[go: up one dir, main page]

JPS63219502A - Method for molding sintered head alloy powder - Google Patents

Method for molding sintered head alloy powder

Info

Publication number
JPS63219502A
JPS63219502A JP5478487A JP5478487A JPS63219502A JP S63219502 A JPS63219502 A JP S63219502A JP 5478487 A JP5478487 A JP 5478487A JP 5478487 A JP5478487 A JP 5478487A JP S63219502 A JPS63219502 A JP S63219502A
Authority
JP
Japan
Prior art keywords
molds
resin
model
alloy powder
hard alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5478487A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shima
順彦 島
Akihisa Yamane
山根 昭久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP5478487A priority Critical patent/JPS63219502A/en
Publication of JPS63219502A publication Critical patent/JPS63219502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily and rapidly mold sintered hard alloy powder to a desired shape by forming split molds from a model of a prescribed shape filling xerogel consisting of the sintered hard alloy powder, thermosetting resin and water into the molds, heating the molds to cure the resin and carrying out sintering. CONSTITUTION:A model of a desired shape formed with wood, plastics or a metal is put in a vessel and gypsum or the like is poured to form a split mold 4 consisting of a cope 41 and a drag 42. Such split molds 4 are set in a prescribed vessel and xerogel or xerosol consisting of sintered hard alloy powder, thermosetting resin and water as starting material 3 is filled into the molds 4 under pressure with a plunger 5. The entire molds 4 are slowly heated to the curing temp. of the resin to cure the resin as well as to evaporate the water. The resulting sintered hard alloy stock having the same shape as the model is subjected to prescribed sintering. Thus, the sintered hard alloy powder is easily molded to any desired shape such as a simple or complex shape in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超硬合金粉末の成形方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for compacting cemented carbide powder.

〔従来の技術〕[Conventional technology]

従来超硬合金の製造方法においては、粉末にパラフィン
系ワックスあるいはポリエチレン系ワックスを添加し機
械的なプレス成形をし所定の形を得るのが一般的である
。しかしながら粉末を金型に充填した後、上下方向から
圧力を加え、そして製品の取り出し、これらを連続的に
繰り返すこの方法では成形できる形状が限られており、
更に複雑な形状を得る場合には、プレス体を800℃〜
t、ooo℃位の温度で仮焼結を行ない、ある程度の強
度を持たせ、しかる後、電着ダイヤ砥石にて研削を行な
う方法がとられている。しかしこの方法では複雑形状を
得るまでの時間的問題や粉末を削る際の歩留まりの問題
は避は切れず、かつ研削で可能な形状にも限界がある。
In the conventional method for manufacturing cemented carbide, it is common to add paraffin wax or polyethylene wax to powder and mechanically press-form the powder into a predetermined shape. However, after filling the powder into a mold, pressure is applied from above and below, and the product is removed.This method, which is repeated continuously, limits the shapes that can be molded.
If you want to obtain a more complex shape, press the press body at 800℃~
A method is used in which the material is pre-sintered at a temperature of about 1,000°C to give it a certain degree of strength, and then ground with an electrodeposited diamond grindstone. However, with this method, there are unavoidable problems with the time it takes to obtain a complex shape and the yield rate when grinding the powder, and there are limits to the shapes that can be achieved by grinding.

その他、押出成形法やラバープレス成形法があるが、こ
れらにおいては単純形状に限られる欠点がある。又スリ
ップキャスト法においては多量生産性はなく、かつ成形
体の強度も弱く取扱いが不便である欠点がある。
Other methods include extrusion molding and rubber press molding, but these methods have the drawback of being limited to simple shapes. In addition, the slip casting method has disadvantages in that it is not capable of mass production, and the strength of the molded product is weak, making it inconvenient to handle.

又射出成形法においては型製作に時間と費用がかかるし
、射出後の脱脂工程で極めて時間を有する欠点がある。
In addition, the injection molding method requires time and money to manufacture the mold, and the degreasing process after injection is extremely time consuming.

本発明の目的はこのような従来の問題点を克服し単純形
状から複雑形状に至るまでの成形を安易かつ早く行なう
ことができる成形方法を提供することである。
An object of the present invention is to overcome these conventional problems and provide a molding method that can easily and quickly mold shapes ranging from simple shapes to complex shapes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は広い意味でスリップキャスト法、射出成形法の
応用であるが、熱硬化性樹脂と水を用いる事及び型の製
法が安易であることに特徴を有する。以下にこれを説明
する。
The present invention is an application of slip casting and injection molding in a broad sense, and is characterized by the use of a thermosetting resin and water and by the ease of manufacturing the mold. This will be explained below.

