JPS6321859B2 - - Google Patents
Info
- Publication number
- JPS6321859B2 JPS6321859B2 JP55051980A JP5198080A JPS6321859B2 JP S6321859 B2 JPS6321859 B2 JP S6321859B2 JP 55051980 A JP55051980 A JP 55051980A JP 5198080 A JP5198080 A JP 5198080A JP S6321859 B2 JPS6321859 B2 JP S6321859B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- image
- particle
- signals
- video signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 35
- 238000001962 electrophoresis Methods 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims 3
- 230000015654 memory Effects 0.000 description 12
- 239000012905 visible particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000005314 correlation function Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の詳細な説明】
本発明は液体中に浮遊させた赤血球のような偏
平な可視的粒子の電界の作用による移動即ち電気
泳動の速度を測定する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the velocity of electrophoresis of oblate visible particles, such as red blood cells, suspended in a liquid under the action of an electric field.
可視的な浮遊粒子の電気泳動を測定するには浮
遊粒子の像を撮像管上に形成させ、撮像装置を走
査して映像信号を得、この映像信号に種々な演算
を施して泳動速度を算出すると云う方法が用いら
れる。この場合可視的粒子が偏平であると投影レ
ンズから見た可視的粒子の見かけの大きさ及び明
るさは粒子の向きによつて異なり、粒子が回転し
ていると同一粒子の像であつてもその映像信号は
時間的に変動する。映像信号における可視的粒子
像成分が電気泳動による以外に粒子回転に伴う信
号強度、信号幅の変動を含んでいると時間的に距
つた2つの映像信号において同一粒子の像の信号
を異なつた粒子像の信号と誤認し、或は逆に別の
粒子の像の信号を同一粒子の像の信号と誤つて泳
動速度の算出に誤差が入ることになる。従つて本
発明は偏平な可視的粒子の電気泳動測定において
粒子の回転の影響を除くことを目的としてなされ
た。 To measure the electrophoresis of visible suspended particles, an image of the suspended particles is formed on an image pickup tube, the image pickup device is scanned to obtain a video signal, and this video signal is subjected to various calculations to calculate the migration speed. The following method is used. In this case, if the visible particle is flat, the apparent size and brightness of the visible particle as seen from the projection lens will vary depending on the orientation of the particle, and if the particle is rotating, even if the image is of the same particle. The video signal varies over time. If the visible particle image component in the video signal includes fluctuations in signal strength and signal width due to particle rotation other than those caused by electrophoresis, two temporally distant video signals may have different signals for images of the same particle. This may be mistaken for an image signal, or conversely, a signal from an image of another particle may be mistaken for a signal from an image of the same particle, resulting in an error in the calculation of migration speed. Therefore, the present invention was made with the aim of eliminating the influence of particle rotation in electrophoretic measurements of flat visible particles.
本発明は映像信号における粒子像の信号をその
強度及び幅に関係なく一個のパルス信号に変換し
て以後の演算処理を行うようにした電気泳動測定
装置を提供するものである。以下実施例によつて
本発明を詳述する。 The present invention provides an electrophoresis measuring device that converts a particle image signal in a video signal into a single pulse signal regardless of its intensity and width, and performs subsequent arithmetic processing. The present invention will be explained in detail below with reference to Examples.
第1図に本発明の一実施例を示す。この実施例
は浮遊粒子像が小さくて輝点として形成され、見
掛上粒子の向きによつて像の輝度だけが異なる場
合に適したものである。1は電気泳動管、2,3
は電極である。電気泳動管1内に可視的粒子を浮
遊させた溶液を入れ、電極2,3間に電圧を印加
する。4はレーザ光源で電気泳動管1内を上方か
ら照明する。5は投影レンズで電気泳動管1を側
方から見てダイオードアレー素子P上に浮遊粒子
の像を形成する。アレー素子Pを走査すると第2
図イのような映像信号が得られる。アレー素子の
出力は単位素子毎のパルス状の出力の列であるが
以後の信号処理をアナログに行うためその出力は
フイルタを通して平滑化し微分回路Dで微分す
る。この微分された信号をレベル選別器Lに入力
しレベルl以上の信号を取出すと、バツクグラウ
ンド及び立上り立下りのゆるやかなピント外れの
粒子像の信号(第2図イにcで示す)が除去され
る。このようにして得られた合焦状態の粒子像の
信号a,bの立上りパルス(第2図ロ)でワンシ
ヨツト回路mをトリガすると第2図ハの信号が得
られる。第2図ハの信号におけるパルスa′,b′は
もとの粒子像の信号a,bが変換されたもので、
a,bの信号の強度の大小にかゝわりなく一定高
さ幅の信号になつている。アレー素子Pを一定時
間を距てゝ2回走査し、各回の走査において第2
図ハの信号を得てメモリM1,M2に記憶させて
おき、後の両方の記憶を読出し両信号間の相関を
求める。この相関を求める点については次の実施
例の説明において説明する。 FIG. 1 shows an embodiment of the present invention. This embodiment is suitable for cases where the floating particle image is small and formed as a bright spot, and only the brightness of the image differs depending on the apparent direction of the particles. 1 is an electrophoresis tube, 2, 3
