる方法としては、触媒が溶かされた溶
液(触媒溶液)を、シート表面に塗布あるいはスプレー
してシート内に浸透せしめ、この後これを乾燥する方法
が簡便である。このようにすると、反応層1の内部にま
で触媒が担持せしめられる。
A simple method for supporting the catalyst is to apply or spray a solution in which the catalyst is dissolved (catalyst solution) onto the surface of the sheet and allow it to penetrate into the sheet, and then dry it. In this way, the catalyst is supported even inside the reaction layer 1.

用いる触媒としては、電気分解等の化学反応を促進する
ニッケル(N i)、コバルト(co)、鉄(Fe)等
の鉄族元素あるいは、 白金(P t)、ルテニウl。
The catalysts used include iron group elements such as nickel (Ni), cobalt (CO), and iron (Fe), which promote chemical reactions such as electrolysis, or platinum (Pt) and ruthenium.

(Ilu)、金(A u)、銀(Δg)、銅(Cu)、
クロム(Cr)マンガン(M n)、パラジウム(r’
d)等の貴金属元素あるいはそれらの酸化物またはそれ
らの合金等からなる触媒など各種のものを利用できる。
(Ilu), gold (A u), silver (Δg), copper (Cu),
Chromium (Cr) Manganese (M n), Palladium (r'
Various catalysts such as catalysts made of noble metal elements such as d), their oxides, or alloys thereof can be used.

中で6、水溶液等の電気分解には、Ni、 r’t、 
fluなどからなる触媒が、電解効率を大幅に向上し得
る点で好ましく用いられる。
Among them, 6. For electrolysis of aqueous solutions, etc., Ni, r't,
A catalyst made of flu or the like is preferably used since it can significantly improve electrolysis efficiency.

以上の工程で製造されるガス浸透膜の反応層lの担体は
多孔質となるので、多量の触媒を担持し得る利点がある
。この担体の孔の口径は、0.5μJI〜0.01μl
程度であることが望ましい。
Since the carrier of the reaction layer 1 of the gas permeable membrane manufactured by the above process is porous, it has the advantage of being able to support a large amount of catalyst. The pore diameter of this carrier is 0.5 μJI to 0.01 μl
It is desirable that the

反応層1の口径が0.5μlを越えると、反応層Iの強
度が低下する。また、口径が0.01R1未満になると
反応層lに溶液が浸透し難たくなり、反応層1の表面の
みしか電気分解等の反応に寄与せず、反応効率が低下す
る不都合が生じる。
When the diameter of the reaction layer 1 exceeds 0.5 μl, the strength of the reaction layer I decreases. Furthermore, if the diameter is less than 0.01R1, it becomes difficult for the solution to penetrate into the reaction layer 1, and only the surface of the reaction layer 1 contributes to reactions such as electrolysis, resulting in a disadvantage that the reaction efficiency decreases.

また、反応層Iの空孔率は40%〜80%程度であるこ
とが望ましい。
Further, the porosity of the reaction layer I is preferably about 40% to 80%.

反応層重をなず担体の空孔率が80%を越えると、得ら
れる反応層lは耐圧強度が不十分なもなとなり好ましく
ない。空孔率が40%未満になると十分な量の触媒を担
持せしめることができず好ましくない。
If the porosity of the carrier exceeds 80% without the weight of the reaction layer, the resulting reaction layer will have insufficient compressive strength, which is not preferable. If the porosity is less than 40%, a sufficient amount of catalyst cannot be supported, which is not preferable.

また反応層!は、厚さが約1.Oxm以下に形成される
ことが望ましい。この反応層1の厚さが1、Oxmを越
えると、反応層!で生成されたガスがガス浸透層2へ透
過し難くなり、ガス浸透膜のガス透過性が損なわれる不
都合が生じる。
Another reactive layer! The thickness is about 1. It is desirable that the thickness be formed to be less than Oxm. When the thickness of this reaction layer 1 exceeds 1, Oxm, the reaction layer! This makes it difficult for the gas generated to permeate into the gas permeable layer 2, resulting in a disadvantage that the gas permeability of the gas permeable membrane is impaired.

本発明の製造方法によって製造されたガス浸透膜のガス
浸透H2は、導電性微粒子が、バインダーを介して、あ
るいは焼結等により結合されてなる多孔性で導電性を有
する層となる。
The gas permeable H2 of the gas permeable membrane manufactured by the manufacturing method of the present invention is a porous and conductive layer in which conductive fine particles are bound together via a binder or by sintering or the like.

このガス浸透71212に形成される孔は、口径0.5
μ麓以下、好ましく800Å以下の連続した孔であるこ
とが望ましい。孔の口径が0.5μlを越えるとガス浸
透層2は、気体状態の分子だけでなく液体状態の分子を
も透過し得るものとなり、気液分離機能が低下する不都
合を生じる。
The hole formed in this gas permeation 71212 has a diameter of 0.5
It is desirable that the pores are continuous and have a diameter of less than μ, preferably less than 800 Å. If the diameter of the pores exceeds 0.5 μl, the gas permeable layer 2 will be able to permeate not only gaseous molecules but also liquid molecules, resulting in a disadvantage that the gas-liquid separation function will deteriorate.

また、ガス浸透層2の空孔率は40%〜80%程度であ
ることが望ましい。ガス浸透r!J2の空孔率が80%
を越えろと得られるガス浸透膜の耐圧強度が不十分とな
り、空孔率が40%未満になるとガス浸透層2のガス透
過速度が低下し分解生成ガスを効率良く放出できなくな
るので、いずれの場合も好ましくない。
Further, the porosity of the gas permeable layer 2 is preferably about 40% to 80%. Gas penetration r! J2 porosity is 80%
If the porosity exceeds 40%, the resulting gas permeable membrane will have insufficient pressure resistance, and if the porosity is less than 40%, the gas permeation rate of the gas permeable layer 2 will decrease and the decomposition product gas will not be released efficiently. I also don't like it.

このガス浸透層2は、厚さ0.3xz〜2xx程度に形
成されることが望ましい。このガス浸透層2の厚さが2
m肩を越えると、ガス浸透層2のガス透過速度が低下す
る不都合が生じ、0.3x肩未満になると、ガス浸透F
m2の強度が低下する不都合が生じろ。
This gas permeable layer 2 is desirably formed to have a thickness of about 0.3xz to 2xx. The thickness of this gas permeable layer 2 is 2
If it exceeds m shoulder, the gas permeation rate of the gas permeation layer 2 will decrease, and if it becomes less than 0.3x shoulder, the gas permeation rate will decrease.
This would cause the inconvenience of lowering the strength of m2.

「実施例」 以下、本発明のガス浸透膜の製造方法を詳しくf8 1
1口 十 ス、 説明は、バインダとしての有機高分子化合物に1) T
 F Eを用い、導電性微粒子にカーボンブラックを用
いたガス浸透膜を例にして行なう。
"Example" Hereinafter, the method for manufacturing the gas permeable membrane of the present invention will be explained in detail.
1) The explanation is about the organic polymer compound as a binder.
A gas permeable membrane using FE and carbon black as conductive particles will be used as an example.

まずシートAを作成するために、 平均粒径0.042
μlのカーボンブラック70重量部と平均粒径0.25
μ肩のPTFE30重量部とを十分混合してなる混合物
A1 および親水性を有するV ulcanX C−7
2R,70fflffl部と平均粒径0.25μlのP
TFEとを十分混合してなる混合物Bをそれぞれ作成し
た。ついでこれら混合物A1BをA:n=4:6の比で
混合し、有機溶媒(ナフサ)を加えて、均一に混練した
。これを加圧して厚さ0.4ytxのシート八を成形し
た。
First, to create sheet A, the average particle size is 0.042.
μl of carbon black 70 parts by weight and average particle size 0.25
Mixture A1 obtained by sufficiently mixing 30 parts by weight of PTFE with μ shoulder and VulcanX C-7 having hydrophilic properties.
2R, 70fffffl part and P with average particle size 0.25μl
A mixture B was prepared by thoroughly mixing the mixture with TFE. These mixtures A1B were then mixed in a ratio of A:n=4:6, an organic solvent (naphtha) was added, and the mixture was uniformly kneaded. This was pressurized to form a sheet 8 with a thickness of 0.4 ytx.

