[go: up one dir, main page]

JPS63220984A - Amorphous alloy sheet band laminated plate - Google Patents

Amorphous alloy sheet band laminated plate

Info

Publication number
JPS63220984A
JPS63220984A JP5038687A JP5038687A JPS63220984A JP S63220984 A JPS63220984 A JP S63220984A JP 5038687 A JP5038687 A JP 5038687A JP 5038687 A JP5038687 A JP 5038687A JP S63220984 A JPS63220984 A JP S63220984A
Authority
JP
Japan
Prior art keywords
amorphous alloy
welding
ribbons
alloy sheet
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5038687A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5038687A priority Critical patent/JPS63220984A/en
Publication of JPS63220984A publication Critical patent/JPS63220984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To speed up and facilitate the lamination joining by superposing plural amorphous alloy sheet bands to join these by the spot welding or the seam welding. CONSTITUTION:Alloy molten metal for forming the amorphous alloy sheet band such as Fe-B-Si, etc., is cooled rapidly using a cooling roll and the amorphous alloy sheet band is formed and the plural sheet bands are superposed. Next, the spot welding or the seam welding under a proper pattern and condition is performed on the amorphous alloy sheet bands in a cast state and afterward, the heat-treatment is performed thereon. At this time, even in the heat- treating state, a weld zone is not peeled and an amorphous characteristic is not changed. By this method, the joining work is facilitated and speeded up.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、非晶質合金薄体積層板に関し、とくに非晶
質合金薄帯のもつ種々の特性を劣化させることなしにそ
の有利なW1層化を図ろうとするものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an amorphous alloy thin laminate, and in particular, the present invention relates to an amorphous alloy thin laminate, in which the advantageous W1 of the amorphous alloy ribbon can be improved without deteriorating various properties of the amorphous alloy ribbon. This is an attempt to create stratification.

(従来の技術) 特定組成の溶融合金を、急冷法たとえば単ロール法によ
って105〜b 凝固させると、厚み20〜50μl程度の非晶質合金薄
帯が得られる。かような非晶質合金は、機械的性質はも
とより物理的性質にも優れているものが多いことから、
近年、その利用がさかんに検討されている。
(Prior Art) When a molten alloy having a specific composition is solidified to a thickness of 105 to 105 b by a rapid cooling method, such as a single roll method, an amorphous alloy ribbon having a thickness of about 20 to 50 μl is obtained. Many of these amorphous alloys have excellent not only mechanical properties but also physical properties.
In recent years, its use has been actively studied.

たとえばFe−B−8i系やco−Fe−3−3i系の
非晶質合金薄帯(以下リボンという)は、軟磁性に優れ
、殊にFe−B−8i系は比較的高い飽和磁束密度と商
用周波数域で極めて低い鉄損とを有することから、トラ
ンスやモーターの鉄心材料として現在用いられているけ
い素鋼板の有力な代替材料として注目されている。
For example, Fe-B-8i series and co-Fe-3-3i series amorphous alloy ribbons (hereinafter referred to as ribbons) have excellent soft magnetic properties, and Fe-B-8i series in particular have relatively high saturation magnetic flux densities. Because it has extremely low iron loss in the commercial frequency range, it is attracting attention as a promising alternative material to the silicon steel sheets currently used as core materials for transformers and motors.

かかるリボンは、従来、接着することなく単板のままで
、巻きコアや相みコアを作り、変圧器を組み上げるのを
常としていたが、一般的に云えば、リボン厚は従来使用
してきた【プい素鋼板などに比較して薄いため、積層加
工に要する工数が多くなる欠点があった。
Conventionally, such ribbons were used as a single plate without being glued, and a wound core or a mating core was made to assemble a transformer, but generally speaking, the ribbon thickness was the same as before. Because it is thinner than plain steel sheets, it has the disadvantage of requiring more man-hours for lamination.

そこで複数枚のリボンを貼り合わUることにより、積層
工数の削減と同時にリボン間の絶縁抵抗を向上させる工
夫が提案されてきた。
Therefore, it has been proposed to reduce the number of lamination steps and improve the insulation resistance between ribbons by bonding multiple ribbons together.