is an electrode. A solution in which visible particles are suspended is placed in an electrophoresis tube 1, and a voltage is applied between electrodes 2 and 3. 4 is a laser light source that illuminates the inside of the electrophoresis tube 1 from above. A projection lens 5 forms an image of floating particles on the diode array element P by viewing the electrophoresis tube 1 from the side. When array element P is scanned, the second
A video signal as shown in Figure A is obtained. The output of the array element is a series of pulse-like outputs for each unit element, but in order to perform subsequent signal processing in an analog manner, the output is smoothed through a filter and differentiated by a differentiating circuit D. When this differentiated signal is input to the level selector L and a signal of level l or higher is extracted, the background and the signal of the particle image that is slowly out of focus with rising and falling edges (shown as c in Fig. 2 A) are removed. be done. When the one-shot circuit m is triggered by the rising pulses of the signals a and b of the focused particle images thus obtained (FIG. 2(b)), the signal shown in FIG. 2(c) is obtained. The pulses a' and b' in the signal in Figure 2 C are the converted signals a and b of the original particle image,
Regardless of the strength of the signals a and b, the signals have a constant height and width. The array element P is scanned twice at a fixed time interval, and in each scan, the second
The signal shown in FIG. 3C is obtained and stored in memories M1 and M2, and later both memories are read out to find the correlation between both signals. The point of determining this correlation will be explained in the description of the next embodiment.
第3図は本考案の他の実施例を示す。この実施
例は粒子像が大きく、粒子の向きによつて明るさ
だけでなく像の幅も異なる場合に適する。電気泳
動管1から微分回路Dまでの構成は第1図の実施
例と同じである。第4図イはアレー素子Pの出力
信号、同図ロはその微分信号である。第4図イで
a,bは浮遊粒子像の映像信号でaは粒子が偏平
な面をレンズ5の方に向けている場合で信号幅が
大であり、bは偏平体の側面をレンズ5に向けて
いる場合で信号幅が狭い。cはピント外れの粒子
像の信号で信号の立上りがゆるやかでありまた信
号幅も大きい。dはバツクグラウンドである。微
分とするとバツクグラウンドは殆ど除去され、各
粒子像は夫々が正負のパルス対の信号になる。ピ
ント外れの粒子像は立上りがゆるやかであるから
微分信号の高さは合焦粒子像の微分信号に比し低
い。この微分信号は互に反対向きのダイオード
r,r′を通してレベル選別器L,L′に送られ、正
負レベルl以上のものが選別される。第4図ハ,
ハ′がL,L′の出力信号を示す。この信号は夫々
充分増幅した後レベル検出器C,C′を通して第4
図ニ,ニ′に示すような矩形波パルスに変換する。
以後の信号処理をマイクロコンピユータμ−
COMで行う。 FIG. 3 shows another embodiment of the invention. This embodiment is suitable when the particle image is large and not only the brightness but also the width of the image differs depending on the direction of the particle. The configuration from the electrophoresis tube 1 to the differential circuit D is the same as the embodiment shown in FIG. FIG. 4A shows the output signal of the array element P, and FIG. 4B shows its differential signal. In Fig. 4A, a and b are video signals of floating particle images, and a is a signal with a large signal width when the flat surface of the particle is directed toward the lens 5, and b is a signal with a large signal width when the flat surface of the particle is directed toward the lens 5. The signal width is narrow when the camera is aimed at c is a signal of an out-of-focus particle image, which has a gradual rise and a large signal width. d is the background. When differentiated, most of the background is removed, and each particle image becomes a signal of a pair of positive and negative pulses. Since the out-of-focus particle image rises slowly, the height of the differential signal is lower than that of the in-focus particle image. This differential signal is sent to level selectors L, L' through diodes r, r' in opposite directions, and those having positive and negative levels equal to or higher than l are selected. Figure 4c,
C' indicates the output signals of L and L'. After being sufficiently amplified, these signals are passed through level detectors C and C' to the fourth level detector.
It is converted into a rectangular wave pulse as shown in Figures D and D'.
The subsequent signal processing is carried out by a microcomputer μ-
Do it with COM.
μ−COMはアレー素子Pの走査を行つている。
この走査は一定時間毎に行われる。一回の走査は
短時間で終るからその間浮遊粒子の像は動かない
とみなせる。μ−COMはクロツクパルスを計数
してその計数出力でアレー素子Pの単位受光素子
を指定しその出力を読出す操作を行つている。 μ-COM scans the array element P.
