JPS63227773A - Formation of film by sputtering - Google Patents
Formation of film by sputteringInfo
- Publication number
- JPS63227773A JPS63227773A JP5989087A JP5989087A JPS63227773A JP S63227773 A JPS63227773 A JP S63227773A JP 5989087 A JP5989087 A JP 5989087A JP 5989087 A JP5989087 A JP 5989087A JP S63227773 A JPS63227773 A JP S63227773A
- Authority
- JP
- Japan
- Prior art keywords
- target
- sputtering
- film
- base material
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004544 sputter deposition Methods 0.000 title claims abstract description 31
- 230000015572 biosynthetic process Effects 0.000 title claims description 4
- 239000000463 material Substances 0.000 claims abstract description 44
- 239000013077 target material Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 238000005477 sputtering target Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 6
- 239000010408 film Substances 0.000 description 34
- 238000000576 coating method Methods 0.000 description 21
- 239000011248 coating agent Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 239000000956 alloy Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000002131 composite material Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、半導体製品や一般産業機器用部品のうち特に
管状基材を対象とし、その内周面に混合組成または混層
組成からなる表面被膜(たとえば磁性膜、耐摩耗性膜、
硬質膜等)をスパッタリング法によって形成する方法に
関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is particularly directed to tubular substrates among semiconductor products and parts for general industrial equipment, and a surface coating consisting of a mixed composition or a mixed layer composition is applied to the inner circumferential surface of the tubular base material. (For example, magnetic film, wear-resistant film,
The present invention relates to a method of forming a hard film, etc.) by sputtering.
[従来の技術]
スパッタリング被膜形成法とは、減圧ガス(たとえばA
r)雰囲気中にターゲット(陰極)と基板(陽極)を離
して対向配置すると共にそれらの間に高電圧を印加する
ことによってブロー放電状態を形成し、該放電空間に形
成されたプラズマ正イオンをターゲット表面に衝突させ
、ターゲット表面から放出させるスパッタ粒子を基板上
に蒸着させる方法である。この方法は操作が比較的簡単
で且つ均一な薄肉被膜の形成が可能であるほか、ターゲ
ットを構成する素材の組合せによって任意の配合組成の
被膜を形成し得るところから、特に半導体IC等をはじ
めとする電子工業分野における被膜形成法として広く活
用されている。[Prior art] The sputtering film forming method uses a reduced pressure gas (for example, A
r) A blow discharge state is formed by arranging a target (cathode) and a substrate (anode) facing each other with a distance between them in an atmosphere and applying a high voltage between them, and plasma positive ions formed in the discharge space are This is a method in which sputtered particles are deposited on a substrate by colliding with the target surface and emitting them from the target surface. This method is relatively easy to operate and can form a uniform thin film, and it is also possible to form a film with any composition by combining the materials that make up the target. It is widely used as a film forming method in the electronics industry.
ところでスパッタリングを利用して合金被膜を形成する
方法のうち現在とくに汎用されているのは、複合ターゲ
ット法と連続スパッタリング法である。複合ターゲット
法とは、たとえば第4.5図(何れも斜視図)に示す如
く2種以上(図では2種)の純金属からなる単位ターゲ
ット片1a。By the way, among the methods of forming an alloy film using sputtering, the composite target method and the continuous sputtering method are currently particularly widely used. In the composite target method, for example, as shown in FIG. 4.5 (both perspective views), a unit target piece 1a is made of two or more types of pure metals (two types in the figure).
1bを支持板2上に交互に整列せしめた複合ターゲット
1を使用するものであり、表面積とスパッタ率の積の比
を調整することによりてスパッタリング被膜を構成する
合金組成を任意にコントロールすることができる。1b are arranged alternately on a support plate 2, and the alloy composition constituting the sputtered film can be arbitrarily controlled by adjusting the ratio of the product of surface area and sputtering rate. can.
