[go: up one dir, main page]

JPS63222254A - Recovery cell for electrophoresis apparatus - Google Patents

Recovery cell for electrophoresis apparatus

Info

Publication number
JPS63222254A
JPS63222254A JP62057590A JP5759087A JPS63222254A JP S63222254 A JPS63222254 A JP S63222254A JP 62057590 A JP62057590 A JP 62057590A JP 5759087 A JP5759087 A JP 5759087A JP S63222254 A JPS63222254 A JP S63222254A
Authority
JP
Japan
Prior art keywords
gel
chamber
recovery
electrophoresis
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057590A
Other languages
Japanese (ja)
Inventor
Koichi Yoshinaga
吉永 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62057590A priority Critical patent/JPS63222254A/en
Publication of JPS63222254A publication Critical patent/JPS63222254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To prevent the mixing of an inhibitor, by providing a recovery chamber for recovery of a transmission charged high polymer adjoining a gel chamber of an electrolysis apparatus by way of a glass filter penetrating to an opposed electrode through a cellophane film. CONSTITUTION:An electrophoretic tank 10 of a horizontal type electrophoresis apparatus filled with an electrophoretic buffer 11 is prepared and a recovery cell 13 is set in a gel chamber 1 to recover a gel 12 containing a desired charged high polymer. Power is fed with a negative pole on the side of the gel chamber 1 and with a positive pole on the side of a recovery chamber 4 to perform electrophoresis. A negatively charged high polymer moves to the recovery chamber 4 in the gel to be shifted to the recovery chamber 4 passing through a glass filter 2. A cellophane film 3 located on the positive pole side of the recovery chamber 4 will not let the charged high polymer pass, hence having the charged high polymer staying thereon 3. Fine gel fragments moving together with the charged high polymer are left in the gel chamber 1, refused to pass through the glass filter 2. Upon the end of the electrophoresis, the charged high polymer on the cellophane film is separated from the cellophane film by reversing current to electrically energize in a short time and taken out together with the buffer at a recovery takeoff portion 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気泳動装置に用いる回収セルに関し、よ
り詳細には、DNAなどの荷′rs高分子を電気泳動に
よって分離する際に用いられる電気泳動装置用回収セル
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a recovery cell used in an electrophoresis device, and more specifically, to a recovery cell used in electrophoretically separating cargo polymers such as DNA. The present invention relates to a recovery cell for an electrophoresis device.

〔従来の技術〕[Conventional technology]

DNAなどの荷電高分子を電気泳動によって分離するこ
とは、制限酵素などで切断したDNA断片のうちから特
定の断片(特定の遺伝子)を分は取る遺伝子工学の基本
的な操作に用いられている。
Separating charged polymers such as DNA by electrophoresis is used in basic genetic engineering operations to extract specific fragments (specific genes) from DNA fragments cut with restriction enzymes. .

