[go: up one dir, main page]

JPS6322879B2 - - Google Patents

Info

Publication number
JPS6322879B2
JPS6322879B2 JP54109058A JP10905879A JPS6322879B2 JP S6322879 B2 JPS6322879 B2 JP S6322879B2 JP 54109058 A JP54109058 A JP 54109058A JP 10905879 A JP10905879 A JP 10905879A JP S6322879 B2 JPS6322879 B2 JP S6322879B2
Authority
JP
Japan
Prior art keywords
gas
nitrogen
water
wastewater
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109058A
Other languages
Japanese (ja)
Other versions
JPS5633095A (en
Inventor
Hiroshi Oota
Katsuo Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON OOTO TOROORU KK
Original Assignee
NIPPON OOTO TOROORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON OOTO TOROORU KK filed Critical NIPPON OOTO TOROORU KK
Priority to JP10905879A priority Critical patent/JPS5633095A/en
Publication of JPS5633095A publication Critical patent/JPS5633095A/en
Publication of JPS6322879B2 publication Critical patent/JPS6322879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は廃水或は上水中のアンモニア及び有機
態窒素を曝気により酸化して生成する硝酸態―N
及び亜硝酸態―Nを回転円板式生物化学的処理装
置を嫌気的に使用して脱窒する方法の改良に関す
るものである。 汚水や廃水を活性汚泥を利用して空気曝気して
B.O.Dを下げ浄化する方法は永い間使用されて効
果を上げているが、曝気槽で空気を噴き込んで汚
廃水を浄化する代りに、回転円板及びそれに類す
るものを浄化槽水中に約半分浸漬し回転しなが
ら、水と空気のメジアに交互に接触させることに
より、汚水中のバクテリアをその円板上に繁殖さ
せ汚水中の有機物を生物膜を作つて分解させB.
O.Dを下げる処の所謂る回転円板式生物酸化処理
装置というものがその形状のコンパクト性とメー
ンテナンスの簡易さを買われて最近急速に伸びて
いる。 尚又極く最近では円板群の表面にカツプを取り
付け空気を送り空気の浮力によつて回転体の廻転
を行う方式(特許第0911200号)も現われて来た。
又最近の汚水処理の傾向は、第一次の物理化学的
処理次いで第二の曝気槽によるB.O.Dの低下、
SSの除去に止らず、第三次処理即ちりん、アン
モニア、色、臭等を除去して処理水を工業用水に
戻すことが行われる様になつた。 特にりん、アンモニアを含んだ処理水を、湖沼
や川に流すと富栄養化による藻類の異常発生が起
り、又海に流せば赤潮の原因となり一たん此が発
生すると例えば何万匹というハマチの養魚場も1
朝にして全滅の被害を受けることが屡々あるので
ある。 それ故、廃水の第三次処理即ちりん・アンモニ
アの除去は、水処理に取つて極めて重要なる命題
となつて来たのである。 りんの除去は液に当量の石灰を又は硫酸アルミ
等を加える事により沈降性のよい燐酸塩として割
合と簡単に除去出来るが、アンモニアには水に不
溶性の塩がない為、しかく簡単に除去する事が出
来ない。 アンモニアの除去は先ず曝気槽の中でニトロゾ
モナス、ニトロバクター等の菌によりアンモニア
をNO2―NからNO3―Nにまで酸化する。又曝
気槽の中ではPHの調節がむづかしいので別に曝気
槽の後に硝化槽を置いて硝化する事もある。 硝化されたアンモニアは、次に脱窒塔に送られ
メタノール又は醋酸等を水素供与体として含有窒
素の重量にして約2.5〜3.0倍を加え、嫌気的に酸
素の入らない条件で脱窒を行うのである。普通は
砂を填めた塔の中を液を通しスードモナス等の菌
の作用により脱窒が行われる。 本発明にあつては第3図の断面図に示す様なガ
ス駆動による回転円板式生物化学的処理装置を使
つて脱窒を行わんとするもので当初は回転円板を
ドリツプ水中に浸漬し、槽を密閉し回転軸を中心
に原動機で徐々に回転させて、回転円板上に菌体
を生成させて脱窒反応を行わせたのである。処が
菌体は主とし回転円板の端部(円周部)に密着し
かたまりを生じ、内部の間隙面は有効に作用しな
いので、頻繁に清掃を行わなければならぬ結果と
なつた。 其処で本発明者等は、此のプロセスで必然的に
発生する窒素に着目し、さきに述べた、回転円板
を空気で駆動する方式を応用し、窒素ガスを回転
体の下部に噴出させて駆動させると同時に槽を密
閉し、発生する窒素をブロワで循環する様にした
処、ガスが回転円板体の間隙の隅々までも行き汎
り、菌体の過剰の付着は解消し、動力も節約とな
り脱窒効率も著しく上つたのである。 今添附した図面に基いてその脱窒のフローと、
装置の構造、発明の構成作用等に就いて更に詳し
く説明しよう。 第1図は回転円板式生物化学的処理装置を主体
とした廃水の三次処理のフローシートの1例で、
(1)は最初沈澱池(2)は原廃水貯槽(3)は回転円板式曝
気ならびに硝化槽(4)は回転円板式嫌気的脱窒槽(5)
は再曝気槽(6)は沈澱槽(7)はリン除去装置(8)は滅菌
槽(9)は処理水(10)はメタノール更に精密に処理する
場合はリン除去装置(8)の次に活性炭吸着槽を設け
る。(図示していない) 本発明が関与する処は(4)の脱窒槽である。 第2図は回転円板式生物化学的処理装置をガス
駆動で回転させる装置の1例の1部切開いた全体
視図である。主管から来た空気(ガス)が16の
配管を通つてデフユーザー13の細孔13′から
気泡を出すと回転円板群14の周辺部全面にある
カツプ11に気泡が溜り浮力により回転円板群は
徐々に矢印の方向へ回転する。 第3図は本発明の脱窒装置の1例の断面図であ
る。此の装置はガス駆動式回転円板式生物化学的
処理装置を密閉槽にしたもので、脱窒槽16は外
壁18と屋根17がありその中に回転円板群Pが
回転軸12と軸受とで支持されている。すべてが
密閉であり、1部天井に余剰ガスのガス抜き22
が付いている。 NO2―NやNO3―Nが嫌気性菌で分解されて
N2が出るとN2は脱窒槽16の上部の空間19に
溜る。此を循環ブロワ20で回転体の中心を少し
外してデフユーザー13から噴出させる(但し最
初は窒素ボンベから送る)さすれば先に述べた様
に、気泡が上へ上昇して表面カツプ11に溜り浮
力により回転円板群Pは矢印の方向へ廻転する。 回転円板群Pは第3図の如く水中に潜没してい
てもよいが一部水面上に出ていても差支えない。 曝気・硝化槽3(第1図)から来た此の中の液
21は曝気槽で曝気と共にB.O.Dを下げ同時に
NH3や有機性窒素化合物はNO2―NとNO3―N
になつたものを含んでおり、密閉であるので嫌気
性菌が盛んに繁殖し、23から加えられるメタノ