また連続スパッタリング法とは、たとえば第6図(要部
断面説明図)に示す如く主陰極ターゲット1xと補助陰
極ターゲット1yを用いて夫々に抵抗Rx、Ryを介し
て高電圧を印加してスパッタリングを行ない、これらの
陰極ターゲット1x、1yのまわりに配置される管状基
材(陽極)3の内面に各ターゲットlx、lyの構成金
属を蒸着させるものである。このとき、抵抗RX、Ry
を変えると主陰極ターゲット1xと補助陰極ターゲット
1yのスパッタ率が変わってくるので、これら陰極ター
ゲットlx、lyの表面積に応じて抵抗Rx、Ryをコ
ントロールすることにより、任意の組成の合金被膜を形
成することができる。またこのスパッタリング時に補助
陰極スイッチsyを切っておくと主陰極ターゲットlx
のみがプラズマ正トオンの攻撃をを受けて当該金属粒子
のみが放出され、主陰極ターゲット金属のみからなる被
膜を形成することができ、また主陰極スイッチSxを切
っておくと補助陰極ターゲット1yのみがプラズマ正イ
オンの攻撃を受けて当金属粒子のみが放出され、補助陰
極ターゲット金属のみからなる被膜を形成することがで
きるので、こ\れらの操作を適当に組合せれば純金属及
び様々の組成の合金が層状に積層された複層被膜でも容
易に形成することができる。Further, the continuous sputtering method is, for example, as shown in FIG. 6 (explanatory cross-sectional diagram of main parts), using a main cathode target 1x and an auxiliary cathode target 1y, applying a high voltage to each through resistors Rx and Ry to perform sputtering. Then, the constituent metals of each target lx, ly are vapor-deposited on the inner surface of a tubular base material (anode) 3 arranged around these cathode targets 1x, 1y. At this time, the resistances RX and Ry
By changing the sputtering rate of the main cathode target 1x and the auxiliary cathode target 1y, it is possible to form an alloy film of any composition by controlling the resistances Rx and Ry according to the surface areas of these cathode targets lx and ly. can do. Also, if the auxiliary cathode switch sy is turned off during this sputtering, the main cathode target lx
When the main cathode switch Sx is turned off, only the metal particles are released when the main cathode switch Sx is turned off, and only the metal particles are released when the main cathode target 1y is attacked. Only the metal particles are released when attacked by plasma positive ions, and a film consisting only of the auxiliary cathode target metal can be formed.If these operations are appropriately combined, pure metals and various compositions can be formed. It is also possible to easily form a multilayer coating in which alloys of the following are laminated in layers.
[発明が解決しようとする問題点]
ところが前記第4.5図に示した様な複合ターゲット法
の場合、形成されるスパッタリング被膜の成分組成は複
合ターゲット1を構成するターゲット片1a、lbの表
面積によって決まってくるので、被膜組成を変えようと
すれば当該目標被膜組成に応じた表面積比の複合ターゲ
ット1をその都度作製しなければならず、融通性に欠け
るという欠点があるほか、複合ターゲットの作製自体も
煩雑で手数を要しコスト高になるという難点がある。[Problems to be Solved by the Invention] However, in the case of the composite target method as shown in FIG. Therefore, if you want to change the film composition, you have to prepare a composite target 1 with a surface area ratio according to the target film composition each time, which has the disadvantage of lacking flexibility. The production itself is also complicated and labor-intensive, resulting in high costs.
一方第6図に示した様な連続スパッタリング法の場合、
主陰極ターゲット1xと基材(ls!極)3の間のプラ
ズマ空間内に補助陰極ターゲット1yが配置されている
ため、主陰極ターゲット金属のみからなるスパッタリン
グ被膜を形成しようとしても補助陰極ターゲット金属の
混入が避けられず、また補助陰極ターゲット1yの配設
部には主陰極ターゲット1xから放出された金属粒子が
基材3方向へ移行するための隙間を確保しておかねばな
らず、この隙間部に対向する基材3の部分に形成される
被膜は他の部分よりも薄肉となるので、均一な被膜が形
成されないという問題もある。更に補助陰極ターゲット
1yを大きくすると基材3の内面側に影ができ、この部
分の主陰極ターゲット金属濃度が低くなって被膜組成が
不均一になるという問題もあり、被膜厚さや被膜組成の
均一性に対する要求がますます厳しくなっている現状に
対応できる方法とは言い難い。On the other hand, in the case of continuous sputtering method as shown in Fig. 6,
Since the auxiliary cathode target 1y is placed in the plasma space between the main cathode target 1x and the base material (ls! Contamination is unavoidable, and a gap must be provided in the arrangement part of the auxiliary cathode target 1y for the metal particles released from the main cathode target 1x to migrate toward the base material 3. Since the coating formed on the portion of the base material 3 facing the substrate 3 is thinner than other portions, there is also the problem that a uniform coating is not formed. Furthermore, if the auxiliary cathode target 1y is made larger, a shadow will be created on the inner surface of the base material 3, and the main cathode target metal concentration in this area will be low, resulting in uneven coating composition. It is hard to say that this is a method that can respond to the current situation where demands on sexuality are becoming increasingly strict.