この操作では、DNA断片がアガロース若しくはポリア
クリルアミドのゲルを担体とする電気泳動によって、D
NA断片の長さの違いによりて展開され、対応するゲル
から目的のDNAを水溶液として回収される。この回収
は、例えば、目的のDNA断片を含むゲルのブロックを
切出し、そのブロックを透析チニービングの中に少量の
電気泳動バッファーと共に封じ込め、この封じ込めたも
のを水平型電気泳動槽のバッファーに浸漬し、電気泳動
して電荷をもつDNAを電気的にゲルからバッファーに
出し、DNAを含むバッファーを取出してDNAを回収
する。
In this operation, DNA fragments are separated by electrophoresis using an agarose or polyacrylamide gel as a carrier.
The DNA fragments are developed depending on their length, and the target DNA is recovered from the corresponding gel as an aqueous solution. This recovery can be carried out, for example, by cutting out a gel block containing the desired DNA fragment, sealing the block in a dialysis tinib with a small amount of electrophoresis buffer, and immersing the sealed block in the buffer of a horizontal electrophoresis tank. The charged DNA is electrically transferred from the gel to a buffer through electrophoresis, and the buffer containing the DNA is removed to recover the DNA.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した透析チュービングを用いるDNA回収では、特
に、アガロースゲルを用いた場合、その回収操作中にゲ
ルの微小断片が回収したDNA中に混入し、これが制限
酵素の阻害剤となり、しかも、この阻害剤を簡単な精製
操作で取除くことができないために、せっ□かく回収し
たDNAを有効に使用することができなくなる恐れがあ
る。また、DNAの回収率は必ずしも良くなく、10%
以下のように非常に悪いことがある。さらに、扱うゲル
が非常に脆弱であり、そのゲルを収納する透析チュービ
ングが軟弱であるために、その操作は繁雑かつ注意を要
するものである。
In DNA recovery using dialysis tubing as described above, especially when agarose gel is used, minute fragments of the gel are mixed into the recovered DNA during the recovery operation, and this becomes an inhibitor of the restriction enzyme. Since the DNA cannot be removed by simple purification, there is a risk that the recovered DNA will not be able to be used effectively. In addition, the DNA recovery rate is not necessarily good, with only 10%
There are some very bad things like: Furthermore, the gel to be handled is very fragile and the dialysis tubing that houses the gel is soft, so the operation is complicated and requires care.

この発明は上述の背景に基いてなされたものであり、そ
の目的とするところはゲル微小断片などの阻害物質の混
入を防止し、DNAなどの荷電高分子を操作容易に高い
収率で回収することのできる電気泳動装置用回収セルを
提供することである。
This invention was made based on the above-mentioned background, and its purpose is to prevent the contamination of inhibitory substances such as gel minute fragments and recover charged polymers such as DNA with easy operation and high yield. An object of the present invention is to provide a collection cell for an electrophoresis device that can be used for electrophoresis.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、電気泳動装置を用いた荷電高分子の回収手
段について種々の検討を加えた結果、この発明による電
気泳動装置用回収セルによって上記の目的が達成される
ことを見出した。すなわち、この発明の電気泳動装置用
回収セルは、電気泳動装置の一方の電極に連通し、試料
ゲルを収容するゲル室と、ガラスフィルターを介して該
ゲル室と隣接すると共に、セロファン膜を介して電気泳
動装置の対極に連通し、該ガラスフィルターを透過した
荷電高分子を回収するための回収室と、該ゲル室と該回
収室とを収容する中空セル本体とからなり、該セル本体
と該ガラスフィルターとセロファン膜とが一体化され、
該ガラスフィルターが微小ゲル断片の透過を妨げるが該
荷電高分子を透過し、該セロファン膜が該荷電高分子の
透過を妨げることを特徴とするものである。
The present inventor has conducted various studies on a means for collecting charged polymers using an electrophoresis apparatus, and has found that the above object can be achieved by the collection cell for an electrophoresis apparatus according to the present invention. That is, the collection cell for an electrophoresis apparatus of the present invention has a gel chamber which communicates with one electrode of the electrophoresis apparatus and which accommodates a sample gel, and which is adjacent to the gel chamber through a glass filter and which is connected to the gel chamber through a cellophane membrane. a collection chamber that communicates with the opposite electrode of the electrophoresis device and that collects the charged polymer that has passed through the glass filter; and a hollow cell body that accommodates the gel chamber and the collection chamber; The glass filter and cellophane membrane are integrated,
The glass filter is characterized in that it prevents the passage of minute gel fragments but allows the charged polymer to pass through, and the cellophane membrane prevents the charged polymer from passing through.

〔作 用〕[For production]

上記のようにこの発明が構成されているので、この回収
セルを電気泳動装置の電気泳動槽に設置し、ゲル室側を
負極として通電して、DNAなどの荷電高分子を含むゲ
ルを電気泳動にかけると、負電荷をもつ荷電高分子はゲ
ル中を回収室に移動して、ガラスフィルターを透過して
回収室に移る。
Since the present invention is configured as described above, this collection cell is installed in the electrophoresis tank of an electrophoresis device, and electricity is applied with the gel chamber side as the negative electrode to electrophores the gel containing charged polymers such as DNA. When exposed to water, negatively charged polymers move through the gel to a collection chamber, pass through a glass filter, and are transferred to the collection chamber.

