[go: up one dir, main page]

JPS6322069B2 - - Google Patents

Info

Publication number
JPS6322069B2
JPS6322069B2 JP54147322A JP14732279A JPS6322069B2 JP S6322069 B2 JPS6322069 B2 JP S6322069B2 JP 54147322 A JP54147322 A JP 54147322A JP 14732279 A JP14732279 A JP 14732279A JP S6322069 B2 JPS6322069 B2 JP S6322069B2
Authority
JP
Japan
Prior art keywords
type layer
film
layer
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54147322A
Other languages
Japanese (ja)
Other versions
JPS5670657A (en
Inventor
Shigeharu Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP14732279A priority Critical patent/JPS5670657A/en
Publication of JPS5670657A publication Critical patent/JPS5670657A/en
Publication of JPS6322069B2 publication Critical patent/JPS6322069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 この発明は、MOSキヤパシタに情報信号を蓄
積するMOS型ダイナミツクRAM等の半導体記憶
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device such as a MOS type dynamic RAM that stores information signals in a MOS capacitor.

半導体記憶装置の大容量化は微細加工技術の進
歩と共に急速に進んでいる。しかし、大容量化に
伴つて新たな問題も出てきている。例えば、メモ
リセルの増大とともに不良ビツトによる不良確率
が増大し歩留り低下を招いていること、メモリセ
ルの面積縮少により検出信号レベルが低下して不
安定動作を招き動作余裕度が低下していること、
等である。この問題を第1図を用いて少し詳しく
説明する。第1図は、1トランジスタ/1キヤパ
シタ構成のMOS型ダイナミツクRAMのメモリセ
ル部分を示したものである。即ち、P型Si基板1
の素子分離領域に例えば選択酸化法により厚さ約
1μmのフイールド酸化膜2が形成され、素子領
域には第1ゲート酸化膜3を挾んで第1層多結晶
シリコン膜4とn+型層5によりMOSキヤパシタ
が形成されている。そして、第1層多結晶シリコ
ン膜4に一部重なるように第2ゲート酸化膜6を
介してMOSトランジスタのゲート電極となる第
2層多結晶シリコン膜7が形成され、この第2層
多結晶シリコン膜7をマスクとしてMOSトラン
ジスタのドレインを兼ねるn+型層からなるビツ
ト線8が拡散形成され、更に全体をCVD法によ
るシリコン酸化膜9でおおい、コンタクトホール
をあけて第2層多結晶シリコン膜7にコンタクト
するAl膜からなるワード線10が配設されてい
る。MOSキヤパシタの一方の電極となる基板領
域のn+型層5は例えばイオン注入法により、濃
度1016/cm3、深さ5000Åに形成される。また図で
は省略したが、フイールド酸化膜2直下には、や
はりイオン注入法等により反点防止層としてp+
型層が形成されるのが普通である。
The capacity of semiconductor memory devices is increasing rapidly along with advances in microfabrication technology. However, new problems have arisen as capacity increases. For example, as the number of memory cells increases, the probability of failure due to defective bits increases, leading to a decrease in yield, and as the area of memory cells decreases, the detection signal level decreases, leading to unstable operation and decreasing operating margin. thing,
etc. This problem will be explained in a little more detail using FIG. FIG. 1 shows a memory cell portion of a MOS type dynamic RAM having a one transistor/one capacitor configuration. That is, P-type Si substrate 1
For example, selective oxidation is applied to the device isolation region to a thickness of approximately
A 1 μm field oxide film 2 is formed, and a MOS capacitor is formed in the element region by a first layer polycrystalline silicon film 4 and an n + type layer 5 with a first gate oxide film 3 sandwiched therebetween. Then, a second layer polycrystalline silicon film 7 that becomes a gate electrode of a MOS transistor is formed via a second gate oxide film 6 so as to partially overlap the first layer polycrystalline silicon film 4, and this second layer polycrystalline silicon film 7 is formed to become a gate electrode of a MOS transistor. Using the silicon film 7 as a mask, a bit line 8 consisting of an n + type layer which also serves as the drain of the MOS transistor is formed by diffusion, and the entire structure is further covered with a silicon oxide film 9 by CVD method, and a contact hole is made to form a second layer of polycrystalline silicon. A word line 10 made of an Al film and in contact with the film 7 is provided. The n + -type layer 5 in the substrate region, which will become one electrode of the MOS capacitor, is formed to have a concentration of 10 16 /cm 3 and a depth of 5000 Å by, for example, ion implantation. Although not shown in the figure, a p +
A mold layer is usually formed.