本発明はこうした事情に着目してなされたものであって
、その目的は、ターゲットの構造自体が簡単であり、し
かも1つのターゲットを使用するだけで良く、スパッタ
リング条件をコントロールするだけで厚さ及び成分組成
の均一な被膜を形成することができ、また必要に応じて
任意の構成からなる積層構造を有する複合被膜や任意の
成分組成の合金被膜を形成し得る様なスパッタリング被
膜形成方法を提供しようとするものである。The present invention was made in view of these circumstances, and its purpose is to simplify the structure of the target, to use only one target, and to control the sputtering conditions to reduce the thickness and thickness. It is an object of the present invention to provide a sputtering film forming method that can form a film with a uniform composition, and can also form a composite film having a laminated structure of any composition or an alloy film of any composition as required. That is.
[問題点を解決するための手段]
上記の目的を達成することのできた本発明の構成は、管
状基材の軸心部に棒状のスパッタリングターゲットを配
置して管状基材内周面にスパッタリング被膜を形成する
方法において、前記棒状スパッタリングターゲットは、
化学的に異なる複数本の単位ターゲット材を長さ方向に
且つ相互に絶縁的に揃えて構成し、この様に構成された
棒状スパッタリングターゲットを前記管状基材に対して
相対的に且つ同心的に回転させながらスパッタリングを
行なうところに要旨を有するものである。[Means for Solving the Problems] The configuration of the present invention that has achieved the above object is to arrange a rod-shaped sputtering target at the axial center of the tubular base material and to form a sputtering coating on the inner circumferential surface of the tubular base material. In the method of forming a rod-shaped sputtering target,
A plurality of chemically different unit target materials are arranged longitudinally and insulated from each other, and the rod-shaped sputtering target thus constructed is arranged concentrically and relatively to the tubular base material. The gist is that sputtering is performed while rotating.
[作用及び実施例]
第1図は本発明の代表的な実施例を示す一部破断斜視説
明図であり、図示する如く本発明は管状基材4の軸心部
に棒状のスパッタリングターゲット5を配置し、管状基
材4の内周面にスパッタリング被膜を形成する方法(前
述の連続スパッタリング法)を改良したものである。従
ってこの図には記載していないが、管状基材4や棒状ス
パッタリングターゲット5等を真空チャンバー内に配設
し、Arガス等の存在下10−’〜10−’Torr程
度の減圧雰囲気でスパッタリング操業が行なわれること
は従来法と同じである。[Operations and Examples] FIG. 1 is a partially cutaway perspective explanatory view showing a typical example of the present invention. This is an improved method of forming a sputtering film on the inner circumferential surface of the tubular base material 4 (the above-mentioned continuous sputtering method). Therefore, although not shown in this figure, a tubular base material 4, a rod-shaped sputtering target 5, etc. are placed in a vacuum chamber, and sputtering is performed in a reduced pressure atmosphere of approximately 10-' to 10-' Torr in the presence of Ar gas, etc. The operation is the same as the conventional method.