これとは別にシートBを作成するために、平均粒径0.
042μlのカーボンブラック70重量部と平均粒径0
.25μlのPTFE30重量部を十分混合した混合物
Cを作成し。ついで、これに有機溶媒(ナフサ)を加え
ペースト状にし、均一になるように十分混線した。この
ものを加圧して、厚さ2 、5 xzのシートBを成形
した7このように成形された2種類のシートA113を
重ね合わせてローラで圧接して一体に接合しつつ厚さ0
.9mmのシートとした。このものを乾燥処理して、用
いた溶媒を揮散させ、ついで280℃の加熱炉中で熱処
理した。次に、このものを380℃で所定時間ホットプ
レスして、厚さ0 、8 xxのシート状に成形した。
Separately, in order to create sheet B, an average grain size of 0.
042 μl of carbon black 70 parts by weight and average particle size 0
.. Mixture C was prepared by thoroughly mixing 25 μl of 30 parts by weight of PTFE. Next, an organic solvent (naphtha) was added to this to form a paste, and the mixture was mixed sufficiently to become uniform. This material was pressurized to form a sheet B with a thickness of 2.5xz.7 The two types of sheets A113 formed in this way were overlaid and pressed together with a roller to join them together and form a sheet B with a thickness of 0.
.. It was made into a 9 mm sheet. This product was dried to volatilize the solvent used, and then heat-treated in a heating oven at 280°C. Next, this product was hot pressed at 380° C. for a predetermined time to form a sheet with a thickness of 0.8 xx.

ついで、上記シートAにより形成された部分に触媒が溶
かされた溶液(触媒溶液)を塗布してシート内に浸透せ
しめた後、これを乾燥して触媒を担持せしめた。
Next, a solution in which a catalyst was dissolved (catalyst solution) was applied to the portion formed by the sheet A and permeated into the sheet, and then dried to support the catalyst.

なお、本発明のガス浸透膜の製造方法は、上記実施例に
限られるものではない。例えば、作成されるガス浸透膜
には必要により金属網を貼看しても良い。金属網を貼着
する場合、その位置は、ガス浸透層2の表面、反応層1
の表面、ガス浸透層2と反応Elとの間のいずれであっ
てもよい。この金属網としては、銅等の電気伝導性の良
い金属からなるものが好適に用いられる。また、金属網
のメツシュは30〜100程度であることが望ましく、
金171#14をなす金属繊維には径100μm〜50
0μl程度のものが好適に用いられる。
Note that the method for manufacturing a gas permeable membrane of the present invention is not limited to the above embodiments. For example, a metal mesh may be pasted on the gas permeable membrane to be created, if necessary. When pasting a metal net, its position is on the surface of the gas permeable layer 2, on the surface of the reaction layer 1.
, or between the gas permeable layer 2 and the reaction El. As this metal net, one made of a metal with good electrical conductivity such as copper is suitably used. In addition, it is desirable that the mesh size of the metal net is about 30 to 100,
The metal fiber that makes Gold 171#14 has a diameter of 100 μm to 50 μm.
About 0 μl is preferably used.

このような金属網の貼看は、例えば上記シートΔ、Bを
重ね合わせる際に適宜な位置に金属網をセットし、これ
をホットプレスすることにより行なわれる。
The pasting of such a metal net is carried out, for example, by setting the metal net at an appropriate position when overlapping the sheets Δ and B, and hot-pressing the metal net.

「実験例1 」 本発明の製造方法によって作成されるガス浸透膜の性質
を調べた。
"Experimental Example 1" The properties of the gas permeable membrane produced by the production method of the present invention were investigated.

まず、ガス浸透層2のガス透過速度と、ガス浸透層2の
組成との関係を調べた。
First, the relationship between the gas permeation rate of the gas permeable layer 2 and the composition of the gas permeable layer 2 was investigated.

まず、ガス浸透層2に相当する膜をI’TFEとカーボ
ンブラックを用いて作成した。 この膜をPTFEの割
合を変えて各種作成した。P ’r F Eには平均粒
径0.25μlのものを用い、カーボンブラックには平
均粒径0.042μlのものを用い、これらPTFEと
カーボンを合わせて100w1%とじた。
First, a film corresponding to gas permeable layer 2 was created using I'TFE and carbon black. Various types of this membrane were prepared by changing the proportion of PTFE. For P'rFE, one having an average particle size of 0.25 μl was used, and for carbon black, one having an average particle size of 0.042 μl was used, and these PTFE and carbon were combined to 100w1%.

この実験に供した膜の製造は以下のようにして行った。The membrane used in this experiment was manufactured as follows.

まず、カーボンブラックとPTFEとを十分混合して混
合物を作成した。これにナフサを加えて十分に混練した
、ついでこれを常温下でロール法にて成形し、厚さ1.
0JIIのシートBとした。
First, carbon black and PTFE were sufficiently mixed to create a mixture. Naphtha was added to this and thoroughly kneaded, and then this was formed by a roll method at room temperature to a thickness of 1.
0JII sheet B.

このように成形されたシートBを乾燥して、用いた溶媒
を揮散させ、ついで、280℃の加熱炉中で熱処理した
。ついで、このものを19ずつホットプレスして、面積
12.56CI!’、厚さ1度肩のシート状に成形しつ
つ焼成した。ホットプレスの条件は、温度380℃、圧
力600 kg/ax″、時間3秒であった。
Sheet B thus formed was dried to volatilize the solvent used, and then heat-treated in a heating furnace at 280°C. Next, I hot pressed this thing 19 at a time, and the area was 12.56 CI! ', and was fired while being formed into a sheet with a thickness of 1 degree. The hot pressing conditions were a temperature of 380° C., a pressure of 600 kg/ax”, and a time of 3 seconds.

また、得られた膜に形成された孔の口径を水銀ポロシメ
ーターで調べたところ、いずれも800〜200人であ
った。
In addition, when the diameter of the pores formed in the obtained membrane was examined using a mercury porosimeter, the diameter was 800 to 200 in all cases.

このガス透過実験は、密閉容器の中央に膜をセットして
、容器を二基に気密に仕切り、一方の室にゲージ圧力1
 kg7am”で水素ガスを導入して、大気圧に保持さ
れた他方の室に透過して(る水素ガスの量を測定するこ
とによって行った。
In this gas permeation experiment, a membrane was set in the center of a sealed container, the container was airtightly partitioned into two chambers, and one chamber had a gauge pressure of 1
This was carried out by introducing hydrogen gas at 7 am'' and measuring the amount of hydrogen gas that permeated into the other chamber maintained at atmospheric pressure.

第2図かられかるように、本発明のガス浸透膜の製造方
法によって得られたガス浸透層2は、1) ’r F 
Eの割合が少ないほどガス透過速度が大きなものとなる
As can be seen from FIG. 2, the gas permeable layer 2 obtained by the method for producing a gas permeable membrane of the present invention has 1) 'r F
The lower the proportion of E, the higher the gas permeation rate.

「実験例2J 本発明の製造方法によって作成されるガス浸透層2のガ
ス透過速度が差圧によりどのように変化するか調べた。
Experimental Example 2J It was investigated how the gas permeation rate of the gas permeation layer 2 created by the manufacturing method of the present invention changes depending on the differential pressure.

この実験に供した膜は、平均粒径0.25μlのPTF
E30wt%と平均粒径0.042μmのカーボン70
wt%とからなる、膜厚さ「■、および0.5xmのも
ので、形成された孔の口径は、700〜200人であっ
た。膜の作成は、実験例1と同様の方法によって行った
The membrane used in this experiment was made of PTF with an average particle size of 0.25 μl.
Carbon 70 with E30wt% and average particle size 0.042μm
wt%, the film thickness was "■", and the diameter of the pores formed was 700 to 200. The film was created by the same method as in Experimental Example 1. Ta.