更に、正極側に移動しようとするが、回収室のセロファ
ン膜は荷電高分子がその膜を透過させないので、荷電高
分子は回収室に止まる。一方、微小ゲル断片も荷電高分
子をと共に移動するが、ガラスフィルターによってその
微小ゲル断片が回収室に混入するのを防止する。
Furthermore, although it tries to move to the positive electrode side, the cellophane membrane in the collection chamber does not allow the charged polymer to pass through the membrane, so the charged polymer remains in the collection chamber. On the other hand, although the microgel fragments also move together with the charged polymer, the glass filter prevents the microgel fragments from entering the collection chamber.

〔実施例〕〔Example〕

この発明を、図面を参照しながら、より具体的に説明す
る。
This invention will be described in more detail with reference to the drawings.

装置例 第1図にこの発明による電気泳動装置用回収セルの一例
を表す斜視図を示す。
Device Example FIG. 1 is a perspective view showing an example of a collection cell for an electrophoresis device according to the present invention.

この例回収セル13は、電気泳動装置の一方の電極に連
通し、試料ゲルを収容するゲル室1と、ガラスフィルタ
ー2を介して該ゲル室1と隣接する回収室4とからなり
、この回収室4は、セロファン膜3を介して電気泳動装
置の対極に連通し、ゲル室から電気泳動した荷電高分子
を貯留・回収するためのものである。このゲル室1と回
収室4とは中空セル本体5に収容され、この中空セル本
体5にガラスフィルター2とセロファン膜3とが一体化
されている。
The collection cell 13 in this example is composed of a gel chamber 1 that communicates with one electrode of an electrophoresis device and accommodates a sample gel, and a collection chamber 4 adjacent to the gel chamber 1 via a glass filter 2. The chamber 4 communicates with the counter electrode of the electrophoresis device via the cellophane membrane 3, and is for storing and recovering the charged polymer electrophoresed from the gel chamber. The gel chamber 1 and the recovery chamber 4 are housed in a hollow cell main body 5, and a glass filter 2 and a cellophane membrane 3 are integrated into the hollow cell main body 5.

この回収セルの形状、寸法などは、この例に限定されず
、その用途に応じて適宜変更することができ、同様にゲ
ル室および回収室の形状、寸法なども、その用途に応じ
て適宜変更することが望ましい。
The shape, dimensions, etc. of this collection cell are not limited to this example, and can be changed as appropriate depending on the usage. Similarly, the shape, dimensions, etc. of the gel chamber and the collection chamber can be changed as appropriate depending on the usage. It is desirable to do so.

中空セル本体の材質には、この回収セルの目的に反しな
い限り、種々の材料を用いることができる。その様なも
のとして、プラスチック、ステンレス鋼などの金属、ガ
ラス、セラミックなどがある。
Various materials can be used for the hollow cell main body as long as they do not contradict the purpose of the collection cell. Examples of such materials include plastics, metals such as stainless steel, glass, and ceramics.

この発明において用いられるガラスフィルターは、電気
泳動中に微小ゲル断片の透過を妨げるものであり、その
様な働きを持つかぎり、種々のガラスフィルターをこの
回収セルに用いることができる。同様に、セロファン膜
は、電気泳動中に荷電高分子の透過を妨げるものであり
、その様な働きを持つかぎり、種々のセロファン膜をこ
の回収セルに用いることができる。
The glass filter used in this invention prevents the passage of minute gel fragments during electrophoresis, and various glass filters can be used in this collection cell as long as they have this function. Similarly, the cellophane membrane prevents the passage of charged polymers during electrophoresis, and various cellophane membranes can be used in this collection cell as long as they have this function.