本発明における特異な構成は、棒状のスパッタリングタ
ーゲット5を、化学的に異なる複数本(図では2本)の
単位ターゲット材5a、5bによって構成した点にあり
、これらを長さ方向に且つ相互に絶縁的(図中6は絶縁
材を示す)に揃えて構成してなる棒状スパッタリングタ
ーゲット5を、管状基材4の軸心部で同心的且つ相対的
に回転させながらスパッタリング操業を行なうのである
。即ち絶縁的に組合された単位ターゲット材5a、5b
は、図示する如く夫々可変抵抗器Ra、Rb、スイッチ
Sa、Sbを介して高圧電源V及び管状基材4に接続さ
れており、単位ターゲット材5a、5bと管状基材4間
の電圧を可変抵抗器Ra、Rhによってコントロールし
ながら管状基材4を相対的に回転せしめ、単位ターゲッ
ト材5a、5bの構成材をスパッタリングさせて管状基
材4の内周面に付着させるものである。このとき、管状
基材4の内周面に形成される単位ターゲット材5a、5
bを構成する素材の被膜形成速度Va、Vbは次式によ
って表わすことができる。The unique structure of the present invention is that the rod-shaped sputtering target 5 is composed of a plurality of chemically different (two in the figure) unit target materials 5a and 5b, which are connected longitudinally and mutually. The sputtering operation is performed while rotating rod-shaped sputtering targets 5, which are arranged in an insulating manner (6 in the figure indicates an insulating material), concentrically and relative to the axis of the tubular base material 4. That is, the unit target materials 5a and 5b are insulatively combined.
are connected to a high-voltage power source V and the tubular base material 4 via variable resistors Ra, Rb and switches Sa, Sb, respectively, as shown in the figure, so that the voltage between the unit target materials 5a, 5b and the tubular base material 4 can be varied. The tubular base material 4 is relatively rotated while being controlled by resistors Ra and Rh, and the constituent materials of the unit target materials 5a and 5b are sputtered and adhered to the inner peripheral surface of the tubular base material 4. At this time, unit target materials 5a, 5 formed on the inner peripheral surface of the tubular base material 4
The film formation speeds Va and Vb of the material constituting b can be expressed by the following equations.
ω
但し ω :管状基材4の回転速度(各速度)Sa;単
位ターゲット材5aのスパッタ率Sb二単位ターゲット
材、5bのスパッタ率va:単位ターゲット材5a−管
状基材4間の電圧
■b:単位ターゲット材5b−管状基材4間の電圧
αa:ミニ単位ターゲットaの表面積比αb=単位ター
ゲット材5bの表面積比従ってωが小さいときは管状基
材4の回転速度に対して単位ターゲット構成材5a、5
bの各蒸着速度が速いため夫々が別々に且つ時間差を置
いて基材4の内表面に付着することとなり、その結果被
膜は各々が交互に付着して層状となる。一方ωが大きく
なると管状基材4の回転速度が速いため各単位ターゲッ
ト構成材5a、Sb自体は別々にスパッタリングされた
としても基材4の内表面に到達する時間差は実質1殆ん
ど無視できるほどにわずかなものとなり、別々の層を形
成する間もないから結果的に見て混合状態で被膜を形成
することとなり、合金状態の被膜が形成される。ω However, ω: Rotation speed (each speed) of the tubular base material 4 Sa; Sputtering rate of the unit target material 5a Sb Sputtering rate of the two unit target materials, 5b Va: Voltage between the unit target material 5a and the tubular base material 4 ■b : Voltage between unit target material 5b and tubular base material 4 αa: Surface area ratio of mini unit target a αb = Surface area ratio of unit target material 5b Therefore, when ω is small, the unit target configuration is proportional to the rotational speed of tubular base material 4 Material 5a, 5
Since the deposition rate of each of b is fast, each of them is deposited on the inner surface of the base material 4 separately and with a time difference, and as a result, each of the films is deposited alternately to form a layered film. On the other hand, when ω becomes large, the rotational speed of the tubular base material 4 is fast, so even if each unit target constituent material 5a and Sb themselves are sputtered separately, the time difference in reaching the inner surface of the base material 4 can be practically ignored. Since the amount is so small that there is no time to form separate layers, a film is formed in a mixed state, and a film in an alloy state is formed.
各単位ターゲット構成材5a、5bを交互に層状被膜と
して形成させるときの各構成材5a。Each constituent material 5a when each unit target constituent material 5a, 5b is formed alternately as a layered film.