このメモリの動作を説明すると、弾常基板1に
はビツト線8と基板1との間の接合容量を減少さ
れるため逆バイアスとして例えば−5Vの負電圧
が印加されている。また第1層多結晶シリコン膜
4には正の電圧が常時印加されている。この正の
電圧は基板1表面を反転させるに足る電圧である
が、電源電圧の制限、ゲート酸化膜の信頼性の点
から、基板表面を低電圧で容易にn型化するため
に図示のようにn+型層5が予め形成されている。
メモリセルへの書込みは、ワード線10に正電圧
を印加してMOSトランジスタを導通させること
により行われる。“1”書込みのときはビツト線
8に正電圧が印加されてn+型層5の電位は高レ
ベルVSHとなり、“0”書込みのときはビツト線
8に通常接地電位が印加されてn+型層5の電位
は低レベルVSLとなる。メモリセルの情報読出し
は、ビツト線8を正電位に予め保つた状態でワー
ド線10に正電圧を印加してMOSトランジスタ
を導通させることにより行われる。このときビツ
ト線8の電位はメモリセルのn+型層5の電位に
応じた値をとり、“1”を読出したときと“0”
を読出したときのビツト線8の電位差ΔVは ΔV=1/1+CR(VSH−VSL) となる。ここに、CRはビツト線8の容量CBとメ
モリセルの容量CSの比、即ちCR=CB/CSであり、
メモリセルの容量CSはn+型層5と第1層多結晶
シリコン膜4との間の容量Coxとn+型層5と基板
1との間の接合容量Cjnの和、即ちCs=Cox+
Cjnである。このΔVに比例した値がセンスアン
プの入力に相当するためには、ΔVは可能な限り
大きくすることが必要である。しかし、従来のも
のでは、n+型層5の電位は、n+型層5と基板1
の間の空乏層で発生する熱生起キヤリアやアルフ
ア粒子により基板1中に生成されたキヤリアが
n+型層5に拡散流入することにより低下する。
そしてVSLに比べてVSHの低下の方が大きいため、
(VSH−VSL)は時間とともに低下する。通常この
書込み電位低下を補うためリフレツシユ動作が加
えられるが、熱生起キヤリアは必ずしも基板1に
おいて均一に生じるとは限らず、メモリの大容量
化とともに(VSH−VSL)が異常に低下した不良
メモリセルの発生確率が大きくなる。
To explain the operation of this memory, a negative voltage of, for example, -5V is applied to the elastic substrate 1 as a reverse bias in order to reduce the junction capacitance between the bit line 8 and the substrate 1. Further, a positive voltage is always applied to the first layer polycrystalline silicon film 4. This positive voltage is sufficient to invert the surface of the substrate 1, but due to limitations on the power supply voltage and reliability of the gate oxide film, in order to easily convert the substrate surface to an n-type with a low voltage, the method shown in the figure is used. An n + type layer 5 is formed in advance.
Writing to the memory cell is performed by applying a positive voltage to the word line 10 to make the MOS transistor conductive. When writing "1", a positive voltage is applied to the bit line 8, and the potential of the n + type layer 5 becomes a high level VSH ; when writing "0", a normal ground potential is applied to the bit line 8, and the potential of the n + type layer 5 becomes high level VSH. The potential of the + type layer 5 becomes a low level VSL . Information reading from the memory cell is performed by applying a positive voltage to the word line 10 while keeping the bit line 8 at a positive potential in advance to make the MOS transistor conductive. At this time, the potential of the bit line 8 takes a value corresponding to the potential of the n + type layer 5 of the memory cell, and is different from when "1" is read and when "0" is read.
The potential difference ΔV on the bit line 8 when ΔV is read out is ΔV=1/1+C R (V SH −V SL ). Here, C R is the ratio of the capacitance C B of the bit line 8 to the capacitance C S of the memory cell, that is, C R = C B /C S ,
The capacitance C S of the memory cell is the sum of the capacitance Cox between the n + type layer 5 and the first layer polycrystalline silicon film 4 and the junction capacitance Cjn between the n + type layer 5 and the substrate 1, that is, Cs = Cox +
It is Cjn. In order for a value proportional to this ΔV to correspond to the input of the sense amplifier, ΔV needs to be as large as possible. However, in the conventional method, the potential of the n + type layer 5 is the same as that of the n + type layer 5 and the substrate 1.
The carriers generated in the substrate 1 by thermally generated carriers and alpha particles generated in the depletion layer between
It decreases due to diffusion and inflow into the n + type layer 5.
And since the drop in V SH is greater than that in V SL ,
(V SH −V SL ) decreases with time. Normally, a refresh operation is added to compensate for this drop in write potential, but thermally generated carriers do not necessarily occur uniformly on the substrate 1, and as memory capacity increases, (V SH −V SL ) becomes abnormally low. The probability of memory cell occurrence increases.