This scanning is performed at regular intervals. Since one scan completes in a short time, it can be assumed that the floating particle image does not move during that time. μ-COM counts clock pulses, uses the counted output to designate a unit light receiving element of array element P, and reads out its output.
第5図はμ−COMの動作プログラムのフロー
チヤートである。アレー素子Pの走査を開始する
とまず第4図ニの信号検出を行い、この信号が検
出されたらクロツクパルスの計数値をレジスタに
入力させ、1/2カウントを開始させる。これはク
ロツクパルス2個につき1を加算するものであ
る。次いでニ′の信号検出を行い、これが検出さ
れたら1/2カウントを停止させ、1/2カウント数が
所定値Nより少ないか否かを検し、Nより多いと
きは1/2カウントをクリヤして走査終了の検出を
径てニの信号検出に戻る。1/2カウント数がNよ
り少ないときは、レジスタに入力させておいたク
ロツク計数に上記1/2カウントの計数を加算し、
この加算値をメモリIのアドレス指定データとし
てそのアドレスとそれに続く2アドレスに信号1
を記憶させ、動作はニの信号検出に戻る。かくし
て走査終了によつて一走査に対する動作が完了す
る。1/2カウントがNより大であるのはその信号
が目的粒子ではない浮遊物であると見て除去する
ため(1/2カウント〈N)のチエツクを行つてい
るのである。 FIG. 5 is a flowchart of the μ-COM operating program. When scanning of the array element P is started, the signal shown in FIG. 4D is first detected, and when this signal is detected, the count value of the clock pulse is input to the register, and 1/2 counting is started. This adds 1 for every two clock pulses. Next, detect the signal 2', and when this is detected, stop the 1/2 count, check whether the 1/2 count is less than a predetermined value N, and if it is greater than N, clear the 1/2 count. Then, after detecting the end of scanning, the process returns to the second signal detection. When the 1/2 count number is less than N, add the above 1/2 count to the clock count input in the register,
This added value is used as address designation data for memory I, and a signal 1 is sent to that address and the following two addresses.
is memorized and the operation returns to signal detection in step (2). Thus, the operation for one scan is completed by the end of the scan. If the 1/2 count is larger than N, the signal is considered to be a floating substance that is not the target particle, and a check is performed to remove it (1/2 count <N).
上述の動作でメモリの各アドレスはアレー素子
の単位素子のアドレスと対応しており、合焦粒子
像の幅の大小に関係なく、幅の中央から引続き3
アドレスに信号1が記憶せしめられる。第4図ホ
にこのメモリに記憶させた信号を示す。 In the above operation, each address of the memory corresponds to the address of the unit element of the array element, and regardless of the width of the focused particle image, 3 addresses continue from the center of the width.
Signal 1 is stored at the address. FIG. 4E shows the signals stored in this memory.
上述した動作を一定時間をあけて2回行い、2
回目の走査では第4図ホのデータはメモリに記
憶せしめられる。次に各回において得られたメモ
リ,の記憶を読出し両者間に相関を求める。
相関を求めるにはメモリのアドレスn番のデー
タとメモリのアドレスn+xのデータとを掛算
(各データとも0又は1であるから積もまた0か
1である)し、この掛算結果をメモリの全アド
レスにわたつて積算し、これをメモリのアドレ
スxに記憶させる。この動作をxを1ずつ変えて
xの適当範囲で行うとメモリには一つの相関関
数が記憶される。この関数の値の最大を示すxの
値は2回の走査の間に粒子像がアレー素子上を移
動した距離の平均を示すから、これから浮遊粒子
の電気泳動速度が求められる。 Perform the above operation twice at a certain time interval, and
In the second scan, the data shown in FIG. 4(e) is stored in the memory. Next, the memory obtained at each time is read out and the correlation between the two is determined.
To find the correlation, multiply the data at memory address n by the data at memory address n+x (each data is 0 or 1, so the product is also 0 or 1), and apply this multiplication result to all memory Accumulate over addresses and store this in memory at address x. When this operation is performed within an appropriate range of x by changing x by 1, one correlation function is stored in the memory. Since the value of x, which indicates the maximum value of this function, indicates the average distance traveled by the particle image on the array element during two scans, the electrophoretic velocity of the suspended particles can be determined from this value.
本発明は上述したような構成で偏平な粒子はそ
の向きによつて映像信号の幅が異なり、また照明
光の反射の仕方が異なるから映像信号の強さも異
なるのを、各粒子の映像信号を全部同じ形の信号
に変換するので相関関数のピークの形が整斉なも
のとなり電気泳動速度の測定精度が向上する。 The present invention has the above-described structure, and the width of the video signal of a flat particle differs depending on its orientation, and the strength of the video signal also differs because the way illumination light is reflected differs. Since all the signals are converted into signals of the same shape, the shape of the peak of the correlation function becomes uniform, improving the accuracy of measuring electrophoretic velocity.