使用例 第2図を参照して、この回収セルを使用する例を説明す
る。
Example of Use Referring to FIG. 2, an example of using this collection cell will be described.

先ず、電気泳動バッファー11で満たされた水平型の電
気泳動装置の電気泳動槽10を準備し、その電気泳動槽
10に、ゲル室1に目的の荷電高分子を含むゲル12を
収容する回収セル13をセットする。ゲル室1側を負極
とし、回収室4側を正極として通電して電気泳動を行う
。負電荷を持つ荷電高分子はゲル中を回収室4方向に動
き、ガラスフィルター2を通過して回収室4に移る。回
収室の正極側にあるセロファン膜3は荷電高分子を通過
させないので、荷電高分子はセロファン膜上に止まる。
First, an electrophoresis tank 10 of a horizontal electrophoresis device filled with an electrophoresis buffer 11 is prepared, and a collection cell containing a gel 12 containing a charged polymer of interest in a gel chamber 1 is placed in the electrophoresis tank 10. Set 13. Electrophoresis is performed by applying electricity to the gel chamber 1 side as a negative electrode and the recovery chamber 4 side as a positive electrode. The negatively charged polymer moves in the direction of the collection chamber 4 in the gel, passes through the glass filter 2, and moves to the collection chamber 4. Since the cellophane membrane 3 on the positive electrode side of the recovery chamber does not allow the charged polymer to pass through, the charged polymer remains on the cellophane membrane.

電気泳動中に荷電高分子と共に移動する微小ゲル断片は
ガラスフィルター2を通過できずゲル室1内に残る。電
気泳動を終えると、セロファン膜ににある荷電高分子は
、電流を逆転させて短時間通電してセロファン膜から離
して、回収取出口14からバッファーと共に回収荷電高
分子を取出す。
Microgel fragments that move together with charged polymers during electrophoresis cannot pass through the glass filter 2 and remain in the gel chamber 1. After electrophoresis is completed, the charged polymers present on the cellophane membrane are separated from the cellophane membrane by applying current for a short time by reversing the current, and the collected charged polymers are taken out from the collection outlet 14 together with the buffer.

実験例1 第1図に示す様な回収セルに、制限酵素111ndl1
1で分解したλ−DNA約10μgを1%のアガロース
NA (Pharmacia)で電気泳動した。各DN
A断片を含むアガロースのブロックを切出し、第1図に
示す様な回収セルに入れて電気泳動を行った。
Experimental Example 1 Restriction enzyme 111ndl1 was added to a collection cell as shown in Figure 1.
Approximately 10 μg of the λ-DNA degraded in step 1 was electrophoresed on 1% agarose NA (Pharmacia). Each DN
The agarose block containing the A fragment was cut out, placed in a collection cell as shown in FIG. 1, and subjected to electrophoresis.

この回収セルに用いられたガラスフィルター(ワットマ
ン社製、GF/F)は、下記の性能を有していた。
The glass filter (GF/F, Whatman) used in this collection cell had the following performance.

市は           75g/ゴ厚さ     
        0.50I1m粒子保持能(液体)0
.7μm 明期ろ過速度       6.0wl/5ee一方、
セロファンIII(ユニオンカーバイド社製、セロファ
ンチューブイングシームレス)は、下記の性能を有して
いた。
The city is 75g/thickness
0.50I1m particle retention capacity (liquid) 0
.. 7μm Light period filtration rate 6.0wl/5ee On the other hand,
Cellophane III (manufactured by Union Carbide, Cellophane Tubing Seamless) had the following performance.

