[go: up one dir, main page]

JPS6322564B2 - - Google Patents

Info

Publication number
JPS6322564B2
JPS6322564B2 JP58218927A JP21892783A JPS6322564B2 JP S6322564 B2 JPS6322564 B2 JP S6322564B2 JP 58218927 A JP58218927 A JP 58218927A JP 21892783 A JP21892783 A JP 21892783A JP S6322564 B2 JPS6322564 B2 JP S6322564B2
Authority
JP
Japan
Prior art keywords
optical fiber
microlens
face
optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58218927A
Other languages
Japanese (ja)
Other versions
JPS60111208A (en
Inventor
Satoshi Ishizuka
Toshihiro Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58218927A priority Critical patent/JPS60111208A/en
Publication of JPS60111208A publication Critical patent/JPS60111208A/en
Publication of JPS6322564B2 publication Critical patent/JPS6322564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信等の光信号伝送に用いられる
半導体レーザと光フアイバ結合モジユールにおけ
る光フアイバ端面微小レンズの形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a microlens at the end face of an optical fiber in a semiconductor laser and optical fiber coupling module used for optical signal transmission in optical communications and the like.

従来例の構成とその問題点 光通信等の光信号伝送システムにおける半導体
レーザと光フアイバとの結合部の結合効率は、伝
送系の伝送距離を決定する最も大きな要因の1つ
であるが、ただ単に半導体レーザと光フアイバと
を近接させただけでは、高結合効率は得られな
い。特にコア径の微小な単一モード光フアイバの
場合は、約10%程度しか得られない。その上、半
導体レーザからの出射光が、近接した光フアイバ
の端面で一部反射し、再び半導体レーザに帰還す
ると、半導体レーザの発振特性の不安定化や雑音
増加をひし起す原因となる。
Conventional configurations and their problems The coupling efficiency of the coupling part between the semiconductor laser and the optical fiber in optical signal transmission systems such as optical communications is one of the most important factors that determines the transmission distance of the transmission system. High coupling efficiency cannot be obtained simply by placing the semiconductor laser and the optical fiber close to each other. In particular, in the case of a single mode optical fiber with a small core diameter, it is only about 10%. Furthermore, if the emitted light from the semiconductor laser is partially reflected by the end face of a nearby optical fiber and returns to the semiconductor laser again, this will cause instability in the oscillation characteristics of the semiconductor laser and an increase in noise.

これらの問題を解決するために、一般的に、半
導体レーザと光フアイバとの間に、レンズ系を挿
入し、半導体レーザから出射する光ビームをコン
トロールし、高結合効率化を図るとともに、半導
体レーザに近接する面をレンズの曲面とし、半導
体レーザに帰還する反射光を極力防止する方法が
とられる。具体的には、(1)集中型ロンドレンズや
球レンズを使用し、半導体レーザからの出射光を
集束して光フアイバに結合させる方法。(2)2種類
以上のレンズを組合せて、初段のレンズで、半導
体レーザからの出射光の広がりをおさえ、次段の
レンズで集中して光フアイバに結合する方法(3)微
小な球面レンズや円柱状のレンズを、光フアイバ
端面に近接または一体化した方法等がある。
In order to solve these problems, a lens system is generally inserted between the semiconductor laser and the optical fiber to control the light beam emitted from the semiconductor laser and achieve high coupling efficiency. A method is used in which the surface close to the lens is made a curved surface to prevent reflected light returning to the semiconductor laser as much as possible. Specifically, (1) a method that uses a concentrating Rondo lens or a ball lens to focus the emitted light from a semiconductor laser and couple it to an optical fiber; (2) A method in which two or more types of lenses are combined, and the first stage lens suppresses the spread of the emitted light from the semiconductor laser, and the second stage lens concentrates it and couples it to the optical fiber. (3) A method using a microscopic spherical lens or There is a method in which a cylindrical lens is placed close to or integrated with the end face of the optical fiber.