実験は、密閉容器の中央に膜をセットして、容器を2室
に気密に仕切り、一方の室を大気圧に保持して、他方の
室に前記一方の室との圧力差が0 、5 aLm、  
l 、 OaLl”’となるように水素ガスあるいは酸
素ガスを導入しつつ、それぞれの条件下で一方の常に遺
禍j、τ(スフに麦ザI又訊スいけ酸査ガスのmを測定
することによって行った。
In the experiment, a membrane was set in the center of a closed container to airtightly partition the container into two chambers, one chamber was maintained at atmospheric pressure, and the pressure difference between the other chamber and the first chamber was 0 and 5. aLm,
While introducing hydrogen gas or oxygen gas so that OaLl"' It was done by

結果を第3図に示す。The results are shown in Figure 3.

第3図から、本発明のガス浸透膜の製造方法によって作
成されるガス浸透52のガス透過速度は、差圧に比例す
ることが確認された。また、透過速度は酸素よりら水素
の方が速いこと、さらに本発明の製造方法によって得ら
れるガス浸透膜はガス浸透層2が薄いほど透過速度が大
になることが確認された。
From FIG. 3, it was confirmed that the gas permeation rate of the gas permeation 52 produced by the gas permeation membrane manufacturing method of the present invention is proportional to the differential pressure. It was also confirmed that the permeation rate is faster for hydrogen than for oxygen, and that the thinner the gas permeable layer 2 of the gas permeable membrane obtained by the manufacturing method of the present invention is, the higher the permeation rate is.

「実験例3 」 本発明のガス浸透膜の製造方法において、ガス浸透層2
の空孔率が、ガス浸透層2を形成する際のプレス圧、お
よびPTFEに施す前処理でどのように変化するかを調
べた。
"Experimental Example 3" In the method for manufacturing a gas permeable membrane of the present invention, the gas permeable layer 2
It was investigated how the porosity of the PTFE changes depending on the press pressure used to form the gas permeable layer 2 and the pretreatment applied to the PTFE.

まず、ガス浸透層2に相当する膜を実験例1と同等の方
法作成した。その際、ポットプレスの11三力を10〜
600 kg/ax″の間で変化させた。用いたPTP
F:は平均粒径0.25μlのもので、この1’TFE
30ffi量部に、平均粒径0.042μ肩のカーボン
70重量部を混合した。この混合物にはつぎの3MMの
処理、すなわち■フリーズドライ処理、■凍結処理、■
アルコール浸漬処理を施すこととした。
First, a membrane corresponding to the gas permeable layer 2 was created in the same manner as in Experimental Example 1. At that time, the 11 three powers of the pot press are 10~
It was varied between 600 kg/ax''. PTP used
F: has an average particle size of 0.25 μl, and this 1'TFE
70 parts by weight of carbon having an average particle size of 0.042 μm was mixed into 30 parts by weight. This mixture was subjected to the following 3MM treatments, namely: ■Freeze drying treatment, ■Freezing treatment,
We decided to perform alcohol immersion treatment.

これらの処理が施された混合物を1.0gずつを成型し
た。ホットプレス時の成型温度は材料温度で380℃で
あった。形成された膜の孔の口径はいずれら平均500
オングストロ一ム程度であった。
Each 1.0 g portion of the mixture subjected to these treatments was molded. The molding temperature during hot pressing was 380° C. in terms of material temperature. The average diameter of the pores in the formed membrane is 500.
It was about 1 Angstrom.

成型された膜に水銀を圧入して膜の空孔mを測定した。Mercury was injected into the molded membrane to measure the pores m of the membrane.

結果を第4図に示す。The results are shown in Figure 4.

第4図から、高いプレス圧で成型されたもの程空孔率が
低いことが確認された。また、P ’r I? Eとカ
ーボンの混合物をアルコール浸漬処理すると、空孔率の
高いがガス浸透膜を作成できることが確認された。
From FIG. 4, it was confirmed that the higher the press pressure was used, the lower the porosity was. Also, P'r I? It was confirmed that by soaking a mixture of E and carbon in alcohol, a gas permeable membrane with high porosity could be created.

「実験例4 」 本発明のガス浸透膜の製造方法によって作成されるガス
浸透層2の空孔率が、PTFEの割合でどのように変化
するかを調べた。
"Experimental Example 4" It was investigated how the porosity of the gas permeable layer 2 created by the method for manufacturing a gas permeable membrane of the present invention changes depending on the proportion of PTFE.

ガス浸透層2に相当する膜を実験例4と同様の方法で作
成した。PTFEには凍結処理を施したものを用い、P
TFE:カーボンブラック=30重量部ニア0重量部お
よび40重量部=60重量部の場合について調べた。形
成された膜の孔の[I径はいずれも平均500人程度で
あった。
A membrane corresponding to gas permeable layer 2 was created in the same manner as in Experimental Example 4. PTFE that has been subjected to freezing treatment is used, and P
The cases where TFE: carbon black = 30 parts by weight, near 0 parts by weight, and 40 parts by weight = 60 parts by weight were investigated. The diameter of the pores in the membranes formed was approximately 500 on average.

成形された膜に水銀を圧入して膜の空孔mを測定した。Mercury was injected into the formed membrane to measure the pores m of the membrane.

結果を第5図に示す。The results are shown in Figure 5.

第5図から、PTPEの割合が多いものの方が空孔率が
低いことが確認された。さらにPTl−1〕の割合が多
いものはプレス圧が」二昇すると急激に空孔率が低下す
ることが確認された。
From FIG. 5, it was confirmed that the porosity was lower when the proportion of PTPE was higher. Furthermore, it was confirmed that when the press pressure was increased, the porosity of the material with a high proportion of PTl-1 decreased rapidly.

「実験例5 」 本発明のガス浸透膜の製造方法によって作成されるガス
浸透層2の空孔率と耐水圧の関係を」4べた。
"Experimental Example 5" The relationship between the porosity and water pressure resistance of the gas permeable layer 2 produced by the method for producing a gas permeable membrane of the present invention was described.

実験例3で作成した膜を容器の開口部を有する側壁に液
密に取り付け、容器に水を注入した。容の水圧を調べ耐
水圧とした。
The membrane prepared in Experimental Example 3 was attached liquid-tightly to the side wall of the container having an opening, and water was poured into the container. The water pressure of the tank was checked and the water pressure was determined to be resistant.

結果を第6図に示した。The results are shown in Figure 6.

第6図から、本発明のガス浸透膜の製造方法によって作
成されたガス浸透層2は、空孔率が低いほど耐水圧が高
いことが確認された。
From FIG. 6, it was confirmed that the lower the porosity of the gas permeable layer 2 produced by the gas permeable membrane manufacturing method of the present invention, the higher the water pressure resistance.

「実験例6 」 本発明のガス浸透膜の製造方法によって作成されたガス
浸透52の耐水圧が、PTFEの割合でどのように変化
するかを調べた。
"Experimental Example 6" It was investigated how the water pressure resistance of the gas permeable membrane 52 produced by the gas permeable membrane manufacturing method of the present invention changes depending on the proportion of PTFE.

実験は、実験例4で作成した膜を容器の開口部を有する
側壁に液密に取り付け、容器に水を注入して圧力を加え
ることによって行った。
The experiment was conducted by attaching the membrane prepared in Experimental Example 4 in a liquid-tight manner to the side wall of a container having an opening, and applying pressure by injecting water into the container.

結果を第7図に示す。The results are shown in FIG.

第7図から、PTr’Eの量が30wt%のものと40
vt%のものとでは、ガス浸透層2の耐水圧には顕著な
差が生じないことが確認された。
From Figure 7, it can be seen that the amount of PTr'E is 30 wt% and 40 wt%.
It was confirmed that there was no significant difference in the water pressure resistance of the gas permeable layer 2 between the gas permeable layer 2 and the gas permeable layer 2.