分かく分子量       10.000〜20.00
0膜厚           0.020a+■電気泳
動バツフアーとして0,04モル/gのトリス−アセテ
ート、0.001モル/gのEDTAを用いて、13c
mの電極間距離を持つ水平型の電気泳動装置で100V
、2時間、電気泳動槽の外側から氷で冷却しながら、通
電した。電気泳動終了後、回収室からバッファーととも
にDNAを取出し、フェノール、クロロホルム処理し、
DNAをエタノールで沈澱させ、そのDNAを再度0.
 1mlのTEバッファーに溶解させた。
Divided molecular weight 10.000-20.00
0 film thickness 0.020a+■ Using 0.04 mol/g Tris-acetate and 0.001 mol/g EDTA as electrophoresis buffer, 13c
100V in a horizontal electrophoresis device with an electrode distance of m.
For 2 hours, electricity was applied from the outside of the electrophoresis chamber while cooling with ice. After electrophoresis, the DNA was taken out from the collection chamber along with the buffer, treated with phenol and chloroform,
The DNA was precipitated with ethanol and the DNA was re-incubated with 0.
It was dissolved in 1 ml of TE buffer.

DNAの回収率を測定するために、制限酵素111nd
lllで分解したλ−DNAIμg (分離に用いた1
/10ffl)と、前記実験で回収された各DNA断片
を含むバッファーの各々の1/10量とについて電気泳
動を行った。その結果を参考写真lに示す。参考写真1
は電気泳動後のゲルをトランスイミネータのにに載せて
撮影したものであり、レーン1は、分離前の全てのDN
A断片を含む試料についての電気泳動の結果であり、同
様に、レーン2は23.IKbp (分子量15.0X
IO6)のDNA断片について、レーン3は9.4Kb
p(分子量6.12X10B)のDNA断片について、
レーン4は6.56Kbp (分子量4.26×106
)のDNA断片について、レーン5は4.36Kbp 
(分子量2.84xlO6)のDNA断片について、レ
ーン6は2.32Kbp(分子量1.51X106)の
DNA断片について、レーン7は2.03Kbp (分
子量1.32×106)のDNA断片についてである。
To measure the DNA recovery rate, restriction enzyme 111nd
μg of λ-DNA digested with
/10ffl) and 1/10 volume of each of the buffers containing each DNA fragment recovered in the above experiment were subjected to electrophoresis. The results are shown in reference photo 1. Reference photo 1
Lane 1 is a photograph of the gel after electrophoresis placed on a transiminator, and lane 1 shows all DNs before separation.
These are the results of electrophoresis for a sample containing the A fragment, and similarly, lane 2 is 23. IKbp (molecular weight 15.0X
For the DNA fragment of IO6), lane 3 is 9.4 Kb.
Regarding the DNA fragment of p (molecular weight 6.12×10B),
Lane 4 is 6.56 Kbp (molecular weight 4.26 x 106
), lane 5 is 4.36 Kbp.
Lane 6 is for a DNA fragment of 2.32 Kbp (molecular weight 1.51 x 106), and Lane 7 is for a DNA fragment of 2.03 Kbp (molecular weight 1.32 x 106).

レーン1と対応する各レーンとのバンドの濃さが等しい
ことから、これらすべてのDNA断片が100%の回収
率で回収されたことが分る。
The density of the bands in Lane 1 and the corresponding lanes is equal, indicating that all of these DNA fragments were recovered with a 100% recovery rate.

上記のDNAの分離回収の適用範囲が2381Kbpか
ら2.03Kbpであるが、100bpまでのものにつ
いても同様に実施できる。
Although the applicable range of DNA separation and recovery described above is from 2381 Kbp to 2.03 Kbp, it can be performed similarly for DNA up to 100 bp.

実験例2 この回収セルで回収したDNAに酵素阻害剤が混入され
ている程度を調べるために、回収室から取出した9、4
KbpのDNA断片を色々な程度に精製した後、ライゲ
ーション反応または制限酵素EcoRI切断を行った。
Experimental Example 2 In order to examine the extent to which enzyme inhibitors were mixed into the DNA collected in this collection cell, 9, 4, which was taken out from the collection chamber,
After purifying the Kbp DNA fragment to various degrees, ligation reaction or restriction enzyme EcoRI cleavage was performed.