たとえば特開昭58−175654号公報や国際出願公
開WO36/ 05314号公報では、耐熱性接着剤に
よリリボンを接着し、積層することによって、lif&
@中焼鈍過程での接着層の消失を抑える手段を提案して
いる。
For example, in Japanese Patent Application Laid-Open No. 58-175654 and International Application Publication No. WO 36/05314, lif &
We are proposing a means to suppress the disappearance of the adhesive layer during the intermediate annealing process.

(発明が解決しようとする問題点) しかしながら上記の手段では、積層工数の削減等の利点
は有するものの、高価格の接着剤材料費や、塗布・乾燥
・接着等の余分なプロセスが必要なことから製造コスト
を押し上げる欠点があった。
(Problem to be solved by the invention) However, although the above method has the advantage of reducing the number of lamination steps, it requires high adhesive material costs and extra processes such as coating, drying, and adhesion. This had the disadvantage of increasing manufacturing costs.

殊に非晶質合金薄帯は極めて薄いため、比表面積が大き
いから、上記欠点の解決が望まれていた。
In particular, since amorphous alloy ribbons are extremely thin and have a large specific surface area, a solution to the above-mentioned drawbacks has been desired.

接着剤等の副原料を使用しない方法として温間圧接を利
用するものもあるが、この方法では積層体が極めて脆く
なるという問題があった。
There is also a method using warm pressure welding that does not use auxiliary materials such as adhesives, but this method has the problem that the laminate becomes extremely brittle.

この発明の目的は、上記した従来技術における諸問題を
解決するもので、まずこの発明においては、コストアッ
プの原因となる接着剤を使用しないことを基本どした。
The purpose of this invention is to solve the various problems in the prior art described above, and first of all, in this invention, the basic idea is not to use an adhesive which causes an increase in cost.

またリボン全体を加熱することはリボン脆化をもたらす
ので、vl施工の前提で、種々の薄板接合技術について
検討した。この発明は、かかる研究の末に開発されたも
のである。
Furthermore, since heating the entire ribbon causes the ribbon to become brittle, various thin plate bonding techniques were investigated on the premise of VL construction. This invention was developed as a result of such research.

(問題点を解決するだめの手段〉 まずこの発明の解明経緯について説明する。(Failure to solve the problem) First, the background to the elucidation of this invention will be explained.

通常非晶質合金を溶接することは高温下にざらされるの
で、非晶質状態を維持できないと考えられてきた。した
がって超音波接合のような極めて特殊で、速度の遅い溶
接手段のみがリボンの接合法とじて提案されてきた。
Normally, when welding an amorphous alloy, it is exposed to high temperatures, so it has been thought that the amorphous state cannot be maintained. Therefore, only very specific and slow welding methods, such as ultrasonic bonding, have been proposed for joining ribbons.

すなわち超音波接合は微視的にはJ!!擦溶接であるか
ら、温度上昇も局部的、限定的であり、リボンを非晶質
状態のままで接合できる。しかしながらこの方法には、
高速溶接を確保できないという欠点がある。
In other words, ultrasonic bonding is microscopically J! ! Since it is friction welding, the temperature rise is local and limited, and the ribbons can be joined while remaining in an amorphous state. However, this method has
The drawback is that high-speed welding cannot be ensured.

ところで点溶接やシーム溶接は、薄鋼板の接合法として
は極めて一般的な方法であるが、部分的とはいえ瞬間的
に′B温になるため、リボン同志の接合に用いられたこ
とはない。なおろう接のように最終的には溶融拡散させ
てしまい、非晶質状態の維持を考慮する必要のない用途
においては、結晶質金属基板への仮止めを目的として点
溶接が使われたことはある。
By the way, spot welding and seam welding are extremely common methods for joining thin steel plates, but they have never been used to join ribbons together because they instantaneously reach a temperature of 'B' even if only partially. . In addition, in applications such as soldering, where the material ultimately melts and diffuses and there is no need to consider maintaining an amorphous state, spot welding was used for temporary attachment to crystalline metal substrates. There is.