また従来の構造では、例えば第1ゲート酸化膜
3膜厚を650Åとすると、Cox/Cjn10となり、
従つてCsCoxとなり、メモリセル容量Csは殆
んどn+型層5と第1層多結晶シリコン膜4との
間のいわゆるMOSキヤパシタ容量で決まつてい
る。そして、前述の式のCRは数10の値をとり、
これを小さくすることが困難であるため、メモリ
の不安定動作あるいは動作余裕の低下の原因とな
つていた。
In addition, in the conventional structure, for example, if the thickness of the first gate oxide film 3 is 650 Å, Cox/Cjn10,
Therefore, the memory cell capacitance Cs is determined by the so-called MOS capacitor capacitance between the n + type layer 5 and the first layer polycrystalline silicon film 4. Then, C R in the above formula takes the value of several 10,
Since it is difficult to reduce this, it has been a cause of unstable operation of the memory or a decrease in operating margin.

この発明は大容量化、素子の微細化に伴う上述
の如き問題を解決した半導体記憶装置の製造方法
を提供するものである。
The present invention provides a method for manufacturing a semiconductor memory device that solves the above-mentioned problems associated with increased capacity and miniaturization of elements.

この発明は、ダイナミツクRAMのようにMOS
キヤパシタに情報信号を蓄積するようにしたメモ
リセルを半導体基板に集積して構成される半導体
記憶装置において、MOSキヤパシタを、半導体
基板表面に基板と反対導電型層を有し、この基板
表面にキヤパシタ絶縁膜を介してキヤパシタ電極
が設けられ、かつ前記反対導電型層下部に埋込み
絶縁膜を有する構造とし、この様なキヤパシタ構
造を形成するに当たつて、その埋込み絶縁膜をこ
の上の反対導電型層に対して自己整合的にイオン
注入により形成することを特徴としている。
This invention uses MOS like dynamic RAM.
In a semiconductor memory device configured by integrating memory cells on a semiconductor substrate, each of which stores an information signal in a capacitor, a MOS capacitor has a layer of conductivity type opposite to that of the substrate on the surface of the semiconductor substrate, and a capacitor on the surface of this substrate. A capacitor electrode is provided through an insulating film, and a buried insulating film is provided below the opposite conductivity type layer. When forming such a capacitor structure, the buried insulating film is provided with an opposite conductivity type layer above the opposite conductivity type layer. It is characterized by being formed by ion implantation in a self-aligned manner with respect to the mold layer.