その結果をアガロース電気泳動で測定した。その電気泳
動結果を参考写真2に示す。レーン1は9.4Kbpの
DNA断片についての電気泳動結果を示し、レーン2は
9.4KbpのDNA断片をそのままライゲーションし
たものについての電気泳動結果を示し、レーン6は9.
4KbpのDNA断片をそのまま制限酵素EcoRI切
断したものについての電気泳動結果を示し、レーン4は
9.4KbpのDNA断片を一度フエノール、クロロホ
ルム処理で精製し、それをライゲージジンしたものにつ
いての電気泳動結果を示し、レーン7は9.4Kbpの
DNA断片を一度フエノール、クロロホルム処理で精製
し、それを制限酵素EcoRI切断したものについての
電気泳動結果を示し、レーン5は基準となるマーカーD
NAについての電気泳動結果を示す。この結果から回収
したDNAに僅かに混入したりガーゼやEcoRIの阻
害剤もフェノール、クロロホルム処理によって簡単に取
除けることがわかる。
The results were measured by agarose electrophoresis. The electrophoresis results are shown in Reference Photo 2. Lane 1 shows the electrophoresis results for the 9.4 Kbp DNA fragment, lane 2 shows the electrophoresis results for the 9.4 Kbp DNA fragment directly ligated, and lane 6 shows the electrophoresis results for the 9.4 Kbp DNA fragment.
The electrophoresis results are shown for a 4 Kbp DNA fragment that was directly digested with the restriction enzyme EcoRI, and lane 4 shows the electrophoresis results for a 9.4 Kbp DNA fragment that was purified by treatment with phenol and chloroform and then subjected to ligage gin. Lane 7 shows the electrophoresis results of a 9.4 Kbp DNA fragment that was once purified by treatment with phenol and chloroform and then digested with the restriction enzyme EcoRI.
The electrophoresis results for NA are shown. This result shows that even a slight amount of gauze or EcoRI inhibitors mixed in the recovered DNA can be easily removed by treatment with phenol or chloroform.

〔発明の効果〕〔Effect of the invention〕

この発明の電気泳動装置用回収セルによって、下記の効
果を得ることができる。
The following effects can be obtained by the collection cell for an electrophoresis apparatus of the present invention.

(1)実施例で実証されるように、DNAを100!’
6若しくはそれに近い高率で回収することができる。
(1) As demonstrated in the examples, DNA is 100! '
It is possible to recover at a high rate of 6 or close to that.

(2)実施例で実証されるように、回収されたDNAに
は微量の阻害剤しか含まれておらず、しかもこの阻害剤
を簡単に取除くことができるので、回収DNAを用いて
ライゲーションあるいは制限酵素切断などの遺伝子操作
を行うことができる。
(2) As demonstrated in the examples, the recovered DNA contains only a trace amount of inhibitor, and this inhibitor can be easily removed, so the recovered DNA can be used for ligation or Genetic manipulations such as restriction enzyme cleavage can be performed.

(3)この発明の回収セルには、既にセロファン膜が一
体化されているので、従来のセロファン袋を手で支える
などの煩わしい操作を必要としない。また、DNA溶液
を取出すときも、セロファン袋の口を開けるなどの操作
を要せず、単にピペッタ−で簡単に取出すことができる
。このように操作性に優れている。
(3) Since a cellophane membrane is already integrated into the collection cell of the present invention, there is no need for troublesome operations such as supporting a conventional cellophane bag by hand. Furthermore, when taking out the DNA solution, there is no need to open the cellophane bag, and the DNA solution can be taken out simply with a pipettor. As you can see, it has excellent operability.

(4)セロファン膜を直接手に触れることもないので、
DNAを汚染させることもない。
(4) Since there is no need to touch the cellophane membrane directly with your hands,
It does not contaminate DNA.

(5)ラジオアイソトープ(RI)を使用する場合、特
に作業者の安全に寄与する。
(5) The use of radioisotopes (RI) particularly contributes to worker safety.

(6)R1で汚染された回収セル処理が簡単である。(6) Treatment of the collection cell contaminated with R1 is simple.