型は第1(a)図に示すような超硬合金で作りたい形状
のモデルを木、プラスチックあるいは金属を加工するこ
とにより製作する。次に、これに例えばプラスチックを
流入して第1(c)図に示すようなモデルの上型と下型
よりなる割り型を製作する。この上型と下型を第2図に
示すようにモールド周囲にセットしこのモールド内にキ
ソロゾルあるいはキソロゲル状態にした超硬粉末を流入
もしくは圧入し、しかる後全体を加温することにより硬
化させる。
The mold is made by processing a model of the desired shape out of cemented carbide, as shown in FIG. 1(a), out of wood, plastic, or metal. Next, for example, plastic is poured into this to produce a split mold consisting of an upper mold and a lower mold of the model as shown in FIG. 1(c). The upper and lower molds are set around the mold as shown in FIG. 2, and the cemented carbide powder in the form of xorosol or xorogel is flowed or press-fitted into the mold, and then the whole is heated to harden.

以上の方法の発明により極めて安易にかつ早く成形体を
得ることが可能である。
By the invention of the method described above, it is possible to obtain a molded article extremely easily and quickly.

スリップキャストに比べ量産性があり、かつ熱硬化樹脂
と水を用いるため水分蒸発後の成形体は単にスリップキ
ャストしたものと比べ格段の強度を有する。又射出成形
と比べると射出成形は本発明における割り型を金型で凹
凸を切削あるいは放電加工により作製するが、これに比
べ格段に安易に型製造が可能であることは言うまでもな
い。
It is easier to mass produce than slip casting, and because it uses a thermosetting resin and water, the molded product after water evaporation has much greater strength than that simply slip cast. Furthermore, compared to injection molding, the split mold according to the present invention is produced by cutting the unevenness with a metal mold or by electric discharge machining, but it goes without saying that the mold can be manufactured much more easily.

又熱硬化性樹脂と水を用いゾル、ゲル状態にするために
は水の量を多くすればよく、樹脂自体の量はせいぜい1
〜3重量%である。従って水分を乾燥した後は脱脂にお
いて100℃/時程度のスピードで脱脂が可能であり1
通常の射出成形における5〜b 格段に能率的である。
Also, in order to make a sol or gel state using a thermosetting resin and water, it is sufficient to increase the amount of water, and the amount of the resin itself is at most 1
~3% by weight. Therefore, after drying the moisture, it is possible to degrease at a speed of about 100℃/hour.
5-b in normal injection molding It is much more efficient.

〔実施例〕〔Example〕

実施例1 市販のWC粉末(平均粒径1.5μ)とGo粉末(同1
.0μ)をGoが重量比で15%になるよう湿式にてボ
ールミル混合し乾燥した粉末に熱硬化性樹脂を2重量%
及び純水を8重量%添加し。
Example 1 Commercially available WC powder (average particle size 1.5μ) and Go powder (average particle size 1.5μ)
.. 0μ) in a wet ball mill so that Go becomes 15% by weight, and then add 2% by weight of thermosetting resin to the dry powder.
and 8% by weight of pure water was added.

ヘンシュルミキサ−にて混錬をし、キソロゲル状の状態
にした。これを第1(a)図に示したモデル1を容器に
入れ、この容器に市販の硬化植込樹脂を流し、このモデ
ルの型を作製した。尚この場合硬化植込樹脂が硬化後2
つに割り易いよう薄いゼニールの薄板2(厚み0.3■
)をモデルに第1(b)図に示すように取付ける0以上
により硬化植込樹脂により第1(C)図に示すようなモ
デルの上型41と下型42よりなる割り型土を作製し、
これを第2図のように6セツト分セットしキソロゲル状
の超硬合金素材3を矢印の方向からプランジャー5にて
圧入した。この場合圧入圧力は5kg/dであった。尚
第2図において旦はモールドである。圧入後モールド6
を取り除き残部を100℃に除々に加熱し、上型下型を
取り除くことにより第1(a)図に示したモデル1と同
一形状の超硬合金素材を得た。この素材を100℃/分
にて真空中にて昇温し、1350℃ 1時間の焼結を行
なった。得られた焼結体の特性はWC粉末とco粉末と
湿式混合して得られる焼結体と比べ何らの変化も認めら
れなかった。その特性結果を第1表に示す。
The mixture was kneaded in a Henschl mixer to form a xerogel-like state. Model 1 shown in FIG. 1(a) was placed in a container, and a commercially available hardened potting resin was poured into the container to create a mold of this model. In this case, after the hardened implant resin has hardened,
Thin zenyl plate 2 (thickness 0.3cm) so that it can be easily split into
) is attached to the model as shown in Fig. 1(b).A split mold soil consisting of the upper mold 41 and lower mold 42 of the model as shown in Fig. 1(C) is made using hardened potting resin. ,
Six sets of these were set as shown in FIG. 2, and a xerogel-like cemented carbide material 3 was press-fitted with a plunger 5 from the direction of the arrow. In this case, the press-in pressure was 5 kg/d. Note that in FIG. 2, dan is a mold. Mold 6 after press-fitting
was removed, the remaining part was gradually heated to 100° C., and the upper and lower molds were removed to obtain a cemented carbide material having the same shape as Model 1 shown in FIG. 1(a). This material was heated in vacuum at 100°C/min and sintered at 1350°C for 1 hour. No change was observed in the properties of the obtained sintered body compared to the sintered body obtained by wet mixing WC powder and co powder. The characteristic results are shown in Table 1.