この発明の一実施例のメモリセル構造を第2図
に示す。第1図と異なる点は、MOSキヤパシタ
の一方の電極となる基板領域のn+型層26下に
埋込み絶縁膜25を設けていることである。この
構造を得る具体的な製造工程を第3図a〜fを参
照して以下に説明する。まず、比抵抗10Ω−cmの
p型Si基板21の素子形成領域に厚さ500Åのシ
リコン酸化膜22と厚さ5000Åのシリコン窒化膜
23を積層した耐酸化性マスクを形成し、水蒸気
雰囲気中、1000℃で6時間酸化して厚さ約1μm
のフイールド酸化膜24を形成するa。フイール
ド酸化膜24下には、酸化前に表面反転防止のた
めに例えばボロンイオン注入を行つてp+型層を
形成してもよい。この後、窒化膜23のMOSキ
ヤパシタ形成領域を選択的に除去し、残りの窒化
膜23をマスクとして加速電圧190KV、ドーズ
量3×1016cm-2で窒素をイオン注入し、続いて加
速電圧80KV、ドーズ量5×1012cm-2で燐をイオ
ン注入し、シリコン窒化膜からなる埋込み絶縁膜
25とn+型層26を形成するb。次に残りの窒
化膜23および酸化膜22を除去して、乾燥酸素
雰囲気中、1000℃で約1時間の熱化を行つて第1
ゲート酸化膜27を形成し、その上にCVD法に
より燐をドープした第1層多結晶シリコン膜28
を堆積するc。第1ゲート酸化膜27の熱酸化の
工程で埋込み絶縁膜25は良好な絶縁膜となる。
次に第1層多結晶シリコン膜28を選択エツチン
グしてMOSキヤパシタ電極を形成し、これをマ
スクとして第1ゲート酸化膜27をエツチングし
てMOSトランジスタ形成領域の基板表面を露出
させるd。そして次に水蒸気雰囲気中、850℃で
約100分の熱酸化を行つて、基板21上で約1100
Å、第1層結晶シリコン膜28上で約4000Åとな
る第2ゲート酸化膜29を形成し、その上に
CVD法により第2層多結晶シリコン膜30を堆
積するe。そしてこの第2層多結晶シリコン膜3
0をパターニングしてMOSトランジスタのゲー
ト電極を形成し、これをマスクとして第2ゲート
酸化膜29をエツチングして、例えば砒素拡散を
行つてn+型層のドレイン兼ビツト線31を形成
すると同時に第2層多結晶シリコン膜30を低抵
抗化するf。この後、第2図に示すように全面に
CVD法によりシリコン酸化膜32を堆積し、コ
ンタクトホールをあけてAl膜の蒸着、パターニ
ングを行つてワード線33を形成して完成する。
FIG. 2 shows a memory cell structure according to an embodiment of the present invention. The difference from FIG. 1 is that a buried insulating film 25 is provided under the n + type layer 26 in the substrate region that becomes one electrode of the MOS capacitor. A specific manufacturing process for obtaining this structure will be described below with reference to FIGS. 3a to 3f. First, an oxidation-resistant mask is formed by laminating a silicon oxide film 22 with a thickness of 500 Å and a silicon nitride film 23 with a thickness of 5000 Å in the element formation region of a p-type Si substrate 21 with a resistivity of 10 Ω-cm, and then Oxidized at 1000℃ for 6 hours to a thickness of approximately 1μm
a to form a field oxide film 24; A p + -type layer may be formed under the field oxide film 24 by implanting boron ions, for example, to prevent surface inversion before oxidation. After this, the MOS capacitor forming region of the nitride film 23 is selectively removed, and nitrogen ions are implanted at an acceleration voltage of 190 KV and a dose of 3×10 16 cm -2 using the remaining nitride film 23 as a mask. Phosphorus is ion-implanted at 80 KV and at a dose of 5×10 12 cm −2 to form a buried insulating film 25 made of a silicon nitride film and an n + type layer 26 b. Next, the remaining nitride film 23 and oxide film 22 are removed, and thermalization is performed at 1000°C for about 1 hour in a dry oxygen atmosphere.
A gate oxide film 27 is formed, and a first layer polycrystalline silicon film 28 doped with phosphorus by CVD method is formed thereon.
deposit c. In the step of thermally oxidizing the first gate oxide film 27, the buried insulating film 25 becomes a good insulating film.
Next, the first layer polycrystalline silicon film 28 is selectively etched to form a MOS capacitor electrode, and using this as a mask, the first gate oxide film 27 is etched to expose the substrate surface in the MOS transistor forming region. Next, thermal oxidation is performed at 850° C. for about 100 minutes in a steam atmosphere, and the substrate 21 is heated to about 1100° C.
A second gate oxide film 29 with a thickness of about 4000 Å is formed on the first layer crystalline silicon film 28, and then
A second layer polycrystalline silicon film 30 is deposited by CVD method. And this second layer polycrystalline silicon film 3
0 is patterned to form a gate electrode of a MOS transistor, and using this as a mask, the second gate oxide film 29 is etched and, for example, arsenic is diffused to form a drain/bit line 31 of the n + type layer. f to reduce the resistance of the two-layer polycrystalline silicon film 30; After this, the entire surface is covered as shown in Figure 2.
A silicon oxide film 32 is deposited by the CVD method, a contact hole is opened, and an Al film is deposited and patterned to form a word line 33, thereby completing the process.