ールの如き有機物を水素供与体としてNO2―N,
NO3―Nを窒素に還元し一部は炭酸ガスと水に
なる。 此の際、ガス体の駆動でない回転軸駆動の時は
生物膜が回転円板群の表面に過剰付着し、操業を
困難にした。処が本発明による窒素ガスの様な不
活性ガスの循環による回転体の駆動によつて、付
着した過剰菌体は散気による剪断力によつて取り
去られ、更に回転にガスを用いるので、ガスは各
円板群の間隙まで行き汎り従来の様な目づまりが
殆んど解消した。 脱窒槽内の温度は25〜30℃がよく窒素ガスの循
環量は規模の大小にもよるが2〜6m2/分がよ
い。PHは始めは酸性を呈しているが漸次
NO3NO2が分解するに従い中性に近づいて来る。
脱窒反応としてはPH7近辺がよく圧力は余りかゝ
らない方がよい。 脱窒を終つた液は24の排出口からオーバーフ
ローして次の再曝気槽5(過剰メタノールの分
解)そして沈澱槽6(第1図)へ移され、SSを
沈降後、脱リン、滅菌を行つて工業用水や上水へ
も利用される。 此の方式は廃水中のNH3有機性Nの除去のみ
ならず上水中の微量のNH3の除去にも用いられ
る。 ガス駆動に使用されるガスは窒素ガスが最適で
あるが炭酸ガスでも窒素との混合ガスでも良いし
菌体に害を及ばさず、衛生無害の酸素を含まない
不活性ガスならば何れでも構わない。 此の場合窒素は副生されるものであり、1番便
利であるし、又ロスがあつても自給出来る長所が
ある。 実施例 1 脱窒槽の大きさ
1600m/mW×1900m/mL ×1550m/mH 円板群の直径 1200mmφ 円板表面積 200m2 回転数 4.5rpm 原 水 工場総合廃水 滞留時間 5.0時間 循環ガス量 2.2m3/分 メタノール添加量 150p.p.m 水 温 28℃ カツプの形状 添付図面による
The present invention uses nitrate-N produced by oxidizing ammonia and organic nitrogen in wastewater or tap water through aeration.
The present invention also relates to an improvement in a method for denitrifying nitrite-N using a rotating disk type biochemical treatment device anaerobically. Aerating sewage and wastewater using activated sludge
Methods for lowering BOD and purifying wastewater have been used for a long time and are effective, but instead of purifying wastewater by blowing air in an aeration tank, rotating disks and similar items are immersed about half into the septic tank water. By bringing water and air into contact with the media alternately while rotating, the bacteria in the sewage propagate on the disk, and the organic matter in the sewage is decomposed by forming a biofilm.B.
The so-called rotating disk type biooxidation treatment equipment used to lower OD has been rapidly gaining popularity recently due to its compact shape and easy maintenance. Also, very recently, a method has appeared (Patent No. 0911200) in which a cup is attached to the surface of a group of disks and air is sent through it to rotate the rotating body by the buoyancy of the air.
In addition, recent trends in wastewater treatment include the first physicochemical treatment followed by the second aeration tank to reduce BOD.
In addition to the removal of SS, tertiary treatment has begun, that is, removing phosphorus, ammonia, color, odor, etc., and returning the treated water to industrial water. In particular, if treated water containing phosphorus and ammonia is poured into lakes or rivers, abnormal algal blooms will occur due to eutrophication, and if it is poured into the sea, it will cause red tide, and once this occurs, tens of thousands of yellowtails will be destroyed. Fish farm also 1
Frequently, they are completely wiped out in the morning. Therefore, the tertiary treatment of wastewater, that is, the removal of phosphorus and ammonia, has become an extremely important proposition in water treatment. Phosphorus can be easily removed by adding an equivalent amount of lime or aluminum sulfate to the solution as a phosphate with good sedimentation properties, but since ammonia does not have salts that are insoluble in water, it is easily removed. I can't do anything. To remove ammonia, first, ammonia is oxidized from NO 2 -N to NO 3 -N by bacteria such as Nitrozomonas and Nitrobacter in an aeration tank. Also, since it is difficult to adjust the pH inside the aeration tank, a nitrification tank is