ができ、
hl、 5b−Vb−ab
この様な膜厚比を得るには夫々の印加電圧比vb h
h−5a ・ αa
またωを大きくして合金被膜を形成するときの合Ab
Sb ・ vb ・ abこの様な合金比を有
する被膜を形成するには、ればよい。hl, 5b-Vb-ab To obtain such a film thickness ratio, the respective applied voltage ratios vb h
h-5a ・ αa Also, when ω is increased to form an alloy film, the combination Ab
Sb/vb/ab may be used to form a coating having such an alloy ratio.
Vb Ab−5a・αa
この様に本発明であれば同一構成のターゲット5を使用
した場合でも管状基材4の相対的回転速度を変えること
によって被膜を層状もしくは合金状の何れにすることも
可能であり、また操業時の印加電圧比を調整することに
よって層状被膜の膜厚比あるいは合金被膜の合金組成を
任意に調整することができる。尚層状被膜を形成する場
合は、たとえば第1図におけるスイッチSa、Sbをオ
ン・オフさせることによって単位ターゲット材5a、5
bによる被膜形成を交互に行なうこともでき、この方法
であれば各層毎の被膜形成時期が重なることがないので
、各層毎の純度を高めることができ、また各層の肉厚も
スイッチSa、Sbの切換え時間によって任意に調整し
得るほか、必要によっては単位ターゲット構成材5a又
は5bのみからなる単層被膜の形成を行なうこともでき
る。そして上記の如き様々の被膜形成法を組合せれば、
単−金属層一合金層の組合せからなる色々の積層構造の
被膜であっても容易に形成することができ、その組合せ
は無限に拡大することができる。Vb Ab-5a・αa As described above, according to the present invention, even when using targets 5 of the same configuration, it is possible to make the coating either layered or alloyed by changing the relative rotational speed of the tubular base material 4. Moreover, by adjusting the applied voltage ratio during operation, the film thickness ratio of the layered coating or the alloy composition of the alloy coating can be arbitrarily adjusted. When forming a layered film, for example, by turning on and off the switches Sa and Sb in FIG.
It is also possible to alternately form the coatings by Sa and Sb. If this method is used, the coating times for each layer do not overlap, so the purity of each layer can be increased, and the thickness of each layer can also be adjusted according to the switches Sa, Sb. In addition to being able to arbitrarily adjust the switching time, it is also possible to form a single layer coating consisting only of the unit target constituent material 5a or 5b, if necessary. And if you combine the various film formation methods mentioned above,
Films with various laminated structures consisting of a combination of a single metal layer and an alloy layer can be easily formed, and the combinations can be expanded infinitely.
ところで第1図では単位ターゲット材5a。By the way, in FIG. 1, the unit target material 5a.
5bを共通の高圧電源Vに接続し、可゛変抵抗器Ra、
Rbによりて電圧比を調整する例を示したが、単位ター
ゲット材5a、5bに夫々高圧電源を接続し個々に管状
基材4との電圧をコントロールすることも勿論可能であ
る。また図では棒状ターゲット5及び管状基材4の軸心
を縦向きに設置して相対的に回転させる例を示したが、
第2図(概略正面図)に示す如く軸心を水平方向に設置
して回転させることもでき(図中7は回転ローラを示す
)、また管状基材4を回転させる代りに棒状ターゲット
5を回転させたり、場合によっては双方を同時に逆方向
回転又は同方向異速度回転させることも可能である。5b to the common high voltage power supply V, and the variable resistors Ra,
Although an example has been shown in which the voltage ratio is adjusted by Rb, it is of course also possible to connect a high voltage power source to each of the unit target materials 5a and 5b and control the voltage with the tubular base material 4 individually. In addition, although the figure shows an example in which the axes of the rod-shaped target 5 and the tubular base material 4 are set vertically and rotated relative to each other,
As shown in FIG. 2 (schematic front view), the axis can be set horizontally and rotated (7 in the figure indicates a rotating roller), and instead of rotating the tubular base material 4, a rod-shaped target 5 can be used. It is also possible to rotate them, or in some cases, it is also possible to rotate both of them simultaneously in opposite directions or in the same direction at different speeds.