「実験例7 」 本発明のガス浸透膜の製造方法によって作成されたガス
浸透層2の耐水圧と製造時のプレス圧の実験例3で作成
した膜を容器の開口部を有する側壁に液密に取り付け、
容器に水を注入して、膜の耐水圧を調べた。
"Experimental Example 7" The membrane produced in Experimental Example 3 regarding the water pressure resistance of the gas permeable layer 2 produced by the gas permeable membrane production method of the present invention and the press pressure during production was liquid-tightly attached to the side wall of a container having an opening. Attach to,
The water pressure resistance of the membrane was examined by injecting water into the container.

結果を第8図に示す。The results are shown in FIG.

第8図から、本発明の製造方法によって製造されたガス
浸透膜のガス浸透層2は、高いプレス圧で製造されたも
のほど優れた耐水圧を有するものになることが確認され
た。
From FIG. 8, it was confirmed that the gas permeable layer 2 of the gas permeable membrane manufactured by the manufacturing method of the present invention has better water pressure resistance as the gas permeable layer 2 is manufactured at a higher press pressure.

「実験例8 」 本発明のガス浸透膜の製造方法によって作成されたガス
浸透層2の耐水圧が、I’TFEの割合でどのように変
化するかを調べた。
"Experimental Example 8" It was investigated how the water pressure resistance of the gas permeable layer 2 produced by the method for manufacturing a gas permeable membrane of the present invention changes depending on the proportion of I'TFE.

実験は、実験例4で作成された膜を容器のIJfJ口部
を有する側壁に液密に取り付け、容器に水を注入して圧
力を加えることによって行った。
The experiment was carried out by attaching the membrane prepared in Experimental Example 4 in a liquid-tight manner to the side wall of a container having an IJfJ opening, and applying pressure by injecting water into the container.

結果を第9図に示す。The results are shown in Figure 9.

第9図から、本発明のガス浸透膜の製造方法によって作
成されるガス浸透FrJ2は、PTF’Eの割合が多い
ほど、また製造時のプレス圧が高いほど高い耐水圧を有
するものとなるがことが確認された。
From FIG. 9, it can be seen that the gas permeable FrJ2 produced by the gas permeable membrane manufacturing method of the present invention has a higher water pressure resistance as the proportion of PTF'E increases and as the press pressure during manufacturing increases. This was confirmed.

「実験例9 」 本発明の製造方法で製造されたガス浸透膜を利用して、
ガス分離精製装置3を試作し、空気から酸素の分離を行
った。
“Experiment Example 9” Using the gas permeable membrane manufactured by the manufacturing method of the present invention,
A prototype gas separation and purification device 3 was manufactured to separate oxygen from air.

第10図は、試作したガス分離精製装置3の概略構成を
示すものである。この装置は、原料ガス室4と溶液流a
室5とガス回収室6とが並列に設けられてなるもので、
原料ガス室4と溶液流通室5との間はガス浸透膜Aで、
ガス回収室6と溶液流通室5との間はガス浸透膜Bでそ
れぞれ仕切られている。また、ガス浸透膜A1Bは、そ
れぞれ反応層1.1が溶液流通室5側に而するように取
り付けられている。膜Δ、8間の距離はIJIjIに設
定されている。
FIG. 10 shows a schematic configuration of a prototype gas separation and purification device 3. This device consists of a raw material gas chamber 4 and a solution flow a.
A chamber 5 and a gas recovery chamber 6 are provided in parallel,
A gas permeable membrane A is provided between the raw material gas chamber 4 and the solution distribution chamber 5.
A gas permeable membrane B separates the gas recovery chamber 6 and the solution distribution chamber 5 from each other. Further, the gas permeable membranes A1B are installed such that the reaction layer 1.1 is located on the solution distribution chamber 5 side. The distance between the membranes Δ, 8 is set to IJIjI.

この実験に用いられたガス浸透膜A、[(の仕様は以下
の通りである。
The specifications of the gas permeable membrane A used in this experiment are as follows.

■)ガス浸透膜A 構造:厚さO,La+xの反応層1と厚さ0.5mmの
ガス浸透T!j2と銅網とが順次積層されてなる3層溝
造。
■) Gas permeable membrane A Structure: Reaction layer 1 with thickness O, La+x and gas permeable T with thickness 0.5 mm! A three-layer trench structure in which j2 and copper mesh are laminated in sequence.

面積:900CI” a)反応層1 組成:カーボン70重量部、平均粒径0.038μ11
)TFE3G重量部、平均粒径0.25μl触媒:白金
系、平均粒径50人 b)ガス浸透層2 組成:カーボン70mm部、平均粒径0,042711
1PTFE70重量部、平均粒径0.25μ肩空孔率=
65% 孔の口径:平均450人 ■)ガス浸透膜B 構造:Fl−サQ、1xxcD反応層1と厚す0.5x
x(1) :// 7゜浸透FeI2と銅網とが順次積
層されてなる3層構造。
Area: 900CI" a) Reaction layer 1 Composition: 70 parts by weight of carbon, average particle size 0.038μ11
) Parts by weight of TFE3G, average particle size 0.25 μl Catalyst: Platinum type, average particle size 50 b) Gas permeation layer 2 Composition: 70 mm parts carbon, average particle size 0.042711
1 PTFE 70 parts by weight, average particle size 0.25 μ Shoulder porosity =
65% Pore diameter: average 450 ■) Gas permeable membrane B Structure: Fl-SaQ, 1xxcD reaction layer 1 and thickness 0.5x
x(1): // 3-layer structure in which 7° infiltrated FeI2 and copper mesh are sequentially laminated.

面積:900ci’ a)反応層I 組成:カーボン30重1部、平均粒径0.Q48μlP
 T F E3G重量部、平均粒径0.25μl触媒:
ニッケル系、平均粒径aOO人 b)ガス浸透層2 組成:カーボン65重量部、平均粒径0.042μズ1
’TFFl:35重量部、平均粒径0.25μx空孔率
=65% 孔の口径:平均450人 このようなガス浸透膜A、Bが取り付けられたガス分離
精製袋ji123の溶液流通室5に、水酸化カリウム(
Kol−I)の20wt%溶液を0.1212/分、2
 、2 kg7am”・G(ゲージ圧)で供給した。ま
た、原料ガス室4に0 、01 ky/ax”・Gの空
気を80Q/分で供給した。そして、ガス浸透膜へを陰
極、ガス浸透膜Bを陽極とし、ガス浸透膜A、I1間に
水の電解に必要な電圧(1,25V)よりも低い電圧0
.96Vと、電流450Aを印加した。
Area: 900 ci' a) Reaction layer I Composition: 30 parts by weight of carbon, average particle size 0. Q48μlP
T F E3G parts by weight, average particle size 0.25 μl catalyst:
Nickel-based, average particle size aOO b) Gas permeation layer 2 Composition: 65 parts by weight of carbon, average particle size 0.042 μz 1
'TFFL: 35 parts by weight, average particle size 0.25 μx porosity = 65% Hole diameter: 450 people on average , potassium hydroxide (
Kol-I) 20wt% solution at 0.1212/min, 2
, 2 kg, 7 am".G (gauge pressure). Furthermore, air of 0.01 ky/ax".G was supplied to the raw material gas chamber 4 at a rate of 80 Q/min. Then, the gas permeable membrane is used as a cathode, the gas permeable membrane B is used as an anode, and a voltage of 0, which is lower than the voltage (1.25 V) required for water electrolysis, is applied between the gas permeable membranes A and I1.
.. 96V and a current of 450A were applied.