このようにこれまでは、磁気特性のような非晶質状態に
極めて敏感な特性の利用を目的とする場合は勿論のこと
、ただ単にリボンをブロック化する目的にも点溶接やシ
ーム溶接が使われたことはない。しかしながら点溶接や
シーム溶接は空部施工が可能なこと、また工業的な接合
速度を容易に確保できること等の利点を有することから
、これらの技術を利用できれば極めて有利と考えられる
わけである。
Until now, spot welding and seam welding have been used not only for the purpose of utilizing properties that are extremely sensitive to the amorphous state, such as magnetic properties, but also for the purpose of simply forming ribbons into blocks. I have never been hurt. However, since spot welding and seam welding have advantages such as being able to perform work in open spaces and easily securing industrial joining speeds, it would be considered extremely advantageous if these techniques could be used.

そこで発明者らはこれらの技術を非晶質合金薄帯の接合
に試用し、種々検討したところ、これまでの予想に反し
て、磁性の劣化なしに接合積層の可能な条件が広い領域
にわたって存在することが見出されたのである。
Therefore, the inventors tried these techniques to join amorphous alloy ribbons and conducted various studies, and found that, contrary to previous expectations, there are conditions over a wide range that allow for joining and lamination without deterioration of magnetism. It was discovered that this could be done.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、複数枚の非晶質合金薄帯を点溶接
またはシーム溶接により接合してなる非晶質合金薄帯W
4層板である。
That is, the present invention provides an amorphous alloy ribbon W formed by joining a plurality of amorphous alloy ribbons by spot welding or seam welding.
It is a 4-layer board.

以下この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明の基礎となった実験結果について説明する
First, the experimental results that formed the basis of this invention will be explained.

F e76 Bll S ’10 cmの組成(原子比
率)になる合金溶湯から、単ロール法により、幅:50
mm、板厚:24μlのリボンを作製した。
From a molten alloy with a composition (atomic ratio) of F e76 Bll S '10 cm, a width: 50
A ribbon of mm and plate thickness: 24 μl was produced.

このリボンに、200 eの磁場印加の下に380℃で
1時間の磁場焼鈍を施したところ、鉄@W□815゜は
0.11 W/kgであった。
When this ribbon was subjected to magnetic field annealing at 380° C. for 1 hour under the application of a magnetic field of 200 e, the iron @W□815° was 0.11 W/kg.

次に鋳造したままのリボンを第1図に示したパターンで
点溶接(加圧カニ4kg、溶接出カニ3WS)したとこ
ろ、溶接点部分に孔が開くこともなく、2枚のリボンを
良好に接合することができ、1枚の積層板として取扱う
ことができた。次いで単板のリボンと同様に、20Qe
の磁場下で380℃、1時間の焼鈍を施し、そのまま冷
却したところ、鉄損Wrs15oはo、ii W/kg
であり、接合前ト同シであった。
Next, when we spot-welded the as-cast ribbons in the pattern shown in Figure 1 (4 kg of pressurized crab, 3 WS of welded crab), the two ribbons were bonded together well without any holes at the welding points. It was possible to join them and handle them as a single laminate. Next, as with the veneer ribbon, 20Qe
When annealed for 1 hour at 380°C under a magnetic field of
and was the same as before joining.

さらに3枚の鋳造したままのリボンを用いて、第1図の
パターンで点溶接(加圧力6kg、溶接出力5WS)し
たところ、やはり溶接点部分が開孔することなしに、3
枚のリボンを接合することができ、1枚の積層板として
取扱え、平均板厚は72μmであった。次いで、200
 eの磁場下で380℃、1時間の焼鈍を施し、そのま
ま冷却したところ、鉄損W□375oは0.13 W/
kgであった。これは単板リボンの鉄損より若干増加し
ているが、3枚のリボンを接合することなく、単に重ね
て測定した場合の鉄損と同一であった。
Furthermore, when spot welding (pressure force 6 kg, welding output 5 WS) was performed using three as-cast ribbons in the pattern shown in Fig. 1, no holes were formed at the welding points.
It was possible to join two ribbons and handle them as one laminate, and the average thickness was 72 μm. Then 200
When annealed for 1 hour at 380°C under a magnetic field of e and then cooled, the iron loss W□375o was 0.13 W/
It was kg. Although this was slightly higher than the iron loss of a single-plate ribbon, it was the same as the iron loss when measuring three ribbons simply stacked on top of each other without joining them.