第3図(A)〜(F)は本発明で使用される棒状ターゲ
ット5の様々の変形例を示したもの(何れも横断面図)
であり、第3図(A)は断面扇形の4種の単位ターゲッ
ト材5a〜5dを絶縁材6を介して絶縁的に組付け、4
成分からなる合金被膜あるいは4種の金属からなる積層
被膜を形成し得る様にしたものであり、同様の趣旨で3
種もしくは5種以上の単位ターゲット材5a、5b、・
・・を組合せて複合ターゲットを作製することも有効で
ある。これらのターゲット5を用いた場合、すべての単
位ターゲット材5a、5b・・・に電圧を印加すれば、
単位ターゲット材の組合せ数に応じた混合成分からなる
被膜を形成し得るほか、電圧の印加される単位ターゲッ
ト材を選択することによって単成分被膜から2〜3成分
あるいはそれ以上の混合組成からなる任意の被膜を形成
することが可能となる。第3図(B)はターゲット5全
体の断面形状を6角形にした例であり、同様の趣旨で矩
形。FIGS. 3(A) to 3(F) show various modified examples of the rod-shaped target 5 used in the present invention (all are cross-sectional views)
FIG. 3(A) shows four types of unit target materials 5a to 5d each having a fan-shaped cross section, which are insulatively assembled via an insulating material 6.
It is designed to be able to form an alloy coating consisting of the following components or a laminated coating consisting of four types of metals.
Seeds or five or more types of unit target materials 5a, 5b,.
It is also effective to create a composite target by combining... When using these targets 5, if voltage is applied to all unit target materials 5a, 5b...
In addition to forming a coating consisting of a mixture of components according to the number of combinations of unit target materials, by selecting the unit target material to which voltage is applied, it is possible to form a coating consisting of a mixture of two to three or more components from a single component coating to an arbitrary composition consisting of two to three or more components. It becomes possible to form a film of FIG. 3(B) is an example in which the cross-sectional shape of the entire target 5 is hexagonal, and for the same purpose, it is rectangular.
5角形、8角形等の多角形状とすることも勿論可能であ
る。第3図(C)は棒状絶縁材6のまわりに3種の円弧
状単位ターゲット材5a、5b、5cを添着して棒状タ
ーゲット5を構成した例を示している。また第3図(D
)は単位ターゲット材5a、5bの表面積を変えた例で
あり、目的とする被膜組成やスパッタ率の大・小によっ
てはこの様な構成を採用することも有効である。第3図
(E) 、 (F)は2種又は3種の単位ターゲット
材5a、5b、5cを周方向に交互に配列した例であり
、組成の均一な合金被膜を形成する場合等に優れた効果
を発揮する。Of course, polygonal shapes such as pentagons and octagons are also possible. FIG. 3(C) shows an example in which a rod-shaped target 5 is constructed by attaching three types of arc-shaped unit target materials 5a, 5b, and 5c around a rod-shaped insulating material 6. Also, Figure 3 (D
) is an example in which the surface area of the unit target materials 5a and 5b is changed, and it is also effective to adopt such a configuration depending on the target film composition and the sputtering rate. Figures 3(E) and 3(F) are examples in which two or three types of unit target materials 5a, 5b, and 5c are arranged alternately in the circumferential direction, and are excellent for forming an alloy film with a uniform composition. It has a great effect.
この様に本発明で使用される棒状ターゲット5には非常
に沢山の組合せが考えられ、それらはすべて本発明の技
術的範囲に含まれる。また同軸型マグネトロンスパッタ
リング法として公知である様に、棒状ターゲットに対し
電解と直交する方向に磁界を形成して放電効率を高める
方法があるが、本発明においても棒状ターゲットの軸心
部に永久磁石を装入して磁界による放電効率の向上効果
を発揮させることも勿論可能である。As described above, there are many possible combinations of the rod-shaped targets 5 used in the present invention, and all of them are included within the technical scope of the present invention. Furthermore, as is known as the coaxial magnetron sputtering method, there is a method of increasing the discharge efficiency by forming a magnetic field on a bar-shaped target in a direction perpendicular to the electrolysis. Of course, it is also possible to use a magnetic field to improve the discharge efficiency by inserting a magnetic field.
[発明の効果]
本発明は以上の様に構成されており、その効果を要約す
ると下記の通りである。[Effects of the Invention] The present invention is configured as described above, and its effects are summarized as follows.