このように構成されたメモリセルの書込み、読
出し動作は従来のものと変りないので説明を省略
する。
The write and read operations of the memory cell configured in this manner are the same as those of the prior art, and therefore their explanation will be omitted.

この実施例によれば、n+型層26と基板1の
間が埋込み絶縁膜25により分離されているた
め、従来のようにp−n接合部の空乏層での熱生
成キヤリアがなく、またアルフア粒子による基板
内での生成キヤリアがn+型層26に流入するこ
ともなく、n+型層26の高レベルVSHの低下がな
く、従つて不良メモリセルの発生確率は大幅に低
下する。特に埋込み絶縁膜25がシリコン窒化膜
の場合、リーク電流が少なく絶縁特性が良好であ
り、その効果は大きい。そしてこの実施例では、
n+型層26のイオン注入用マスクをそのまま用
いて、イオンン注入により、n+型層26に対し
て自己整合的に埋込み絶縁膜25を形成すること
ができる。即ち複雑な工程を用いることなく、埋
込絶縁膜構造の容量の大きいMOSキヤパシタを
得ることができる。
According to this embodiment, since the n + type layer 26 and the substrate 1 are separated by the buried insulating film 25, there is no thermally generated carrier in the depletion layer of the p-n junction unlike in the conventional case. Carriers generated within the substrate by alpha particles do not flow into the n + type layer 26, and the high level V SH of the n + type layer 26 does not decrease, so the probability of occurrence of defective memory cells is significantly reduced. . In particular, when the buried insulating film 25 is a silicon nitride film, the leakage current is small and the insulation properties are good, and the effect is large. And in this example,
The buried insulating film 25 can be formed in a self-aligned manner with respect to the n + type layer 26 by ion implantation using the ion implantation mask for the n + type layer 26 as is. That is, a MOS capacitor with a buried insulating film structure and a large capacitance can be obtained without using complicated steps.

またこの実施例によれば、メモリセルの容量
Csはn+型層26と第1層多結晶シリコン膜28
との間の第1ゲート酸化膜27の容量Coxと、n+
型層26と基板1との間の埋込み絶縁膜25の容
量CIONとの和となり、従来に比べて数倍大きく、
従つてCR=CB/CSは数倍小さくなる。ちなみに、
上述の製造条件では、埋込み絶縁膜25は基板表
面から深さ約5000Åのところに約1000Åの厚さで
形成されるシリコン窒化膜であるから、Cox/
CION=1/1.3である。従つて、ビツト線31への
“1”、“0”の出力レベル差ΔVは従来の数倍大
きくなり、それだけセンスアンプへの入力が大き
くなつてメモリの動作余裕が大幅に向上する。
Also, according to this embodiment, the capacity of the memory cell is
Cs is the n + type layer 26 and the first layer polycrystalline silicon film 28
and the capacitance Cox of the first gate oxide film 27 between n +
It is the sum of the capacitance C ION of the buried insulating film 25 between the mold layer 26 and the substrate 1, which is several times larger than the conventional one,
Therefore, C R =C B /C S becomes several times smaller. By the way,
Under the above manufacturing conditions, the buried insulating film 25 is a silicon nitride film formed at a depth of about 5000 Å from the substrate surface to a thickness of about 1000 Å.
C ION =1/1.3. Therefore, the output level difference .DELTA.V between "1" and "0" to the bit line 31 becomes several times larger than in the conventional case, and the input to the sense amplifier increases accordingly, greatly improving the operating margin of the memory.