光フアイバ端面に微小レンズを形成する方法と
して、従来は第1図に示すように、放電加熱溶融
用の電極1及び2の間に、光フアイバ3を配置し
この光フアイバ3とは別に、直径30〜50μ程度の
石英ロツド4を用意し、光フアイバ3と石英ロツ
ド4との軸を合せた後、電極1及び2間の放電に
よる加熱溶融で、石英ロツド4の一部を光フアイ
バ3の端面に融着し、再び放電加熱を行ない微小
レンズを行成するものである。しかし、この方法
では、光フアイバ3とは別に石英ロツド4を準備
する必要があり、その上、石英ロツド4の直径が
30〜50μmと微細なため、取り扱いがむずかしい。
又、モニタ光を用いて光フアイバ3と石英ロツド
4の光軸合せを行なう際、光フアイバ3が特に単
一モードフアイバのようにコサ径が約6〜10μm
と小さい場合、直径30〜50μmの石英ロツド4と
の軸合せ精度は低下する。
Conventionally, as shown in FIG. 1, a method for forming a microlens on the end face of an optical fiber involves placing an optical fiber 3 between electrodes 1 and 2 for discharge heating and melting. A quartz rod 4 of about 30 to 50μ is prepared, and after aligning the axes of the optical fiber 3 and the quartz rod 4, a part of the quartz rod 4 is heated and melted by electric discharge between the electrodes 1 and 2, and a part of the quartz rod 4 is attached to the optical fiber 3. It is fused to the end face and subjected to discharge heating again to form a microlens. However, in this method, it is necessary to prepare the quartz rod 4 separately from the optical fiber 3, and in addition, the diameter of the quartz rod 4 is
It is difficult to handle because it is minute, measuring 30 to 50 μm.
Also, when aligning the optical axes of the optical fiber 3 and the quartz rod 4 using the monitor light, it is important to note that when the optical fiber 3 is a single mode fiber, the cosa diameter is approximately 6 to 10 μm.
If the diameter is small, the accuracy of alignment with the quartz rod 4 having a diameter of 30 to 50 μm will decrease.

発明の目的 本発明は、光通信等の光信号伝送に用いる半導
体レーザと光フアイバ結合モジユールにおいて、
結合効率の改善、且つ、半導体レーザへ帰還する
光フアイバ端面での反射量を極力おさえるための
光フアイバ端面微少レンズを、簡単に且つ精度よ
く、さらに再現性よく形成することも目的とす
る。
Purpose of the Invention The present invention provides a semiconductor laser and optical fiber coupling module used for optical signal transmission such as optical communication.
Another object of the present invention is to easily form a microlens at the end face of an optical fiber with good precision and reproducibility in order to improve the coupling efficiency and to minimize the amount of reflection at the end face of the optical fiber returning to the semiconductor laser.

発明の構成 本発明の光フアイバ端面微小レンズ形成方法は
端面の微小レンズを形成する光フアイバと同一種
類の光フアイバを使用し、双方を放電加熱溶融用
電極間に対向させる構成であり、一般的なフアイ
バの特性すなわちコア層の方が、クラツド層より
も融点が低いという特性を利用することを特徴と
するものである。
Structure of the Invention The method for forming a microlens on the end face of an optical fiber of the present invention uses the same type of optical fiber as the optical fiber forming the microlens on the end face, and has a structure in which both are opposed between electrodes for electric discharge heating and melting. It is characterized by taking advantage of the characteristic of the fiber, that is, the core layer has a lower melting point than the cladding layer.

実施例の説明 第2図に、本発明のフアイバ端面微小レンズ形
成方法の一実施例を示す。具体的な方法を第2図
従がい以下に述べる。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the fiber end face microlens forming method of the present invention. The specific method is shown in Figure 2 and described below.

第2図A;端面を垂直カツトした光フアイバ1
3及び14を、放電加熱用電極及び2の間に対向
させる。ここで、一方の光フアイバには光源を、
他方には光パワーメータを接続しておき、光パワ
ーメータへの光量が最大となるように、光フアイ
バ13と14の位置を調整する。その後、次の工
程で、コア層が突出した際に、光フアイバ13と
14のコア層同志が接触しない程度に対向間隔を
とる。
Figure 2 A; Optical fiber 1 with the end face cut vertically
3 and 14 are opposed between the discharge heating electrode and 2. Here, a light source is attached to one optical fiber,
An optical power meter is connected to the other end, and the positions of the optical fibers 13 and 14 are adjusted so that the amount of light to the optical power meter is maximized. Thereafter, in the next step, when the core layers protrude, a spacing between them is established so that the core layers of the optical fibers 13 and 14 do not come into contact with each other.