sometimes placed after the aeration tank to carry out nitrification. The nitrified ammonia is then sent to a denitrification tower, where approximately 2.5 to 3.0 times the weight of the nitrogen contained is added using methanol or acetic acid as a hydrogen donor, and denitrification is performed anaerobically in an oxygen-free condition. It is. Normally, the liquid is passed through a tower filled with sand, and denitrification is carried out by the action of bacteria such as Pseudomonas. In the present invention, denitrification is carried out using a gas-driven rotating disk type biochemical treatment device as shown in the cross-sectional view of Figure 3. Initially, the rotating disk was immersed in drip water. The tank was sealed and gradually rotated by a prime mover around a rotating shaft to generate bacterial cells on the rotating disk and carry out the denitrification reaction. However, the bacterial cells mainly adhere to the ends (circumferences) of the rotating disk, and the internal gap surfaces do not function effectively, resulting in the need for frequent cleaning. Therefore, the present inventors focused on the nitrogen that is inevitably generated in this process, and applied the method described earlier in which a rotating disk is driven by air to blow out nitrogen gas at the bottom of the rotating body. At the same time, the tank was sealed and the generated nitrogen was circulated with a blower, which allowed the gas to spread to every corner of the rotating disc body, eliminating the excessive adhesion of bacterial cells. Power was also saved and denitrification efficiency was significantly improved. The flow of denitrification based on the attached drawing,
Let us explain in more detail the structure of the device, the construction and operation of the invention, etc. Figure 1 is an example of a flow sheet for tertiary wastewater treatment using a rotating disk type biochemical treatment device.
(1) is the initial sedimentation tank (2) is the raw wastewater storage tank (3) is the rotating disk type aeration and nitrification tank (4) is the rotating disk type anaerobic denitrification tank (5)
The reaeration tank (6) is the sedimentation tank (7), the phosphorus removal device (8) is the sterilization tank (9), the treated water (10) is methanol. Install an activated carbon adsorption tank. (Not shown) The part to which the present invention relates is the denitrification tank (4). FIG. 2 is a partially cut-away overall view of an example of an apparatus for rotating a rotating disc type biochemical treatment apparatus by gas drive. When the air (gas) coming from the main pipe passes through the pipes 16 and releases air bubbles from the pores 13' of the differential user 13, the air bubbles accumulate in the cup 11 on the entire periphery of the rotating disc group 14, and due to buoyancy, the rotating disc The group gradually rotates in the direction of the arrow. FIG. 3 is a sectional view of one example of the denitrification apparatus of the present invention. This device is a gas-driven rotating disk type biochemical treatment device made into a sealed tank. The denitrification tank 16 has an outer wall 18 and a roof 17, and a group of rotating disks P is connected to the rotating shaft 12 and a bearing in the denitrification tank 16. Supported. Everything is airtight, and one part is vented to the ceiling 22 to vent excess gas.