また2枚の鋳造したままのリボンを用いて、第2図に示
すパターンでシーム溶接(加圧力15kg、連続通電)
したところ、溶接部分が開孔することなしに、2枚のリ
ボンを接合でき、1枚のgI層板としで取扱うことがで
きた。次いで前記と同様の磁場焼鈍を施したところ、鉄
損W13/ioは0.12 W/に8であった。
In addition, using two as-cast ribbons, seam welding is performed in the pattern shown in Figure 2 (pressure force 15 kg, continuous energization).
As a result, the two ribbons could be joined without creating holes in the welded area, and could be handled as one gI laminate. Then, when the same magnetic field annealing as above was performed, the iron loss W13/io was 0.12 W/8.

以上の実験データからも明らかなように、この発明に従
う点溶接もしくはシーム溶接によって複数枚の非晶質合
金薄帯をほとんど磁性の劣化なしに積層接合することが
できたのである。
As is clear from the above experimental data, by spot welding or seam welding according to the present invention, a plurality of amorphous alloy ribbons could be laminated and joined with almost no deterioration of magnetism.

以上、磁気的用途への応用を考えた実験のみを述べでき
たが、この発明により非晶質合金薄帯の積層厚板化は他
の用途においても極めて有利に適用することができる。
Although only experiments considered for application to magnetic applications have been described above, the lamination and thickening of amorphous alloy ribbons according to the present invention can be extremely advantageously applied to other applications as well.

例えば、ろう接材料として非晶質合金を用いる場合、単
板のリボンでは所要量の確保が困難なため、複数枚重ね
て使用しなければならないことがしばしばある。その際
リボン間のずれが生じないように並べねばならないので
、細心の注意を払う必要があった。また接着剤による積
層リボンの場合には、熱処理時に、熱分゛解ガスの発生
があり、接合強度を顕著に損なうことは容易に理解でき
ることである。
For example, when using an amorphous alloy as a soldering material, it is difficult to secure the required amount with a single ribbon, so it is often necessary to use multiple ribbons in layers. At this time, the ribbons had to be lined up so that they would not be misaligned, so great care had to be taken. Furthermore, it is easy to understand that in the case of laminated ribbons made of adhesive, thermal decomposition gas is generated during heat treatment, which significantly impairs the bonding strength.

これに対し、この′発明で提案する点溶接、シーム溶接
の場合には、接着剤のような異物の共存がないので、高
温熱処理時においても揮発ガス等の発生がないから、溶
接本来の接合強度に到達できることになる。
On the other hand, in the case of spot welding and seam welding proposed in this invention, there is no coexistence of foreign substances such as adhesives, so no volatile gas is generated even during high-temperature heat treatment. strength can be reached.

また複合材料内の補強材としてリボンを使用する場合に
おいても、所要強度を確保するために必要な積層回数を
低減できる利点がある。
Further, when using a ribbon as a reinforcing material in a composite material, there is an advantage that the number of times of lamination required to ensure the required strength can be reduced.

(実施例) 実施例1 pe79s12sr8c、 ノ組a (Il子比率) 
ニする合金溶湯を、スリット状ノズルから高速で回転す
る単ロール直上に射出して、幅:50n、厚み21μm
のリボンを作製した。次いで第1図に示したパターンで
2枚のリボンを点溶接した。点溶接時の加圧力は6kg
、溶接出力は3W−8としたところ、孔のあくこともな
く接合できた。
(Example) Example 1 pe79s12sr8c, group a (Il child ratio)
The molten alloy is injected from a slit-shaped nozzle directly onto a single roll that rotates at high speed, and the width is 50n and the thickness is 21μm.
A ribbon was made. The two ribbons were then spot welded in the pattern shown in FIG. Pressure force during spot welding is 6kg
When the welding power was set to 3W-8, welding was possible without any holes.