以上の条件で装置を運転したところ、ガス回収室6から
純度99.99%、圧力2 kg/ax″・G(約3 
atm)の酸素が毎分1.5612(標準状@)得られ
た。
When the apparatus was operated under the above conditions, the purity of 99.99% and the pressure of 2 kg/ax''・G (approximately 3
atm) of oxygen was obtained at a rate of 1.5612 (standard @) per minute.

ついで、上記水酸化カリウム溶液の代わりに、20wt
%水酸化ナトリウム溶液を用いて同様の実験を行ったと
ころ、空気から標準状態で1.5512/分の酸素(純
度99.99%)を分離することができた。
Then, instead of the above potassium hydroxide solution, 20wt
When a similar experiment was conducted using a % sodium hydroxide solution, it was possible to separate 1.5512/min of oxygen (purity 99.99%) from air under standard conditions.

本発明の製造方法で作成されたガス浸透膜は強い耐圧強
度(約20 kg/ax”以上)を有するので、本発明
のガス浸透膜を備えたガス分離精製装置3は、溶液流通
室5の圧力を高く維持し得るものとなる。
Since the gas permeable membrane produced by the manufacturing method of the present invention has a strong pressure resistance (approximately 20 kg/ax" or more), the gas separation and purification device 3 equipped with the gas permeable membrane of the present invention can be used in the solution distribution chamber 5. This makes it possible to maintain high pressure.

この装置では溶液流通室5の圧力とほぼ等しい圧力のガ
スを得られるので、溶液流通室5の圧力を高めることに
より、高圧の酸素を多量に生産することができる。
In this device, a gas having a pressure approximately equal to the pressure in the solution distribution chamber 5 can be obtained, so by increasing the pressure in the solution distribution chamber 5, a large amount of high-pressure oxygen can be produced.

「実験例10J 実験例9と同様のガス分離精製装y13を用いて、水素
ガスの精製を行った。
“Experimental Example 10J Hydrogen gas was purified using the same gas separation and purification device y13 as in Experimental Example 9.

この実やに用いられたガス浸透膜A113の仕様は以下
の通りである。
The specifications of the gas permeable membrane A113 used in this fruit pod are as follows.

■)ガス浸透膜A 構造:厚さO,Lxmの反応層Iと厚さ0.5xgのガ
ス浸透層2と銅網とが順次積層されてなる3層構造。
■) Gas permeable membrane A Structure: Three-layer structure in which a reaction layer I with a thickness of O, Lxm, a gas permeable layer 2 with a thickness of 0.5xg, and a copper net are laminated in sequence.

面積:0OOcz” a)反応層1 組成:カーボン?0ffi量部、平均粒径0.038μ
lr’Tr;”E30重量部、平均粒径0.25μ肩触
媒:白金系、粒径50人 b)ガス浸透層2 組成:カーボン70重量部、平均粒径0.042μ次P
TI?E30fflff1部、平均粒径0.25μx空
孔率二64% 孔の口径:平均440人 「)ガス浸透膜B 構造:厚さO,1IIJFの反応層lと厚さ0.5xx
のガス浸透層2と銅網とが順次積層されてなる3層構造
Area: 000cz" a) Reaction layer 1 Composition: 0ffi parts of carbon, average particle size 0.038μ
lr'Tr;"30 parts by weight of E, average particle size 0.25μ Shoulder catalyst: Platinum-based, particle size 50 b) Gas permeation layer 2 Composition: 70 parts by weight of carbon, average particle size 0.042μ order P
TI? E30fflff 1 part, average particle size 0.25μx porosity 264% Pore diameter: average 440 people'') Gas permeable membrane B Structure: Thickness O, 1IIJF reaction layer l and thickness 0.5xx
A three-layer structure in which a gas permeable layer 2 and a copper mesh are sequentially laminated.

面積:900CJII’ a)反応if 組成:カーボン70重量部、平均粒径0.038μIP
 T F E 30重量部、平均粒径0.25μl触媒
:白金系、粒径50人 b)ガス浸透T!J2 組成:力−yi! 770ffi m N、平均粒11
0.042μxPTF’E30重量部、平均粒径0.2
5μ履空孔率:64% 孔の口径:平均440人 このようなガス浸透膜Δ、Bが取り付けられたガス分離
精製装置3の溶液流通室5に5重量%の希硫酸溶液を0
.212/分、2 、2 kg/ax” −Qで供給し
た。また、原料ガス室4に酸素と窒素を含む純度99%
の水素ガスを0.01に97cm”・G。
Area: 900CJII' a) Reaction if Composition: 70 parts by weight of carbon, average particle size 0.038 μIP
T F E 30 parts by weight, average particle size 0.25 μl Catalyst: Platinum based, particle size 50 b) Gas penetration T! J2 Composition: Force-yi! 770ffim N, average grain 11
0.042 μx PTF'E 30 parts by weight, average particle size 0.2
5μ Porosity: 64% Hole diameter: 440 people on average A 5% by weight diluted sulfuric acid solution was added to the solution distribution chamber 5 of the gas separation and purification device 3 equipped with such gas permeable membranes Δ and B.
.. It was supplied at a rate of 212/min, 2.2 kg/ax"-Q. In addition, the raw material gas chamber 4 was supplied with a purity of 99% containing oxygen and nitrogen.
of hydrogen gas to 0.01 97cm”・G.

812/分で供給した。そして、ガス浸透膜Aを陽極、
ガス浸透膜Bを陰極とし、ガス浸透rtXA、 B間に
電圧0.2V(この値は水電解に最低必要な電圧1.2
5Vよりも低い)と、電流900Aを印加した。
It was fed at a rate of 812/min. Then, the gas permeable membrane A is used as an anode,
Gas permeable membrane B is used as the cathode, and the voltage between gas permeable rtXA and B is 0.2V (this value is the minimum voltage required for water electrolysis of 1.2V).
(lower than 5 V) and a current of 900 A was applied.

以」二の条件で装置を運転したところ、ガス回収室6か
ら純度99.999%、圧力2 kg/cm” −cの
水素ガスが標準状態に換算して毎分6.2G(l得られ
た。
When the apparatus was operated under the following conditions, hydrogen gas with a purity of 99.999% and a pressure of 2 kg/cm"-c was obtained from the gas recovery chamber 6 at a rate of 6.2 G (l) per minute in terms of standard conditions. Ta.

この装置において、標準状態で1m’の水素ガスを精製
するのに要したエネルギーは0.48KW・hrであっ
た。これに対して、従来のパラジウム欣を利用した水素
精製の場合は1 、 OKW−hr/ff3、深冷水素
精製の場合は1 、2 KW −hr/z’であり、本
発明の製造方法で作成されたガス浸透膜を備えたガス分
離精製装置3によれば水素ガスの精製を効率良く行える
ことが確認できた。
In this apparatus, the energy required to purify 1 m' of hydrogen gas under standard conditions was 0.48 KW·hr. On the other hand, in the case of conventional hydrogen purification using a palladium slag, it is 1, OKW-hr/ff3, and in the case of cryogenic hydrogen purification, it is 1,2 KW-hr/z'. It was confirmed that the gas separation and purification device 3 equipped with the created gas permeable membrane could efficiently purify hydrogen gas.

また、この装置3においては、膜A、B間の距離をさら
に挟めることにより、エネルギー効率をより向上できる
ものと考えられる。
Further, in this device 3, it is considered that energy efficiency can be further improved by further increasing the distance between the membranes A and B.

「実験例11J 本発明の製造方法で作成されたガス浸透膜を利用たガス
発生装置7を試作して、水素ガスと酸素ガスを生産した
Experimental Example 11J A gas generator 7 using the gas permeable membrane produced by the production method of the present invention was prototyped to produce hydrogen gas and oxygen gas.