is attached. NO 2 -N and NO 3 -N are decomposed by anaerobic bacteria.
When N 2 is released , it accumulates in the space 19 above the denitrification tank 16 . By using the circulation blower 20 to slightly remove the center of the rotating body and blowing it out from the differential user 13 (however, the first step is to send it from the nitrogen cylinder), the air bubbles will rise upward and reach the surface cup 11, as mentioned above. Due to the accumulated buoyant force, the rotating disk group P rotates in the direction of the arrow. The rotating disk group P may be submerged in the water as shown in FIG. 3, but there is no problem even if a portion thereof is exposed above the water surface. The liquid 21 coming from the aeration/nitrification tank 3 (Figure 1) is aerated in the aeration tank and lowers the BOD at the same time.
NH 3 and organic nitrogen compounds are NO 2 -N and NO 3 -N
Since it is airtight, anaerobic bacteria can flourish, and organic matter such as methanol, which is added from step 23, is used as a hydrogen donor to produce NO 2 -N,
NO 3 - N is reduced to nitrogen, and some of it becomes carbon dioxide and water. In this case, when the rotary shaft was not driven by gas, biological film excessively adhered to the surface of the rotating disk group, making operation difficult. However, by driving the rotating body by circulating an inert gas such as nitrogen gas according to the present invention, the attached excess bacterial cells are removed by the shear force generated by the aeration, and furthermore, since gas is used for rotation, The gas spreads to the gaps between each disk group, eliminating most of the clogging that occurs in the conventional system. The temperature inside the denitrification tank is preferably 25 to 30°C, and the circulation rate of nitrogen gas is preferably 2 to 6 m 2 /min, depending on the size of the tank. PH is acidic at first, but gradually
As NO 3 NO 2 decomposes, it approaches neutrality.
For the denitrification reaction, the pH should be around 7, and the pressure should not be too high. After denitrification, the liquid overflows from the outlet 24 and is transferred to the next re-aeration tank 5 (decomposition of excess methanol) and settling tank 6 (Fig. 1), where the SS is settled, then dephosphorized and sterilized. It is also used for industrial water and tap water. This method is used not only to remove NH 3 organic N from wastewater, but also to remove trace amounts of NH 3 from clean water. The gas used for the gas drive is optimally nitrogen gas, but carbon dioxide gas or a mixed gas with nitrogen may also be used, or any inert gas that does not contain oxygen and is hygienic and harmless to the bacterial cells may be used. do not have. In this case, nitrogen is a by-product, which is most convenient, and it also has the advantage of being self-sufficient even if there is loss. Example 1 Size of denitrification tank
1600m/mW x 1900m/mL x 1550m/mH Diameter of disc group 1200mmφ Disc surface area 200m 2 Number of rotations 4.5rpm Raw water Factory wastewater Retention time 5.0 hours Circulating gas amount 2.2m 3 /min Methanol addition amount 150p.pm Water Temperature 28℃ Cup shape According to attached drawing