このNRリボンを20Q eの磁場下で370℃、2時
間焼鈍し、そのまま冷却したところ、鉄損W1815゜
は0,10 W/kgであり、また焼鈍後も接合部分が
はく離することはなかった。
When this NR ribbon was annealed at 370°C for 2 hours under a 20Q e magnetic field and then cooled, the iron loss W1815° was 0.10 W/kg, and the joint did not separate even after annealing. .

実施例2 Fe78B、。5i12の組成になる合金溶湯を、スリ
ット状ノズルから高速で回転する単ロール直上に射出し
て、幅: 50n 、厚み:19μmのリボンを作製し
た。次いで第1図に示したパータンで3枚のリボンを点
溶接した。点溶接時の加圧力を6誌、溶接出力5W−8
としたところ、溶接点部分に孔のあくこともなく接合す
ることができた。この積層リボンを20Q cの磁場下
で380°℃、1時間焼鈍したが、鉄損W13150は
O,ii W/kgであり、焼鈍後も接合部分がはく離
することはなかった。
Example 2 Fe78B. A molten alloy having a composition of 5i12 was injected from a slit-shaped nozzle directly onto a single roll rotating at high speed to produce a ribbon having a width of 50 nm and a thickness of 19 μm. Next, three ribbons were spot welded in the pattern shown in FIG. Pressure force during spot welding: 6, welding output: 5W-8
As a result, we were able to join the parts without creating any holes at the welding points. This laminated ribbon was annealed at 380° C. for 1 hour under a magnetic field of 20 Q c, but the iron loss W13150 was O.ii W/kg, and the bonded portion did not separate even after annealing.

実施例3 点溶接時の加圧力を6 kg、溶接出力を10W −3
とする他は実施例1と同様に処理した。溶接点の約半数
に小さな孔があいたが、接合できた。鉄損W□37.。
Example 3 Pressure force during spot welding was 6 kg, welding output was 10 W -3
The treatment was carried out in the same manner as in Example 1, except that. There were small holes in about half of the weld points, but the joint was successful. Iron loss W□37. .

はo、11 W/kgであり、また焼鈍後も接合点のは
く離は生じなかった。
o, 11 W/kg, and no peeling occurred at the bonding point even after annealing.

実施例4 N;□5Cr、Fe、Si、B3の組成(重量比率)に
なる合金溶湯を、スリット状ノズルから高速で回転する
銅合金製冷却ロールの直上に射出して、幅:5011厚
み45μmのリボンを作製した。
Example 4 A molten alloy having a composition (weight ratio) of N; A ribbon was made.

次いで第2図に示したパターンで2枚のリボンをシーム
溶接した。シーム溶接時の加圧力は2(1+3で、連続
通電で溶接した。
The two ribbons were then seam welded in the pattern shown in FIG. The pressure force during seam welding was 2 (1+3), and welding was performed with continuous current application.

これにより1枚の積層板としてせん断加工等に耐えるこ
とができた。したがってステンレス鋼やNi基合金のろ
う援用材料としてJISM格BNi−IA相当品になっ
た。
This made it possible to withstand shearing and the like as a single laminate. Therefore, it has become equivalent to JISM grade BNi-IA as a brazing material for stainless steel and Ni-based alloys.

比較例1 実施例2のFe78B1oSi02リボンを接合するこ
となく 2000の磁場下で380℃、1時間焼鈍した
ところ・単板の鉄損W1:Jrro ’よ0・09W/
bであり、3枚重ね測定のW工、7.。は0,10 W
/kgであった。
Comparative Example 1 The Fe78B1oSi02 ribbon of Example 2 was annealed at 380°C for 1 hour under a magnetic field of 2000° C. without joining. Iron loss W1 of single plate: Jrro' 0.09 W/
b, W process of three-layer measurement, 7. . is 0.10W
/kg.

(発明の効果) 以上述べたようにこの発明によれば、複数枚の非晶質合
金薄帯を、その特性劣化を伴うことなしに、容易かつ迅
速に積層接合することができ、従ってたとえば電カドラ
ンスなどの鉄心組立て加工における工数削減に極めて有
利に適用することができる。
(Effects of the Invention) As described above, according to the present invention, a plurality of amorphous alloy ribbons can be laminated and bonded easily and quickly without deterioration of their properties. It can be extremely advantageously applied to reduce man-hours in core assembly processing such as quadrance.