なお、実施例では窒素イオン注入によりシリコ
ン窒化膜からなる埋込み絶縁膜を設けたが、例え
ば酸素イオンを注入してシリコン酸化膜の形で埋
込み絶縁膜を形成してもよい。また埋込み絶縁膜
25を形成するためのイオン注入工程とn+型層
26を形成するためのイオン注入工程を逆にし、
あるいはn+型層26のイオン注入を第1ゲート
酸化膜27の形成後に行う等、製造工程は種々変
更実施できる。更に、以上ではMOSダイナミツ
クRAMを説明したが、MOSスタテイツクRAM
等、MOSキヤパシタを用いて情報信号を蓄積す
る形式のメモリにもこの発明を適用して同様の効
果が得られる。
In the embodiment, the buried insulating film made of a silicon nitride film was provided by nitrogen ion implantation, but the buried insulating film may be formed in the form of a silicon oxide film by, for example, implanting oxygen ions. Also, the ion implantation process for forming the buried insulating film 25 and the ion implantation process for forming the n + type layer 26 are reversed,
Alternatively, the manufacturing process can be modified in various ways, such as performing ion implantation of the n + type layer 26 after forming the first gate oxide film 27. Furthermore, although MOS dynamic RAM has been explained above, MOS static RAM
Similar effects can be obtained by applying the present invention to a type of memory that stores information signals using MOS capacitors.

以上説明したようにこの発明によれば、情報電
荷を蓄積するMOSキヤパシタの一方の電極とな
る基板の反対導電型層下部にこれと自己整合され
た埋込み絶縁膜をイオン注入法により形成するこ
とによつて、素子の微細化と大容量化に伴う不良
メモリセルの発生を防止し、動作余裕を大幅に向
上させた半導体記憶装置を、簡単な工程で製造し
て提供することができる。
As explained above, according to the present invention, a buried insulating film that is self-aligned with the opposite conductivity type layer of the substrate, which becomes one electrode of the MOS capacitor that stores information charges, is formed by ion implantation. Therefore, it is possible to prevent the occurrence of defective memory cells due to the miniaturization of elements and increase in capacity, and to provide a semiconductor memory device that has significantly improved operating margins and is manufactured using a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOSダイナミツクRAMのメモ
リセルを示す模式的断面図、第2図はこの発明の
一実施例のMOSダイナミツクRAMにおけるメモ
リセルを示す模式的断面図、第3図a〜fはその
製造工程断面図である。 21……p型Si基板、24……フイールド酸化
膜、25……埋込み絶縁膜(シリコン窒化膜)、
26……n+型層、27……第1ゲート酸化膜、
28……第1層多結晶シリコン膜、29……第2
ゲート酸化膜、30……第2層多結晶シリコン
膜、31……ビツト線(n+型層)、32……シリ
コン酸化膜、33……ワード線(Al膜)。
FIG. 1 is a schematic sectional view showing a memory cell in a conventional MOS dynamic RAM, FIG. 2 is a schematic sectional view showing a memory cell in a MOS dynamic RAM according to an embodiment of the present invention, and FIGS. It is a sectional view of the manufacturing process. 21... p-type Si substrate, 24... field oxide film, 25... buried insulating film (silicon nitride film),
26...n + type layer, 27... first gate oxide film,
28...First layer polycrystalline silicon film, 29...Second layer
Gate oxide film, 30... Second layer polycrystalline silicon film, 31... Bit line (n + type layer), 32... Silicon oxide film, 33... Word line (Al film).