(1)各単位ターゲット材への電圧印加の有無、印加電
圧の大小あるいは管状基材の相対的回転速度等を変える
ことによって、合金被膜あるいは積層被膜の選定を自由
に行ない得るほか合金組成や積層肉厚比等も容易に変え
ることができ、多種多様のスパッタリング被膜を形成す
ることができる。(1) By changing the presence or absence of voltage application to each unit target material, the magnitude of the applied voltage, or the relative rotational speed of the tubular base material, it is possible to freely select the alloy coating or laminated coating, as well as the alloy composition and lamination. The thickness ratio etc. can be easily changed, and a wide variety of sputtering films can be formed.
(2)複数層の被膜を単一のチャンバー内で連続的に形
成することができ、作業が著しく簡素化されるばかりで
なく装置の小型化も推進される。(2) Multiple layers of coatings can be formed continuously in a single chamber, which not only greatly simplifies the work but also promotes miniaturization of the apparatus.
(3)各単位ターゲット材は夫々が管状基材と独立に向
い合っているので、第6図の連続スパッタリング法で指
摘した様な「影」の発生による膜厚不均一や組成不均一
といった問題が一切起こらず、設定条件に応じた理想的
なスパッタリング被膜を得ることができる。(3) Since each unit target material faces the tubular base material independently, there are problems such as non-uniform film thickness and non-uniform composition due to the occurrence of "shadows" as pointed out in the continuous sputtering method in Figure 6. This does not occur at all, and it is possible to obtain an ideal sputtered coating according to the setting conditions.
第1.2図は本発明の実施例を示す一部破断斜視説明図
、及び正面略図、第3図(A)〜(F)は本発明で使用
する棒状ターゲット5の変形例を示す概略横断面図、第
4,5図は複合ターゲット法で使用される複合ターゲッ
トを例示する斜視図、第6図は連続スパッタリング法を
示す説明図である。
1・・・複合ターゲット
la、lb・・・単位ターゲット片
2・・・支持板 1x・・・主陰極ターゲット
1y・・・補助陰極ターゲット
Rx 、 Ry・・・抵抗 3・・・管状基材(
陽極)Sx、Sy・・・スイッチ 4・・・管状基材
5・・・スパッタリングターゲット
5a、5b、5c、5d ”一単位ターゲット材6・・
・絶縁材 Ra、Rb・・・可変抵抗器Sa、
Sb・・・スイッチ V・・・高圧電源7・・・回転
ローラFig. 1.2 is a partially broken perspective explanatory view and schematic front view showing an embodiment of the present invention, and Fig. 3 (A) to (F) are schematic cross-sectional views showing modified examples of the rod-shaped target 5 used in the present invention. 4 and 5 are perspective views illustrating a composite target used in the composite target method, and FIG. 6 is an explanatory diagram showing a continuous sputtering method. 1... Composite target la, lb... Unit target piece 2... Support plate 1x... Main cathode target 1y... Auxiliary cathode target Rx, Ry... Resistor 3... Tubular base material (
Anode) Sx, Sy... Switch 4... Tubular base material 5... Sputtering target 5a, 5b, 5c, 5d ``One unit target material 6...