また磁気的用途に限らず、非晶質合金薄帯の厚板化で利
用範囲の拡大できる分野にはこの発明を有利に適用する
ことができる。
Furthermore, the present invention can be advantageously applied not only to magnetic applications but also to fields where the range of use can be expanded by increasing the thickness of the amorphous alloy ribbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明における点溶接パターンの一例を示
す図、 第2図は、この発明におけるシーム溶接パターンの一例
を示す図である。
FIG. 1 is a diagram showing an example of a spot welding pattern in the present invention, and FIG. 2 is a diagram showing an example of a seam welding pattern in the present invention.

Claims (1)

【特許請求の範囲】 1、複数枚の非晶質合金薄帯を点溶接またはシーム溶接
により接合してなる非晶質合金薄帯積層板。 2、非晶質合金薄帯が、磁性合金である特許請求の範囲
第1項記載の積層板。
[Claims] 1. An amorphous alloy ribbon laminate formed by joining a plurality of amorphous alloy ribbons by spot welding or seam welding. 2. The laminate according to claim 1, wherein the amorphous alloy ribbon is a magnetic alloy.
JP5038687A 1987-03-06 1987-03-06 Amorphous alloy sheet band laminated plate Pending JPS63220984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5038687A JPS63220984A (en) 1987-03-06 1987-03-06 Amorphous alloy sheet band laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5038687A JPS63220984A (en) 1987-03-06 1987-03-06 Amorphous alloy sheet band laminated plate

Publications (1)

Publication Number Publication Date
JPS63220984A true JPS63220984A (en) 1988-09-14

Family

ID=12857428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5038687A Pending JPS63220984A (en) 1987-03-06 1987-03-06 Amorphous alloy sheet band laminated plate

Country Status (1)

Country Link
JP (1) JPS63220984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183838A (en) * 1998-11-06 2010-08-19 Metglas Inc Bulk amorphous metal magnetic component for electric motor
JP2011160655A (en) * 1999-12-23 2011-08-18 Metglas Inc Bulk amorphous metal magnetic member for electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183838A (en) * 1998-11-06 2010-08-19 Metglas Inc Bulk amorphous metal magnetic component for electric motor
JP2011160655A (en) * 1999-12-23 2011-08-18 Metglas Inc Bulk amorphous metal magnetic member for electric motor

Similar Documents

Publication Publication Date Title
US3261724A (en) Stainless steel clad aluminum and methods of making same
US4565746A (en) Iron core for a stationary induction apparatus
JPS6411392B2 (en)
JPS6326205A (en) Production of steel sheet having excellent weatherability and sea water resistance
JP4591900B2 (en) Method for producing Ti-Al intermetallic compound plate
JPS63220984A (en) Amorphous alloy sheet band laminated plate
JPH0554423B2 (en)
JPS6018205A (en) Manufacture of titanium-clad steel material
JPS6142498A (en) Production of aluminum-stainless steel clad plate for forming
JPH0313283A (en) Manufacturing method for diffusion bonded clad plate using atmospheric pressure
JPH0234288A (en) Manufacturing method of thin plate cladding
JPH05161985A (en) Manufacture of clad electric steel sheet
JPH0561031B2 (en)
JPH028836B2 (en)
JPS63115313A (en) Manufacture of core using amorphous magnetic alloy thin strip laminated plate
KR101279113B1 (en) A manufacturing method of clad plate using aluminum alloy binder and the clad plat obtained using the same
JPH02205277A (en) Method for manufacturing titanium clad thin steel sheets using copper or copper alloy as an intermediate welding material
JPS62109639A (en) Amorphous alloy laminated board
JPH0442081B2 (en)
JPH0788563B2 (en) Manufacturing method of high aluminum content ferritic stainless steel
JPH067969A (en) Manufacture of clad metallic plate excellent in forming property and joining strength
KR20250075631A (en) Homogenization of heterogeneous foils for light alloy metal parts
JPH06238468A (en) Joined structural body and its joining method
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JPS58179560A (en) Production of composite metallic material