Claims (1)

【特許請求の範囲】[Claims] 1 MOSキヤパシタに情報電荷を蓄積するよう
にしたメモリセルを半導体基板に集積して構成さ
れる半導体記憶装置を製造するに際し、前記
MOSキヤパシタの形成工程は、前記半導体基板
の表面に反対導電型層を形成する工程と、前記反
対導電型層の下部にこれと自己整合的にイオン注
入法により埋込み絶縁膜を形成する工程と、前記
基板表面にキヤパシタ絶縁膜を介してキヤパシタ
電極を形成する工程とを有することを特徴とする
半導体記憶装置の製造方法。
1. When manufacturing a semiconductor memory device configured by integrating memory cells in which information charges are stored in MOS capacitors on a semiconductor substrate, the above-mentioned
The step of forming the MOS capacitor includes the steps of forming an opposite conductivity type layer on the surface of the semiconductor substrate, and forming a buried insulating film under the opposite conductivity type layer in self-alignment therewith by ion implantation. A method for manufacturing a semiconductor memory device, comprising the step of forming a capacitor electrode on the surface of the substrate via a capacitor insulating film.
JP14732279A 1979-11-14 1979-11-14 Semiconductor memory device Granted JPS5670657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14732279A JPS5670657A (en) 1979-11-14 1979-11-14 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14732279A JPS5670657A (en) 1979-11-14 1979-11-14 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS5670657A JPS5670657A (en) 1981-06-12
JPS6322069B2 true JPS6322069B2 (en) 1988-05-10

Family

ID=15427554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14732279A Granted JPS5670657A (en) 1979-11-14 1979-11-14 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5670657A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107571A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Semiconductor memory storage device
JPS602780B2 (en) * 1981-12-29 1985-01-23 富士通株式会社 semiconductor equipment
JPS5965825A (en) * 1982-10-08 1984-04-14 Hitachi Ltd liquid crystal display element
US4903094A (en) * 1986-08-26 1990-02-20 General Electric Company Memory cell structure having radiation hardness
US5264712A (en) * 1989-03-20 1993-11-23 Hitachi, Ltd. Semiconductor integrated circuit, method of fabricating the same and apparatus for fabricating the same
US5734188A (en) * 1987-09-19 1998-03-31 Hitachi, Ltd. Semiconductor integrated circuit, method of fabricating the same and apparatus for fabricating the same
US5917211A (en) * 1988-09-19 1999-06-29 Hitachi, Ltd. Semiconductor integrated circuit, method of fabricating the same and apparatus for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637663A (en) * 1979-09-05 1981-04-11 Mitsubishi Electric Corp Capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637663A (en) * 1979-09-05 1981-04-11 Mitsubishi Electric Corp Capacitor

Also Published As

Publication number Publication date
JPS5670657A (en) 1981-06-12

Similar Documents

Publication Publication Date Title
EP0175378B1 (en) Dynamic random access memory (dram)
CA1222821A (en) Stacked semiconductor memory
US4646118A (en) Semiconductor memory device
JPH01255269A (en) semiconductor storage device
JP3467510B2 (en) DRAM cell and manufacturing method thereof
JPH03789B2 (en)
US7894255B1 (en) Thyristor based memory cell
JPS6322069B2 (en)
JPS58220464A (en) Semiconductor memory device
JPS6056311B2 (en) semiconductor integrated circuit
JPS59191374A (en) Semiconductor integrated circuit device
JPS5950102B2 (en) semiconductor memory device
US4060796A (en) Semiconductor memory device
US4152779A (en) MOS ram cell having improved refresh time
JPH01143350A (en) semiconductor storage device
US4492973A (en) MOS Dynamic memory cells and method of fabricating the same
JPS61107768A (en) semiconductor storage device
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPS6115362A (en) Dynamic ram cell
JP2515033B2 (en) Method for manufacturing semiconductor static memory device
JP2637186B2 (en) Semiconductor device
JPS61140171A (en) Semiconductor memory device
JPS59175157A (en) Metal insulator semiconductor type semiconductor memory device and manufacture thereof
JPS6053470B2 (en) Manufacturing method of semiconductor memory
JPS60225462A (en) Semiconductor memory element