・Insulating material Ra, Rb...variable resistor Sa,
Sb...Switch V...High voltage power supply 7...Rotating roller
Claims (1)
配置して管状基材内周面にスパッタリング被膜を形成す
る方法において、前記棒状スパッタリングターゲットは
、化学的に異なる複数本の単位ターゲット材を長さ方向
に且つ相互に絶縁的に揃えて構成し、この様に構成され
た棒状スパッタリングターゲットを前記管状基材に対し
て相対的に且つ同心的に回転させながらスパッタリング
を行なうことを特徴とするスパッタリング被膜形成方法
。In a method of forming a sputtering film on the inner circumferential surface of a tubular substrate by disposing a rod-shaped sputtering target at the axial center of the tubular substrate, the rod-shaped sputtering target comprises a plurality of chemically different unit target materials in length. A sputtering film characterized in that the rod-shaped sputtering target configured in this manner is arranged in a dielectrically insulating manner and is sputtered while rotating the rod-shaped sputtering target relatively and concentrically with respect to the tubular base material. Formation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5989087A JPS63227773A (en) | 1987-03-14 | 1987-03-14 | Formation of film by sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5989087A JPS63227773A (en) | 1987-03-14 | 1987-03-14 | Formation of film by sputtering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63227773A true JPS63227773A (en) | 1988-09-22 |
Family
ID=13126164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5989087A Pending JPS63227773A (en) | 1987-03-14 | 1987-03-14 | Formation of film by sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63227773A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006071596A1 (en) * | 2004-12-27 | 2006-07-06 | Cardinal Cg Company | Oscillating shielded cylindrical target assemblies and their methods of use |
US20130306466A1 (en) * | 2012-05-18 | 2013-11-21 | Samsung Display Co., Ltd. | Target for sputtering and apparatus including the same |
CN106319465A (en) * | 2016-08-25 | 2017-01-11 | 京东方科技集团股份有限公司 | Rotating target and magnetron sputtering device |
CN115181939A (en) * | 2022-09-13 | 2022-10-14 | 苏州博志金钻科技有限责任公司 | Method for preparing nano multilayer film and alloy film by rotary column target layered sputtering |
-
1987
- 1987-03-14 JP JP5989087A patent/JPS63227773A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006071596A1 (en) * | 2004-12-27 | 2006-07-06 | Cardinal Cg Company | Oscillating shielded cylindrical target assemblies and their methods of use |
US20130306466A1 (en) * | 2012-05-18 | 2013-11-21 | Samsung Display Co., Ltd. | Target for sputtering and apparatus including the same |
CN106319465A (en) * | 2016-08-25 | 2017-01-11 | 京东方科技集团股份有限公司 | Rotating target and magnetron sputtering device |
CN115181939A (en) * | 2022-09-13 | 2022-10-14 | 苏州博志金钻科技有限责任公司 | Method for preparing nano multilayer film and alloy film by rotary column target layered sputtering |
CN115181939B (en) * | 2022-09-13 | 2022-12-27 | 苏州博志金钻科技有限责任公司 | Method for preparing nano multilayer film and alloy film by rotary column target layered sputtering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5403458A (en) | Sputter-coating target and method of use | |
US6113752A (en) | Method and device for coating substrate | |
US5384021A (en) | Sputtering apparatus | |
US6337001B1 (en) | Process for sputter coating, a sputter coating source, and sputter coating apparatus with at least one such source | |
CA2143777A1 (en) | Use of multiple anodes in a magnetron for improving the uniformity of its plasma | |
WO1992001081A1 (en) | Method and apparatus for co-sputtering and cross-sputtering homogeneous films | |
JPS5830389B2 (en) | TADANTARI - Sputtering Souch | |
US6620299B1 (en) | Process and device for the coating of substrates by means of bipolar pulsed magnetron sputtering and the use thereof | |
TWI277127B (en) | A magnetron sputtering device, a cylindrical cathode and a method of coating thin multicomponent films on a substrate | |
KR102244994B1 (en) | METHOD FOR DEPOSITING A PIEZOELECTRIC FILM CONTAlNING AlN, AND A PIEZOELECTRIC FILM CONTAlNING AlN | |
EP0975818A1 (en) | Method and device for pvd coating | |
JPS63227773A (en) | Formation of film by sputtering | |
WO1990013137A1 (en) | Sputtering apparatus | |
TWI665324B (en) | Sputter deposition source, sputter deposition apparatus and method of operating a sputter deposition source | |
RU41023U1 (en) | MAGNETRON SPRAYING DEVICE | |
CN207760414U (en) | A kind of coating machine of setting solid arc plasma irrigation source | |
JPH09302469A (en) | Sputtering method | |
RU2214477C2 (en) | Installation for coating deposition | |
CN221971656U (en) | Ion beam coating equipment | |
WO2022009536A1 (en) | Sputtering apparatus and sputtering film forming method | |
JPS6116346B2 (en) | ||
JPH0611029B2 (en) | Sputtering-getting and spattering method | |
JPH02306522A (en) | Magnetron sputtering cathode | |
TWI636147B (en) | Composite target | |
JPH0314905B2 (en) |