第1図は本発明の一実施例装置の光学的部分の
斜視図及びデータ処理部のブロツク図、第2図は
上記装置における動作の種々な段階の信号波形
図、第3図は本発明の他の実施例装置のデータ処
理部のブロツク図、第4図は上記装置における動
作の種々な段階の信号波形図、第5図は上記装置
に用いるマイクロコンピユータの動作プログラム
の要部のフローチヤートである。
1……電気泳動管、4……光源、5……投影レ
ンズ、P……ダイオードアレー素子。
FIG. 1 is a perspective view of an optical part and a block diagram of a data processing section of a device according to an embodiment of the present invention, FIG. 2 is a signal waveform diagram at various stages of operation in the device, and FIG. FIG. 4 is a block diagram of the data processing section of another example device; FIG. 4 is a signal waveform diagram at various stages of operation in the device; FIG. be. 1... Electrophoresis tube, 4... Light source, 5... Projection lens, P... Diode array element.
Claims (1)
撮像装置の受光面に形成する手段と、上記撮像装
置を走査して得られる映像信号において、上記輝
点像を検出する手段と、同輝点像の映像信号をそ
の信号強度の如何に関せず、一定振幅、一定時間
幅の信号に変換する手段と、異る時間における複
数の走査によつて得られる映像信号について、上
記浮遊粒子像が一定振幅、一定時間幅の信号に変
換された撮像信号間の相関を求める手段とよりな
る偏平粒子の電気泳動測定装置。1 means for forming an image of suspended particles in an electrophoresis tube as a bright spot image on the light receiving surface of an imaging device; a means for detecting the bright spot image in a video signal obtained by scanning the imaging device; A means for converting a point image video signal into a signal with a constant amplitude and a constant time width, regardless of the signal strength, and a video signal obtained by multiple scans at different times, and the above-mentioned floating particle image. An apparatus for measuring electrophoresis of oblate particles, comprising means for determining a correlation between imaging signals converted into signals with a constant amplitude and a constant time width.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5198080A JPS56148049A (en) | 1980-04-18 | 1980-04-18 | Electrophoresis measuring apparatus for flat particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5198080A JPS56148049A (en) | 1980-04-18 | 1980-04-18 | Electrophoresis measuring apparatus for flat particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56148049A JPS56148049A (en) | 1981-11-17 |
JPS6321859B2 true JPS6321859B2 (en) | 1988-05-09 |
Family
ID=12902002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5198080A Granted JPS56148049A (en) | 1980-04-18 | 1980-04-18 | Electrophoresis measuring apparatus for flat particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56148049A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS562544A (en) * | 1979-06-14 | 1981-01-12 | Nat Res Dev | Method and device for measuring electrophoretic mobility of cell |
-
1980
- 1980-04-18 JP JP5198080A patent/JPS56148049A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS562544A (en) * | 1979-06-14 | 1981-01-12 | Nat Res Dev | Method and device for measuring electrophoretic mobility of cell |
Also Published As
Publication number | Publication date |
---|---|
JPS56148049A (en) | 1981-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4584704A (en) | Spatial imaging system | |
US4629324A (en) | Arrangement for measuring depth based on lens focusing | |
US4830485A (en) | Coded aperture light detector for three dimensional camera | |
US6977631B2 (en) | Optical scanning system with variable focus lens | |
US5666569A (en) | System and method for detecting and indicating proper focal distance in a fixed lens camera | |
US4657393A (en) | Pattern optimization when measuring depth to a surface using lens focusing | |
US4993830A (en) | Depth and distance measuring system | |
JPS6321859B2 (en) | ||
US3970845A (en) | Pulse discriminator circuit | |
US4264160A (en) | Focus indicating device in a camera | |
JPH0629705B2 (en) | Plate inspection method | |
JP2873450B2 (en) | Defect inspection device using light | |
JPS61176839A (en) | Inspection of defect of transparent or semi-transparent plate-shaped body | |
JPS628140B2 (en) | ||
JPS61176838A (en) | Inspection of defect of transparent or semi-transparent plate-shaped body | |
JP2723914B2 (en) | Lens barrel resolution inspection system | |
JPH11201717A (en) | Object recognizing device | |
JPH0813097B2 (en) | Focus detection device | |
JPS6148865B2 (en) | ||
JP2525650B2 (en) | Irradiation field contour candidate point correctness determination method | |
SU593122A1 (en) | Method of measuring refractive index of substance | |
GB1605012A (en) | Range responsive apparatus | |
GB2108655A (en) | A method and apparatus for measuring the distribution of pulverized particles | |
JPH0543252B2 (en) | ||
JPS5826325Y2 (en) | position detection device |