第11図は、試作したガス発生装置7の概略構成を示ず
ものである。この装置は、溶液流通室8の両側に発生ガ
ス回収室9、IOが設けられてなるもので、溶液流通室
8と発生ガス回収室9、IOと間はそれぞれガス浸透膜
A、Bで仕切られている。ガス浸透膜A、Bは、それぞ
れ反応B112が溶液流通室8側に面するように取り付
けられ、GA、111間の距離はf axに設定されて
いる。
FIG. 11 does not show the schematic configuration of the experimentally manufactured gas generator 7. This device consists of a generated gas recovery chamber 9 and IO provided on both sides of a solution distribution chamber 8, and the solution distribution chamber 8 and generated gas recovery chamber 9 and IO are separated by gas permeable membranes A and B, respectively. It is being The gas permeable membranes A and B are each attached so that the reaction B 112 faces the solution distribution chamber 8 side, and the distance between GA and 111 is set to f ax.

この実験に用いられたガス浸透膜A、Bの仕様は以下の
通りである。
The specifications of the gas permeable membranes A and B used in this experiment are as follows.

【)ガス浸透膜A 構造:+7さ0,1mmの反応層lと厚さ0.5zxの
ガス浸透層2と銅網とが順次積層されてなる3層構造。
[) Gas permeable membrane A Structure: 3-layer structure in which a reaction layer 1 with a thickness of 0.1 mm, a gas permeable layer 2 with a thickness of 0.5 zx, and a copper net are laminated in sequence.

面積+900ca+@ a)反応層! 組成:カーボン65重量部、平均粒径0.042μ11
)TFE35重量部、平均粒径0.25B m触媒:1
1uOt系、粒径100人 b)ガス浸透層2 組成ニーJ) −ホ:z 70fflfL5J、平均粒
径0 、042 μzPTFE30重量部、平均粒径Q
、25μz空孔率=65% 孔の口径:平均460人 +1 >ガス浸透膜B 構造:厚さ0.1xxの反応層lと厚さ0 、5xmの
ガス浸透層2と銅網とが順次積層されてなる3層構造。
Area + 900ca + @ a) Reaction layer! Composition: 65 parts by weight of carbon, average particle size 0.042μ11
) TFE 35 parts by weight, average particle size 0.25Bm catalyst: 1
1 uOt system, particle size 100 b) Gas permeation layer 2 Composition J) - E: z 70fflfL5J, average particle size 0, 042 μz PTFE 30 parts by weight, average particle size Q
, 25 μz porosity = 65% Pore diameter: average 460 + 1 > Gas permeable membrane B Structure: Reaction layer 1 with a thickness of 0.1xx, gas permeable layer 2 with a thickness of 0, 5xm, and copper mesh are laminated in sequence. Three-layer structure.

面積:900cz” a)反応Ji!1 組成:カーボン70重量部、平均粒径0.038μ肩P
’l’FE30重量部、平均粒径0.25μx触媒:白
金系、粒径50人 b)ガス浸透P!2 組成:カーボン70重量部、平均粒径0.042μlP
 ’r F E 30fflff1部、平均粒径0.2
5B x空孔率:65% 孔の口径:平均450人 このようなガス浸透膜Δ、Bが取り付けられたガス発生
装置7の溶液流通室8に20mo1%の希硫酸溶液を0
.1212/分、2 、2 kg/ax”−Gで供給し
つつ、ガス浸透膜A、 8間に電圧1.8 VS電流9
00Aを印加した。この際、ガス浸透膜Aを陽極、ガス
浸透膜Bを陽極とした。
Area: 900 cz” a) Reaction Ji!1 Composition: 70 parts by weight of carbon, average particle size 0.038μ Shoulder P
'l' FE 30 parts by weight, average particle size 0.25 μx Catalyst: Platinum type, particle size 50 b) Gas penetration P! 2 Composition: 70 parts by weight of carbon, average particle size 0.042μlP
'r F E 30fflff1 part, average particle size 0.2
5 B
.. While supplying at 1212/min, 2,2 kg/ax”-G, a voltage of 1.8 VS current 9 was applied between the gas permeable membranes A and 8.
00A was applied. At this time, gas permeable membrane A was used as an anode, and gas permeable membrane B was used as an anode.

以上の条件で装置を運転したところ、発生ガス回収室9
から酸素ガスを毎分3.1312(標準状態下)、発生
ガス回収室!0から水素ガスを毎分6.2512(標準
状態下)ずつ得ることができた。
When the device was operated under the above conditions, the generated gas recovery chamber 9
3.1312 per minute (under standard conditions) of oxygen gas from the generated gas recovery chamber! 0 to 6.2512 hydrogen gas per minute (under standard conditions).

ついで、上記硫酸溶液の代わりに、アルカリ溶液(25
wt%水酸化カリウム溶液)、中性溶液(20wL%硫
酸ナトリウム溶液)等を用いて同様の実験を行ったとこ
ろ、同様に酸素ガス、水素ガスを効率良く生産すること
ができた。
Then, instead of the sulfuric acid solution, an alkaline solution (25
When similar experiments were conducted using a neutral solution (wt% potassium hydroxide solution), a neutral solution (20wL% sodium sulfate solution), etc., oxygen gas and hydrogen gas could be similarly produced efficiently.

なお、浸透膜A、I’3のうち一方を従来の電解装置の
電極に取り替えて、ガス発生装置7を運転したところ、
同様に酸素ガス、水素ガスを得ることができた。このよ
うに装置7を運転したところ膜の寿命を延ばすことがで
きた。
In addition, when one of the permeable membranes A and I'3 was replaced with the electrode of a conventional electrolyzer and the gas generator 7 was operated,
Oxygen gas and hydrogen gas were also obtained in the same way. When the apparatus 7 was operated in this manner, the life of the membrane could be extended.

「実験例12 」 実験例IIのガス発生装置7を用いて、炭酸ガスと水素
ガスを生産した。
"Experimental Example 12" Carbon dioxide gas and hydrogen gas were produced using the gas generator 7 of Experimental Example II.

この実験に用いられたガス浸透膜A、Bの仕様は以下の
通りである。
The specifications of the gas permeable membranes A and B used in this experiment are as follows.

■)ガス浸透膜A (11彦造:厚さ0,1xtxの反応層!と厚さ0.5
m肩のガス浸透Fr32と銅網とが順次積層されてなる
3層構造。
■) Gas permeable membrane A (11 Hikozo: Reaction layer with thickness 0.1xtx! and thickness 0.5
A three-layer structure in which m-shoulder gas-permeable Fr32 and copper mesh are sequentially laminated.

而vt:90Qcm” a)反応層! 組成:カーボン70重量部、平均粒径0.042μlP
’rFE30重量部、平均粒径0.25μm触媒二拉径
5粒径の白金系触媒および粒径100人のn u Oを
系触媒 b)ガス浸透層2 組成:カーボンフロ重ffi部、平均粒径0.042μ
1PTFE30重量部、平均粒径0.25μz空孔率:
65% 孔の口径:平均450人 ■)ガス浸透膜B 構造:厚さ0Axxの反応JF!菫と厚さ0,5xxの
ガス浸透52と銅網とが順次積層されてなる3層構造。
a) Reaction layer! Composition: 70 parts by weight of carbon, average particle size 0.042μlP
'rFE 30 parts by weight, average particle size 0.25 μm catalyst, platinum-based catalyst with 5 particle sizes, and particle size 100 N u O-based catalyst b) Gas permeation layer 2 Composition: carbon flow heavy part ffi, average particle size Diameter 0.042μ
1 PTFE 30 parts by weight, average particle size 0.25μz Porosity:
65% Pore diameter: 450 people on average ■) Gas permeable membrane B Structure: Thickness 0Axx reaction JF! It has a three-layer structure in which violet, gas permeation 52 with a thickness of 0.5xx, and copper mesh are laminated in sequence.