第2図B;石英系光フアイバの場合、一般的
に、クラツド層は純粋な石英ガラス(シリカ:
SiO2)であるが、コア層は屈折率を高くするた
めにSiO2にゲルマニウム(Ge)あるいはりん
(P)などの不純物が添加されており、コア部の
方が融点が低い。このため、電極1,2間で放電
加熱15を行ない。放電々流を除々に増していく
とコア層のみが溶融し、表面張力により曲率を有
する形状16が得られる。
Figure 2B: In the case of silica-based optical fibers, the cladding layer is generally made of pure silica glass (silica:
SiO 2 ), but impurities such as germanium (Ge) or phosphorus (P) are added to SiO 2 to increase the refractive index of the core layer, and the core layer has a lower melting point. For this reason, discharge heating 15 is performed between the electrodes 1 and 2. When the discharge current is gradually increased, only the core layer melts, and a shape 16 having curvature is obtained due to surface tension.

第2図C;光フアイバ13,14の端面の曲率
を有するコア層16が、放電々極1,2の軸0上
で接するように対向させる。
FIG. 2C: The core layers 16 having the curvature of the end surfaces of the optical fibers 13 and 14 are opposed to each other so as to be in contact with each other on the axis 0 of the discharge electrodes 1 and 2.

第2図D;コア層16同志を接触させた状態で
再び放電加熱17を行ない、放電加熱17を継続
しながら、光フアイバ13,14を引き離す。
FIG. 2D: Discharge heating 17 is performed again with the core layers 16 in contact with each other, and while continuing the discharge heating 17, the optical fibers 13 and 14 are separated.

第2図E;コア層が円すい形状18のように突
出した時点で放電を停止する。
FIG. 2E: Discharge is stopped when the core layer protrudes like a conical shape 18.

第2図F;再び放電加熱19を行ない、円すい
形状に突出したコア部を溶融すると、表面張力に
より、光フアイバ14の端面に、微小レンズ20
が形成される。このとき、放電電流、放電時間の
調整により、光フアイバ端面に任意の曲率の微小
レンズ20を形成することができる。
FIG. 2F: When the discharge heating 19 is performed again to melt the conical protruding core portion, a microlens 20 is formed on the end surface of the optical fiber 14 due to surface tension.
is formed. At this time, by adjusting the discharge current and discharge time, a microlens 20 having an arbitrary curvature can be formed on the end face of the optical fiber.

発明の効果 本発明によれば、光フアイバ端面に微レンズを
形成する際に、同一種類のフアイバを2本準備す
るだけでよく、2本フアイバが同一種類のため、
取り扱い易く、且つ、コア径も同一であり、放電
加熱溶融前の軸合せも精度よく行なうことができ
る。また、放電々流と放電時間を制御することに
より、任意の曲率の微小レンズを再現性よく形成
することができる。
Effects of the Invention According to the present invention, when forming a microlens on the end face of an optical fiber, it is only necessary to prepare two fibers of the same type, and since the two fibers are of the same type,
They are easy to handle, have the same core diameter, and can be accurately aligned before melting by electric discharge heating. Further, by controlling the discharge flow and the discharge time, a microlens with an arbitrary curvature can be formed with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光フアイバ端面微小レンズ形
成方法の正面図、第2図A〜Fは本発明の光フア
イバ端面微小レンズ形成方法の一実施例の工程正
面図である。 1,2……放電加熱用電極、13,14……光
フアイ、15……放電加熱、16……放電加熱溶
融によるコア層突出部、18……コア層の円すい
状突出部、208……光フアイバ端面に形成した
微小レンズ。
FIG. 1 is a front view of a conventional optical fiber end face microlens forming method, and FIGS. 2A to 2F are process front views of an embodiment of the optical fiber end face microlens forming method of the present invention. DESCRIPTION OF SYMBOLS 1, 2... Electrode for discharge heating, 13, 14... Optical fiber, 15... Discharge heating, 16... Core layer protrusion due to discharge heating melting, 18... Conical protrusion of core layer, 208... A microlens formed on the end face of an optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 2本の光フアイバを対向させ、前記光フアイ
バのコア層のみが溶融する放電々流で、前記光フ
アイバの双方の前記コア層を加熱溶融することに
より突出させて双方のコア突出部同志を接触さ
せ、再び放電加熱溶融しながら前記双方のコア突
出部を引き離した後、前記突出部を放電加熱溶融
して微小レンズを形成することを特徴とする光フ
アイバ端面微小レンズの形成方法。
1. Two optical fibers are placed facing each other, and both core layers of the optical fibers are heated and melted using a discharge flow that melts only the core layers of the optical fibers, thereby causing the core protrusions of both fibers to protrude. A method for forming a microlens on an end face of an optical fiber, the method comprising: bringing the two core protrusions into contact with each other, separating the two core protrusions while melting them again with discharge heat, and then melting the protrusions with discharge heat to form a microlens.
JP58218927A 1983-11-21 1983-11-21 Formation of microlens on end surface of optical fiber Granted JPS60111208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58218927A JPS60111208A (en) 1983-11-21 1983-11-21 Formation of microlens on end surface of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58218927A JPS60111208A (en) 1983-11-21 1983-11-21 Formation of microlens on end surface of optical fiber