(7)この発明の回収セルは、工業的に均質な製品とし
て製造することができるので、再現性のよい高回収率を
可能にする。
(7) Since the recovery cell of the present invention can be industrially manufactured as a homogeneous product, it enables high recovery rates with good reproducibility.

(8)高価な材料を特に必要とせずに製造することがで
きるので、廉価な回収セルをえることができる。
(8) Since it can be manufactured without particularly requiring expensive materials, an inexpensive collection cell can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電気泳動装置用回収セルの一態
様例を示す外観図、第2図はこの発明による回収セルを
用いた電気泳動を示す断面図である。
FIG. 1 is an external view showing an embodiment of a collection cell for an electrophoresis device according to the present invention, and FIG. 2 is a sectional view showing electrophoresis using the collection cell according to the invention.

Claims (1)

【特許請求の範囲】[Claims] 電気泳動装置の一方の電極に連通し、試料ゲルを収容す
るゲル室と、ガラスフィルターを介して該ゲル室と隣接
すると共に、セロファン膜を介して電気泳動装置の対極
に連通し、該ガラスフィルターを透過した荷電高分子を
回収するための回収室と、該ゲル室と該回収室とを収容
する中空セル本体とからなり、該セル本体と該ガラスフ
ィルターとセロファン膜とが一体化され、該ガラスフィ
ルターが微小ゲル断片の透過を妨げるが該荷電高分子を
透過し、該セロファン膜が該荷電高分子の透過を妨げる
ことを特徴とする電気泳動装置用回収セル。
a gel chamber that communicates with one electrode of the electrophoresis device and accommodates a sample gel; and a gel chamber that is adjacent to the gel chamber through a glass filter and communicates with the opposite electrode of the electrophoresis device through a cellophane membrane, and the glass filter It consists of a recovery chamber for recovering the charged polymer that has passed through the gel chamber, and a hollow cell body that accommodates the gel chamber and the recovery chamber, and the cell body, the glass filter, and the cellophane membrane are integrated, and the A collection cell for an electrophoresis device, characterized in that a glass filter prevents the passage of minute gel fragments but allows the charged polymer to pass through, and the cellophane membrane prevents the charged polymer from passing through.
JP62057590A 1987-03-12 1987-03-12 Recovery cell for electrophoresis apparatus Pending JPS63222254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057590A JPS63222254A (en) 1987-03-12 1987-03-12 Recovery cell for electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057590A JPS63222254A (en) 1987-03-12 1987-03-12 Recovery cell for electrophoresis apparatus

Publications (1)

Publication Number Publication Date
JPS63222254A true JPS63222254A (en) 1988-09-16

Family

ID=13060060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057590A Pending JPS63222254A (en) 1987-03-12 1987-03-12 Recovery cell for electrophoresis apparatus

Country Status (1)

Country Link
JP (1) JPS63222254A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588296U (en) * 1992-04-28 1993-12-03 明治乳業株式会社 Device for recovering nucleic acid or protein from electrophoresis gel
JP2003534547A (en) * 2000-05-25 2003-11-18 ジーン、バイオ‐アプリケーション、リミテッド Processing chamber with opening for pipette access
WO2010001675A1 (en) * 2008-06-30 2010-01-07 シャープ株式会社 Sample separation/adsorption appliance
JP2010502962A (en) * 2006-08-31 2010-01-28 ライフ テクノロジーズ コーポレーション Method, cassette, gel and apparatus for isolating and collecting biomolecules from electrophoresis gels
WO2011028826A3 (en) * 2009-09-01 2011-05-19 Oregon Health & Science University Reversible current gel electrophoresis device for separating biological macromolecules
JP2012505415A (en) * 2008-10-08 2012-03-01 セージ サイエンス, インコーポレイテッド Multi-channel preparative electrophoresis system
US20180202968A1 (en) * 2015-06-01 2018-07-19 Qiagen Gmbh Electrophoresis assisted method and device for purifying a charged target molecule from a sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098347A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Device for electrically eluting electrically charged giant molecule
JPS6098348A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Method and device for electrically eluting electrically charged giant molecule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098347A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Device for electrically eluting electrically charged giant molecule
JPS6098348A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Method and device for electrically eluting electrically charged giant molecule