第1表 実施例2 市販のWC粉末(平均粒径1.5μ)とCO粒粉末同1
.0μ)をCoが重量比で15%になるよう湿式ボール
ミル混合し乾燥した粉末に熱硬化性樹脂を2重量%及び
純水を12重量%添加し、ヘンシュルミキサ−にて混錬
しキソロゾル状の状態にした。実施例1と同様な方法に
て硬化植込樹脂の代わりに石膏を用い割り型(上型と下
型)を作製し、これにキソロゾル状の超硬素材を注入し
た。
Table 1 Example 2 Commercially available WC powder (average particle size 1.5μ) and CO granule powder 1
.. 0μ) was mixed in a wet ball mill so that the Co content was 15% by weight, and then 2% by weight of thermosetting resin and 12% by weight of pure water were added to the dry powder, which was kneaded in a Henschel mixer to form a xorosol. I made it to the state of . In the same manner as in Example 1, split molds (upper mold and lower mold) were made using plaster instead of the hardened implant resin, and a xorosol-like carbide material was injected into these molds.

注入後0.5℃/分の昇温スピードにて100℃まで昇
温した。昇温後、石膏を取ることによりモデルと同一形
状の成形体を得た。この場合熱硬化性樹脂を含有するた
め成形体の強度は充分な強度を有していた。この成形体
を実施例1と同様にして焼結体を作製した。得られた焼
結体の特性には何ら問題が見られなかった。
After injection, the temperature was raised to 100°C at a heating rate of 0.5°C/min. After raising the temperature, the plaster was removed to obtain a molded body having the same shape as the model. In this case, the molded product had sufficient strength because it contained a thermosetting resin. A sintered body was produced from this molded body in the same manner as in Example 1. No problems were observed in the properties of the obtained sintered body.

尚本発明方法によれば、実施例1,2ともに焼結体を得
るまでに1日を要するのに比べ、従来のように粉末をプ
レスし仮焼結をし、ダイヤモンド砥石で研削をし、更に
焼結をする方法では4日をようした。
According to the method of the present invention, it takes one day to obtain the sintered body in both Examples 1 and 2, but unlike the conventional method, the powder is pressed, pre-sintered, ground with a diamond grindstone, The method of further sintering took 4 days.

実施例3 実施例1と同様な方法において、φ10 on X10
0n+n+長さの割り型を1セット作製し、これに実施
例1で用いたのと同様のキソロゲル状超硬合金素材を5
kg/cdにて圧入した。これを型内で両端に端子を付
は電流が流れるようにし、通電により加熱を行なった。
Example 3 In the same method as Example 1, φ10 on X10
One set of split molds with a length of 0n+n+ was prepared, and 5 pieces of xologel-like cemented carbide material similar to that used in Example 1 were added to this set.
It was press-fitted at kg/cd. This was placed in a mold with terminals attached to both ends to allow current to flow through it, and heating was performed by passing the current through.

この場合電流値は水分の蒸発量により徐々に変化するが
、30A〜100A、20〜50Vの条件により発熱し
硬化させることが可能であった。従って本方法により成
形を行なったものは通電加熱によっても硬化が可能であ
る。
In this case, the current value gradually changed depending on the amount of water evaporated, but it was possible to generate heat and harden under the conditions of 30 A to 100 A and 20 to 50 V. Therefore, products formed by this method can also be cured by heating with electricity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば割り型の製作が可能な限り、複雑形状品
を短期間にかつ削りカスも生ずることなく作ることが可
能である。
According to the present invention, as long as split molds can be manufactured, products with complex shapes can be manufactured in a short period of time and without producing scraps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(a)図は超硬素材として成形したいものと同一形
状のモデルであり、第1(b)図は割り型を作るための
モデルに薄板のプラスチックを取付けた状態を示す概略
斜視図、第1(C)図はこれにより製作した割り型を示
す概略斜視図で(イ)は上型、(ロ)は下型であり、(
ハ)は組み合わせた状態であり、第2図は成形のための
圧入状態を示す概略図である。
Fig. 1(a) is a model with the same shape as the one desired to be molded as a carbide material, and Fig. 1(b) is a schematic perspective view showing a state in which a thin plastic plate is attached to the model for making a split mold. Figure 1 (C) is a schematic perspective view showing the split mold produced using this method, in which (A) is the upper mold, (B) is the lower mold, and (
c) shows the combined state, and FIG. 2 is a schematic diagram showing the press-fitted state for molding.