Publications (2)

Publication Number Publication Date
JPS60111208A JPS60111208A (en) 1985-06-17
JPS6322564B2 true JPS6322564B2 (en) 1988-05-12

Family

ID=16727496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58218927A Granted JPS60111208A (en) 1983-11-21 1983-11-21 Formation of microlens on end surface of optical fiber

Country Status (1)

Country Link
JP (1) JPS60111208A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136808A (en) * 1988-11-18 1990-05-25 Nec Corp Optical semiconductor device
FR2681437B1 (en) * 1991-09-18 1995-01-20 France Telecom IMPROVED OPTICAL FIBER FOR COUPLING WITH A PHOTOTRANSDUCER AND PREPARATION METHOD.
FR2699293B1 (en) * 1992-12-15 1995-03-03 France Telecom Monolithic optical system comprising improved coupling means between an optical fiber and a phototransducer.
FR2699292B1 (en) * 1992-12-15 1995-03-03 France Telecom Method for the preparation by multiple lensing of an optical fiber for optimum coupling with a phototransducer and optical system obtained.
JP2014059479A (en) * 2012-09-18 2014-04-03 Fujitsu Ltd Manufacturing method of optical connector, and optical connector

Also Published As

Publication number Publication date
JPS60111208A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
KR940004211B1 (en) Coupling of optical devices to optical fibers by microlenses
US5293438A (en) Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
JP2544914B2 (en) Optical device and manufacturing method thereof
JPH0749432A (en) Optical fiber with lens
JPH08136772A (en) Optical fiber interface for coupling light source and its production
JPH01260405A (en) Optical fiber
JPS59121002A (en) Mono-mode optical transmission fiber and manufacture thereof
JP2008098316A (en) Semiconductor laser module
JPS6111708A (en) Channel optical waveguide with end face lens and its production
JPS6322564B2 (en)
US20030165290A1 (en) Optical signal altering lensed apparatus and method of manufacture
JP3274691B2 (en) Manufacturing method of optical fiber terminal with micro lens
JPH05288967A (en) Optical fiber for laser input
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JPH03189607A (en) Production of fiber type optical coupler
JPS5858642B2 (en) Manufacturing method of optical fiber end face lens
JPS61241710A (en) Method for forming very small lens at end face of optical fiber
JPS6396609A (en) Optical connecting circuit
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JP3287629B2 (en) Quartz optical fiber with lens and manufacturing method thereof
JPS6243609A (en) Optical circuit element
JP2902426B2 (en) Fusion splicing method between silica glass waveguide and optical fiber
JPH06242331A (en) Quartz group optical fiber with lens and its production
JPH06242330A (en) Quartz group optical fiber with lens and its production
JPH0682663A (en) Method for machining end surface part of optical fiber