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588296U (en) * 1992-04-28 1993-12-03 明治乳業株式会社 Device for recovering nucleic acid or protein from electrophoresis gel
JP2003534547A (en) * 2000-05-25 2003-11-18 ジーン、バイオ‐アプリケーション、リミテッド Processing chamber with opening for pipette access
JP2010502962A (en) * 2006-08-31 2010-01-28 ライフ テクノロジーズ コーポレーション Method, cassette, gel and apparatus for isolating and collecting biomolecules from electrophoresis gels
WO2010001675A1 (en) * 2008-06-30 2010-01-07 シャープ株式会社 Sample separation/adsorption appliance
US8449748B2 (en) 2008-06-30 2013-05-28 Sharp Kabushiki Kaisha Sample separation/adsorption appliance
JP2012505415A (en) * 2008-10-08 2012-03-01 セージ サイエンス, インコーポレイテッド Multi-channel preparative electrophoresis system
WO2011028826A3 (en) * 2009-09-01 2011-05-19 Oregon Health & Science University Reversible current gel electrophoresis device for separating biological macromolecules
US8496798B2 (en) 2009-09-01 2013-07-30 Oregon Health & Science University Reversible current gel electrophoresis device for separating biological macromolecules
US9126136B2 (en) 2009-09-01 2015-09-08 Oregon Health & Science University Reversible current gel electrophoresis device for separating biological macromolecules
US20180202968A1 (en) * 2015-06-01 2018-07-19 Qiagen Gmbh Electrophoresis assisted method and device for purifying a charged target molecule from a sample
US10794859B2 (en) * 2015-06-01 2020-10-06 Qiagen Gmbh Electrophoresis assisted method and device for purifying a charged target molecule from a sample

Similar Documents

Publication Publication Date Title
KR0172620B1 (en) Tablet electrophoresis device and method
Studier Analysis of bacteriophage T7 early RNAs and proteins on slab gels
US5340449A (en) Apparatus for electroelution
Righetti et al. Preparative protein purification in a multi-compartment electrolyser with immobiline membranes
US4614576A (en) Microliter scale electrodialysis apparatus
GB2148326A (en) Electro-elution apparatus
EP0187586B1 (en) Process and apparatus for preparative electrophoresis
GB2148325A (en) Electro-elution
JPS63222254A (en) Recovery cell for electrophoresis apparatus
IE63398B1 (en) Process and device for the electrophoretic separation purification and concentration of charged or polarizable macromolecules
US7025864B2 (en) Method and apparatus for recovering target molecules from a gel containing said target molecules
GB1418922A (en) Electrophoresis method and apparatus
JP2004000217A (en) Trapping and releasing device of dna using flow passage and method for trapping and releasing dna
JPH10500489A (en) Method for desalting biological samples to remove interfering substances in isoelectric focusing
Chouikh et al. A simple and fast electrophoretic method for elution of nucleic acids from gels
EP1217367A1 (en) Radial electrophoresis apparatus and method
FR2524488B1 (en) PROCESS FOR THE RECOVERY OF METALS OF HIGH INDUSTRIAL VALUE CONTAINED IN MUD
EP1358000B1 (en) Apparatus and method for separation of molecules and movement of fluids by electrophoresis
Höglund Electron microscopic investigations of the interaction between the T2-phage and its IgG-and IgM-antibodies
WO2004048398A1 (en) Method and apparatus for concentration and purification of nucleic acid
JPH081496Y2 (en) Device for recovering nucleic acid or protein from electrophoresis gel
Sweet et al. Concentration of virus from water by electro-osmosis and forced-flow electrophoresis
JPH03118462A (en) electrophoresis device
JPH0599899A (en) Method for separating and purifying biological materials
AU2002256552B2 (en) Apparatus and method for separation of molecules and movement of fluids