【表】 実施例 2 脱窒槽の大きさ
1600m/mW×1900m/mL ×1550m/mH 円板群の直径 1200mmφ 円板表面積 200m2 回転数 4.0rpm 原 水 河川水 滞留時間 2.0時間 循環ガス量 2.0m3/分ガス メタノール量 28mg/ 水 温 25℃
[Table] Example 2 Size of denitrification tank
1600m/mW x 1900m/mL x 1550m/mH Diameter of disk group 1200mmφ Disc surface area 200m 2 Number of rotations 4.0rpm Raw water River water Residence time 2.0 hours Circulating gas amount 2.0m 3 /min Gas Methanol amount 28mg/Water temperature 25 ℃

【表】 最後に本発明の効果を纒めて見よう。 1 副生する窒素ガスを利用し、回転円板群をガ
スの浮力で循環駆動し動力の節約を計ることが
出来た。 2 不活性ガスが円板の間隙の隅々迄行き汎るの
で円板に過剰の生物膜の付着がなく均一に脱窒
が行われる。 3 循環ガスに依つて円板の隅々まで、反応に利
用出来脱窒効率がよい。 4 従来の方法に較べて、清掃時間が極端に減少
した。メーンテナンスの費用が減少した。
[Table] Finally, let us summarize the effects of the present invention. 1. By using nitrogen gas as a by-product, it was possible to drive a group of rotating disks in circulation using the buoyancy of the gas, thereby saving power. 2. Since the inert gas spreads to every corner of the disc gap, denitrification is performed uniformly without excessive biofilm adhering to the disc. 3. Depending on the circulating gas, every corner of the disk can be used for the reaction, resulting in high denitrification efficiency. 4. Cleaning time is significantly reduced compared to conventional methods. Maintenance costs decreased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は廃水の第三次処理の1例のフロシー
ト。第2図はガス駆動式による回転円板式生物化
学的処理装置の1例の一部切開いた全体視図。第
3図は本発明による脱窒装置の1例の断面図。第
4図はカツプの側面図と断面図と回転円板群への
取付図。 主要なる部分を示す符号の説明、11…カツ
プ、12…回転軸、13…デフユーザー、14…
回転円板群、15…ガス駆動式回転円板式曝気
槽、16…不活性ガス駆動式嫌気的脱窒装置、1
9…空間、20…循環ブロワ、21…汚水、22
…ガス排出口、23…メタノール入口、24…処
理水出口、P…回転円板群(断面)。
Figure 1 shows an example of a flow sheet for tertiary treatment of wastewater. FIG. 2 is a partly cut-away overall view of an example of a gas-driven rotating disk type biochemical treatment device. FIG. 3 is a sectional view of one example of a denitrification device according to the present invention. Figure 4 is a side view and sectional view of the cup, and a diagram showing how it is attached to the rotating disk group. Explanation of symbols indicating main parts, 11... Cup, 12... Rotating shaft, 13... Differential user, 14...
Rotating disk group, 15... Gas driven rotating disk type aeration tank, 16... Inert gas driven anaerobic denitrification device, 1
9...Space, 20...Circulation blower, 21...Sewage, 22
... Gas outlet, 23... Methanol inlet, 24... Treated water outlet, P... Rotating disk group (cross section).