面積:900cm” a)反応層! 組成:カーボン70ffl量部、平均粒径0.038μ
次P T F 930mm部、平均粒径0.25μm触
媒:白金系、粒径50人 b)ガス浸透届2 組成:カ−ホ77Otlff m部、平均1elO,0
42μxPTFE30重量部、平均粒径0.25μ肩空
孔率=65% 孔のロ掻:平均450人 まず、0 、5 mol#希硫酸溶液にメタノールを1
0vo1%混合した原料溶液を作成した。そして、ガス
発生装置7の溶液流通室8にこの原料溶液を0、LU分
、2 、0 kg/ax”・Gで供給しつつ、ガス浸透
膜Δ、8間に電圧0.6〜0.7 V、電流450Aを
印加した。この際、ガス浸透膜へを陽極、ガス浸透膜B
を陰極とした。また、原料溶液の温度は65℃であった
Area: 900cm” a) Reaction layer! Composition: 70ffl parts of carbon, average particle size 0.038μ
Next P T F 930 mm part, average particle size 0.25 μm Catalyst: Platinum type, particle size 50 b) Gas penetration report 2 Composition: Carho 77Otlff m part, average 1elO,0
42 μ x 30 parts by weight of PTFE, average particle size 0.25 μ Shoulder porosity = 65% Pore drilling: Average of 450 people First, add 1 part of methanol to 0.5 mol# dilute sulfuric acid solution.
A raw material solution containing 0vo1% mixture was created. Then, while supplying this raw material solution to the solution distribution chamber 8 of the gas generator 7 at a rate of 2.0 kg/ax''·G for 0.LU, a voltage of 0.6 to 0.0 kg was applied between the gas permeable membranes Δ and 8. 7 V and a current of 450 A were applied.At this time, the gas permeable membrane was connected to the anode, and the gas permeable membrane B
was used as the cathode. Further, the temperature of the raw material solution was 65°C.

以上の条件で装置を運転したところ、発生ガス回収室9
から純度99.9%、圧力I 、 5 ky/am’ 
−Gの炭酸ガスを標準状態に換算して毎分1.0312
、発生ガス回収室10から純度99.9%、圧力1 、
5 kg/Cm”・Gの水素ガスを標準状態に換算して
毎分6.24Q得ることができた。
When the device was operated under the above conditions, the generated gas recovery chamber 9
purity 99.9%, pressure I, 5 ky/am'
-G carbon dioxide gas per minute converted to standard state is 1.0312
, purity 99.9%, pressure 1 from the generated gas recovery chamber 10,
It was possible to obtain hydrogen gas of 5 kg/Cm''·G at a rate of 6.24Q per minute when converted to standard conditions.

この装置にあっては、メタノールが減極作用を果たすの
で、電力使用量を大幅に低減できた。
In this device, since methanol has a depolarizing effect, it was possible to significantly reduce power consumption.

ここで、本発明の製造方法で作成されたガス透過膜を備
えた上記、ガス分離精製装置3、ガス発生装置7の特徴
を列記する。
Here, the characteristics of the gas separation and purification device 3 and the gas generation device 7, which are equipped with the gas permeable membrane produced by the manufacturing method of the present invention, will be listed.

なお、本発明の製造方法で作成されたガス透過膜を利用
すると、イオン化できる気体であれば、酸素ガスや水素
ガスだけでなく、塩素ガスなど6種のガスを生産、精製
できる装置を製作することができる。
Furthermore, by using the gas permeable membrane created by the manufacturing method of the present invention, it is possible to manufacture a device that can produce and purify six types of gases, including not only oxygen gas and hydrogen gas but also chlorine gas, as long as they can be ionized. be able to.

「発明の効果」 以上説明したように、本発明のガス浸透膜の製造方法は
、■まず、触媒の担体となる微粒子とバインダー材料の
微粒子と液状潤滑剤とでペースト状の混合物を作成しこ
のものを加圧しシート状に成形してシートAを作成する
と共に、導電性を有す微粒子とバインダー材料の微粒子
と液状潤滑剤とでペースト状の混合物を作成して、この
ものを加圧してシート状に成形してシートBを作成し、
■ついで、これらシートA、Bを重ね合わせ圧接して接
合しつつ薄肉化し、■ついでこのものに乾燥処理と熱処
理を順次施したあと、■ホットプレスしてさらに薄肉化
することによってガス浸透膜を製造である。よって、本
発明の製造方法によれば、良好なガス透過性能と導電性
を有し、そのうえ優れた耐圧強度(20kv/ax”以
上)を有するガス浸透膜を製造することができる。従っ
て、本発明の製造方法によって作成されたガス浸透膜に
よれば、ガス浸透膜で仕切られる溶液流通室の圧力を高
く設定できて高圧のガスを多量に精製したり生産できる
小型のガス分離精製装置やガス発生装置を構成すること
ができる。
``Effects of the Invention'' As explained above, the method for manufacturing a gas permeable membrane of the present invention is as follows: First, a paste-like mixture is prepared from fine particles serving as a catalyst carrier, fine particles of a binder material, and a liquid lubricant. A material is pressurized and formed into a sheet to create Sheet A. At the same time, a paste-like mixture is created from conductive fine particles, binder material fine particles, and liquid lubricant, and this material is pressurized to form a sheet. Form it into a shape to create sheet B,
■Next, these sheets A and B are piled up and pressure-welded to make the thickness thinner while bonding.■Next, this sheet is sequentially subjected to drying treatment and heat treatment.■The gas permeable membrane is formed by hot pressing and further thinning. It's manufacturing. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture a gas permeable membrane that has good gas permeability and conductivity, and also has excellent pressure resistance (20 kv/ax” or more). According to the gas permeable membrane produced by the manufacturing method of the invention, the pressure of the solution distribution chamber partitioned by the gas permeable membrane can be set high, and a small gas separation and purification device or gas can be produced that can purify or produce a large amount of high-pressure gas. A generator can be configured.

また、本発明の製造方法によって作成されたガス浸透膜
は、優れた耐圧強度を有するので、この膜を用いたガス
分離精製装置やガス発生装置は、電解液に圧力を加える
ことが可能となる。従って、本発明の製造方法で作成さ
れたガス透過膜によれば、各極から高圧のガスを混合す
ることなく得ることができるガスの昇圧機能をも有する
装置を提供することができる。
In addition, the gas permeable membrane produced by the manufacturing method of the present invention has excellent pressure resistance, so gas separation and purification equipment and gas generation equipment using this membrane can apply pressure to the electrolyte. . Therefore, according to the gas permeable membrane produced by the manufacturing method of the present invention, it is possible to provide an apparatus that also has the function of pressurizing gas, which can obtain high-pressure gas from each electrode without mixing.