Claims (1)

【特許請求の範囲】 下記工程(a)〜(e)よりなる超硬合金の成形方法。 (a)超硬合金として得たい成形体形状と同一形状を有
するモデルを木、プラスチックあるいは金属にて加工成
形する。 (b)(a)で得られたモデルを所定容器に入れ容器の
中に硬化性樹脂あるいは石膏を流入し、モデルの割り型
を作製する。 (c)(b)で得られた割り型内に超硬合金粉末と熱硬
化性樹脂と水とを混合混錬したキソロゲル、キソロゾル
状の超硬素材を流入もしくは圧入する。 (d)割り型全体を樹脂の硬化性温度迄徐々に昇温し、
水を蒸発させると同時に熱硬化性樹脂による硬化作用に
より成形体を硬化させる。 (e)硬化した成形体を通常の超硬合金製造工程に従い
焼結を行なう。
[Scope of Claims] A method for forming cemented carbide comprising the following steps (a) to (e). (a) A model having the same shape as the molded object desired to be obtained as a cemented carbide is processed and formed using wood, plastic, or metal. (b) The model obtained in (a) is placed in a predetermined container, and a hardening resin or plaster is poured into the container to produce a split mold of the model. (c) A cemented carbide material in the form of xorogel or xorosol, which is a mixture of cemented carbide powder, thermosetting resin, and water, is flowed or press-fitted into the split mold obtained in (b). (d) Gradually raise the temperature of the entire split mold to the curing temperature of the resin,
At the same time as the water evaporates, the molded body is cured by the curing action of the thermosetting resin. (e) The hardened compact is sintered according to a normal cemented carbide manufacturing process.
JP5478487A 1987-03-10 1987-03-10 Method for molding sintered head alloy powder Pending JPS63219502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5478487A JPS63219502A (en) 1987-03-10 1987-03-10 Method for molding sintered head alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5478487A JPS63219502A (en) 1987-03-10 1987-03-10 Method for molding sintered head alloy powder

Publications (1)

Publication Number Publication Date
JPS63219502A true JPS63219502A (en) 1988-09-13

Family

ID=12980388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5478487A Pending JPS63219502A (en) 1987-03-10 1987-03-10 Method for molding sintered head alloy powder

Country Status (1)

Country Link
JP (1) JPS63219502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279804A (en) * 1992-12-28 1994-10-04 Pilot Corp:The Sintering material, sintered body and molding die
KR20010077722A (en) * 2000-02-08 2001-08-20 박양자 Method of manufacturing grind stone use for a carbide alloy powder
CN118123017A (en) * 2024-05-07 2024-06-04 株洲美特优硬质合金有限公司 Hard alloy processing technology and processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279804A (en) * 1992-12-28 1994-10-04 Pilot Corp:The Sintering material, sintered body and molding die
KR20010077722A (en) * 2000-02-08 2001-08-20 박양자 Method of manufacturing grind stone use for a carbide alloy powder
CN118123017A (en) * 2024-05-07 2024-06-04 株洲美特优硬质合金有限公司 Hard alloy processing technology and processing device

Similar Documents

Publication Publication Date Title
JPS63219502A (en) Method for molding sintered head alloy powder
JPS63403A (en) Composition for plastic molding useful as stock for industrial art works and its production
CN104599834B (en) A kind of manufacturing method of thermoplastic composite macromolecule bonded permanent magnet
JPS63219501A (en) Method for molding sintered hard alloy powder
CN108655405A (en) A kind of injection moulding technological process of production
JPS5712607A (en) Metallic mold for resin
JPS606244A (en) Manufacture of simple mold for molding plastic
CN106003368A (en) Manufacturing method of gypsum female die
JP3479718B2 (en) Method for producing shaped article made of metal or ceramic
TW200936530A (en) Method for forming a ceramic
CN1301210A (en) Manufacturing method of molded body
JPH04218628A (en) Sintered compact of noble metal and its production
GB1192617A (en) Particulate Resins and Moulding Process Utilising them
JPS60230957A (en) Manufacture of permanent magnet
CN109467411A (en) Metal powder modified full information surface silicone mold stone powder injection molding method
SE9501843L (en) Process for making a molded mold body
JPS6428303A (en) Production of sintered magnet alloy
SU1070128A1 (en) Method for making cellular concrete products
Chung et al. Rapid Tooling of Aluminum Shoes Mold Using Porous Mold
JPS61110514A (en) Organic material series artificial lumber
JPS55101413A (en) Preparation of molding
JPH04247808A (en) Production of composite sintered article
JPH03104801A (en) Injection molding method
JPH0218660B2 (en)
JPS61116502A (en) Manufacture of refractory molded shape