Claims (1)

【特許請求の範囲】 1 不活性ガスに依つて駆動する、密閉型回転円
板式生物化学的処理装置を利用して、上水又は廃
水中の硝酸態および亜硝酸態窒素を脱窒する方
法。 2 不活性ガスが窒素ガスを主体とするガスであ
る特許請求の範囲第1項記載の上水又は廃水中の
硝酸態および亜硝酸態窒素を脱窒する方法。 3 不活性ガスが窒素と炭酸ガスの混合ガスであ
る特許請求の範囲第1項記載の上水又は廃水中の
硝酸態および亜硝酸態窒素を脱窒する方法。 4 回転円板が水中に全部浸積するか又は1部水
面上に露出することを特徴とする生物化学的処理
装置である特許請求の範囲第1項又は第2項又は
第3項記載の上水又は廃水中の硝酸態および亜硝
酸態窒素の脱窒方法。 5 不活性ガスをブロワに依つて循環使用するこ
とを特徴とする特許請求の範囲第1項又は第2項
又は第3項又は第4項記載の上水又は廃水中の硝
酸態および亜硝酸態窒素の脱窒方法。
[Scope of Claims] 1. A method for denitrifying nitrate and nitrite nitrogen in clean water or wastewater using a closed rotating disk biochemical treatment device driven by an inert gas. 2. The method for denitrifying nitrate and nitrite nitrogen in clean water or wastewater according to claim 1, wherein the inert gas is a gas mainly composed of nitrogen gas. 3. The method for denitrifying nitrate and nitrite nitrogen in clean water or wastewater according to claim 1, wherein the inert gas is a mixed gas of nitrogen and carbon dioxide. 4. The biochemical treatment device as set forth in claim 1, 2, or 3, which is a biochemical treatment device characterized in that the rotating disk is completely immersed in water or partially exposed above the water surface. A method for denitrifying nitrate and nitrite nitrogen in water or wastewater. 5 Nitrate and nitrite states in clean water or wastewater as set forth in claim 1 or 2 or 3 or 4, characterized in that an inert gas is circulated using a blower. Nitrogen denitrification method.
JP10905879A 1979-08-29 1979-08-29 Denitrifying method for nitrate and nitrite nitrogen contained in service water or waste water Granted JPS5633095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10905879A JPS5633095A (en) 1979-08-29 1979-08-29 Denitrifying method for nitrate and nitrite nitrogen contained in service water or waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10905879A JPS5633095A (en) 1979-08-29 1979-08-29 Denitrifying method for nitrate and nitrite nitrogen contained in service water or waste water

Publications (2)

Publication Number Publication Date
JPS5633095A JPS5633095A (en) 1981-04-03
JPS6322879B2 true JPS6322879B2 (en) 1988-05-13

Family

ID=14500524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10905879A Granted JPS5633095A (en) 1979-08-29 1979-08-29 Denitrifying method for nitrate and nitrite nitrogen contained in service water or waste water

Country Status (1)

Country Link
JP (1) JPS5633095A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447177A1 (en) * 1984-11-22 1986-05-28 Norddeutsche Seekabelwerke Ag, 2890 Nordenham METHOD AND DEVICE FOR THE BIOLOGICAL TREATMENT OF WATER, ESPECIALLY FOR THE DENITRIFICATION OF RAW WATER FOR DRINKING WATER TREATMENT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223857A (en) * 1975-08-15 1977-02-23 Kurita Water Ind Ltd Biological denitrification disposal apparatus
JPS5252466A (en) * 1975-10-24 1977-04-27 Shin Meiwa Ind Co Ltd Method for biological denitrification of wastewater
JPS5382265U (en) * 1976-12-09 1978-07-07
JPS543368A (en) * 1977-06-10 1979-01-11 Matsushita Electric Works Ltd Filthy water purifier

Also Published As

Publication number Publication date
JPS5633095A (en) 1981-04-03

Similar Documents

Publication Publication Date Title
US7625490B2 (en) Use of a magnetic separator to biologically clean water
US7727397B2 (en) Wastewater treatment apparatus
WO2004002904A1 (en) Combined activated sludge-biofilm sequencing batch reactor and process
JPS6329997B2 (en)
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
KR100453199B1 (en) Device for purifying water in lake by functional ceramics and method therefor
KR100397923B1 (en) Rotating Biological Contactors to use BOD, N, P removal technology
JPS6322879B2 (en)
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
KR20000073797A (en) Septic tank comprised of composite materials and a process for purifying wastewater by using the same
KR100625095B1 (en) Wastewater Treatment System Using Modified Rotating Bioreactor
JPS6341640B2 (en)
KR100465884B1 (en) High strength BOD, N, P and low product sludge in piggery waste water treatment by rotating biological contactors
KR20090021987A (en) Wastewater Treatment System Using Internal Circulation and Rotary Disk Type Nitrification Reactor
KR100422238B1 (en) Biological nutrient removal method using the separated currents of the anaerobic and anoxic tank and its device
KR200380326Y1 (en) Apparatus for treating waste water using the modified rotating biological reactor
Poon et al. Upgrading with rotating biological contactors for BOD removal
KR20040070407A (en) A waste water disposal plant
KR0136017B1 (en) Fcs-biofilm system
JPH0966293A (en) Low load sewage treatment equipment
JPH0156840B2 (en)
KR100418248B1 (en) A waste water disposal plant using the modified rotating biological reactor and the method thereof
CN116621333A (en) A water treatment system for river management
SU1549928A1 (en) Installation for cleaning waste water and processing sediments
JPH02116B2 (en)