そしてまた、本発明の製造方法によって作成されたガス
浸透膜は良好な気液分離機能を有するので、この膜を備
えたガス分離精製装置、ガス発生装置は純度の高い(9
9,999%以上)ガスを得ることができるものとなる
Furthermore, since the gas permeable membrane produced by the manufacturing method of the present invention has a good gas-liquid separation function, gas separation and purification equipment and gas generation equipment equipped with this membrane have high purity (9.
9,999% or more) gas can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法によって作成されたガス浸透
膜の一実施例を示す断面図、第2図ないし第9図はそれ
ぞれ実験の結果を示すものであって、第2図はガス透過
速度とガス浸透層の組成との関係を示すグラフ、第3図
はガス浸透層のガス透過速度および差圧との関係を示す
グラフ、第4図はガス浸透層の空孔率と製造時のプレス
圧およびPTFEに施す前処理との関係を示すグラフ、
第5図はガス浸透層の空孔率と製造時のプレス圧および
PTFEの割合との関係を示すグラフ、第6図はガス浸
透層の空孔率と耐水圧の関係を示すグラフ、第7図はガ
ス浸透層の耐水圧とPTFEの割合の関係を示すグラフ
、第8図はガス浸透層の耐水圧と製造時のプレス圧の関
係を示すグラフ、第9図はガス浸透層の耐水圧とPTF
Eの割合の関係を示すグラフ、第10図および第1!図
はそれぞれ本発明のガス透過膜を利用したガス発生装置
を示す概略構成図である。 I・・・反応石、2・・・ガス浸透膜。
FIG. 1 is a cross-sectional view showing an example of a gas permeable membrane produced by the manufacturing method of the present invention, and FIGS. 2 to 9 each show the results of experiments. A graph showing the relationship between velocity and the composition of the gas permeable layer. Figure 3 is a graph showing the relationship between the gas permeation rate and differential pressure of the gas permeable layer. Figure 4 shows the porosity of the gas permeable layer and the composition at the time of manufacture. A graph showing the relationship between press pressure and pretreatment applied to PTFE,
Figure 5 is a graph showing the relationship between the porosity of the gas permeable layer and the press pressure during manufacturing and the proportion of PTFE. Figure 6 is a graph showing the relationship between the porosity of the gas permeable layer and water pressure resistance. The figure is a graph showing the relationship between the water pressure resistance of the gas permeable layer and the proportion of PTFE. Figure 8 is a graph showing the relationship between the water pressure resistance of the gas permeation layer and the press pressure during manufacturing. Figure 9 is the graph showing the relationship between the water pressure resistance of the gas permeation layer and the press pressure during manufacturing. and PTF
Graph showing the relationship between the proportions of E, Figure 10 and Figure 1! Each figure is a schematic configuration diagram showing a gas generator using the gas permeable membrane of the present invention. I... Reactive stone, 2... Gas permeable membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)微粒子が結合されてなる担体に触媒を担持させた
反応層が、導電性を有する微粒子が結合されてなる多孔
性のガス浸透層に積層されてなるガス浸透膜の製造方法
であって、 まず、触媒の担体となる微粒子とバインダー材料の微粒
子と液体潤滑剤とを混練しペースト状の混合物を作成し
てこのものを加圧しシート状に成形して反応層の担体と
なるシートAを作成すると共に、導電性を有す微粒子と
バインダー材料の微粒子と液体潤滑剤とを混練しペース
ト状の混合物を作成してこのものを加圧しシート状に成
形してガス浸透層となるシートBを作成し、ついで上記
シートA、Bを重ね合わせ圧接して接合しつつ薄肉化し
、その後このものに乾燥処理と熱処理を順次施し、つい
でこのものをホットプレスしてさらに薄肉化することを
特徴とするガス浸透膜の製造方法。
(1) A method for producing a gas permeable membrane, in which a reaction layer in which a catalyst is supported on a carrier formed by bonding fine particles is laminated on a porous gas permeable layer formed by bonding conductive fine particles. First, fine particles that will serve as a carrier for the catalyst, fine particles of a binder material, and a liquid lubricant are kneaded to create a paste-like mixture, and this mixture is pressurized and formed into a sheet to form sheet A that will be a carrier for the reaction layer. At the same time, conductive fine particles, binder material fine particles, and liquid lubricant are kneaded to create a paste-like mixture, which is then pressurized and formed into a sheet to form sheet B, which becomes the gas permeable layer. The above-mentioned sheets A and B are then piled up and pressure-welded to bond them and thinned, and then this sheet is sequentially subjected to drying treatment and heat treatment, and then this sheet is hot-pressed to further thin the sheet. A method for producing a gas permeable membrane.
(2)上記シートAとなる微粒子に、撥水性のものと親
水性のものとを合わせて用いたことを特徴とする特許請
求の範囲第1項記載のガス浸透膜の製造方法。
(2) The method for producing a gas permeable membrane according to claim 1, characterized in that the fine particles forming the sheet A include both water-repellent particles and hydrophilic particles.
JP62328802A 1987-12-25 1987-12-25 Gas permeable membrane manufacturing method Expired - Lifetime JPH0668157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328802A JPH0668157B2 (en) 1987-12-25 1987-12-25 Gas permeable membrane manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328802A JPH0668157B2 (en) 1987-12-25 1987-12-25 Gas permeable membrane manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60154882A Division JPS6217193A (en) 1985-07-13 1985-07-13 Gas permeable membrane

Publications (2)

Publication Number Publication Date
JPS63229122A true JPS63229122A (en) 1988-09-26
JPH0668157B2 JPH0668157B2 (en) 1994-08-31

Family

ID=18214266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328802A Expired - Lifetime JPH0668157B2 (en) 1987-12-25 1987-12-25 Gas permeable membrane manufacturing method

Country Status (1)

Country Link
JP (1) JPH0668157B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284327A (en) * 1990-03-29 1991-12-16 Shinko Pantec Co Ltd Inorganic asymmetric membrane for electrofiltration
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
JPH07211323A (en) * 1994-01-25 1995-08-11 Matsushita Electric Ind Co Ltd Air electrode, manufacture thereof, and air battery using the electrode
JP2000017471A (en) * 1998-06-30 2000-01-18 Permelec Electrode Ltd Hydrogen generator
JP2002052325A (en) * 2000-08-09 2002-02-19 Toyo Kohan Co Ltd Gas separation unit and method of manufacturing the same
JP2018090838A (en) * 2016-11-30 2018-06-14 昭和シェル石油株式会社 Carbon dioxide reduction equipment
WO2023119779A1 (en) * 2021-12-24 2023-06-29 国立大学法人横浜国立大学 Aqueous solution electrolysis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148778A (en) * 1979-05-04 1980-11-19 Asahi Glass Co Ltd Manufacture of caustic alkali used ion exchange membrane
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148778A (en) * 1979-05-04 1980-11-19 Asahi Glass Co Ltd Manufacture of caustic alkali used ion exchange membrane
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284327A (en) * 1990-03-29 1991-12-16 Shinko Pantec Co Ltd Inorganic asymmetric membrane for electrofiltration
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
JPH07211323A (en) * 1994-01-25 1995-08-11 Matsushita Electric Ind Co Ltd Air electrode, manufacture thereof, and air battery using the electrode
JP2000017471A (en) * 1998-06-30 2000-01-18 Permelec Electrode Ltd Hydrogen generator
JP2002052325A (en) * 2000-08-09 2002-02-19 Toyo Kohan Co Ltd Gas separation unit and method of manufacturing the same
JP2018090838A (en) * 2016-11-30 2018-06-14 昭和シェル石油株式会社 Carbon dioxide reduction equipment
WO2023119779A1 (en) * 2021-12-24 2023-06-29 国立大学法人横浜国立大学 Aqueous solution electrolysis method

Also Published As

Publication number Publication date
JPH0668157B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4278525A (en) Oxygen cathode for alkali-halide electrolysis cell
JP6049633B2 (en) Gas diffusion electrode
JPS6217193A (en) Gas permeable membrane
AU2018200988A1 (en) Breathable electrode and method for use in water splitting
US4350608A (en) Oxygen cathode for alkali-halide electrolysis and method of making same
US20160032469A1 (en) Electrodes/electrolyte assembly, reactor and method for direct amination of hydrocarbons
JPS63229122A (en) Preparation of gas permeable membrane
JPH0232357B2 (en)
US20230361315A1 (en) Method for producing catalyst-coated membranes
CN103613105A (en) Single cell as well as preparation method and application thereof
KR102762559B1 (en) Porous membrane having surface layer of reduced hydrogen permeability and preparation method thereof
JPH0631457B2 (en) Multilayer structure for electrode-membrane assembly and electrolysis method using same
Pan et al. Paper‐fibres used as a pore‐former for anode substrate of solid oxide fuel cell
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JP3442408B2 (en) Method for producing electrode-electrolyte assembly and fuel cell using the same
EP1357626B1 (en) Process for manufacturing a proton conducting membrane having an alumina matrix
JPS61230266A (en) New gas diffusion electrode
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
EP4491765A1 (en) Chemical/electrochemical proton ceramic membrane reactor
JPH10189003A (en) Fuel cell electrode and method of manufacturing the same
AU687884B2 (en) Electrochemical device for removal and regeneration of oxygen and method
US20240218541A1 (en) Ion-conducting membrane and method for producing such a membrane
JPS609595B2 (en) Manufacturing method of gas diffusion electrode
JPS6261673B2 (en)
JPS61266591A (en) Gas diffusion electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term