JPS63218255A - Method for producing supercooling state by pressure jump - Google Patents
Method for producing supercooling state by pressure jumpInfo
- Publication number
- JPS63218255A JPS63218255A JP5232887A JP5232887A JPS63218255A JP S63218255 A JPS63218255 A JP S63218255A JP 5232887 A JP5232887 A JP 5232887A JP 5232887 A JP5232887 A JP 5232887A JP S63218255 A JPS63218255 A JP S63218255A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- substance
- state
- temperature
- supercooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices For Use In Laboratory Experiments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は圧力ジャンプによる過冷却状態の発生方法に関
し、特に物質に外部から加えた圧力を瞬時に変化させる
ことにより結晶化過程等の非平衡状態の研究に不可欠な
過冷却状態を得る圧力ジャンプによる過冷却状態の発生
方法に間する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for generating a supercooled state due to a pressure jump, and in particular, the present invention relates to a method for generating a supercooled state due to a pressure jump. We will discuss how to generate a supercooled state by pressure jump to obtain a supercooled state that is essential for the study of the supercooled state.
一時相転移のダイナミックス、あるいは具体的には物質
の結晶過程等の研究を行なう上で、温度を急激に変える
ことにより過冷却状態を実現している。(ソリッド・ス
テイト・コミュニケーション、1先、1487.198
2)
〔発明が解決しようとする問題点〕
上述した従来の温度を変化させる方法は、物質が有限な
大きさを持っているため、物質内部で温度分布ができ、
一様な過冷却状態を得ることはできない。このため真の
過冷却状態の物性を測定しているのか、あるいは単に物
質内部の温度分布による物性のゆらぎを測定しているの
か区別がつかないという欠点がある。さらに、試料は、
試料容器等の他の物質にとっかこまれており有限な熱容
量を持っている。また試料そのものにも熱容量があるた
め、たとえ急激に温度変化をさせても一様な希望温度を
得るには有限の時間がかかり、速い変化の現象を追って
いく方法としては不適であるという欠点がある。Supercooled states are achieved by rapidly changing the temperature when studying the dynamics of temporary phase transitions, or more specifically, the crystallization process of materials. (Solid State Communications, 1, 1487.198
2) [Problems to be solved by the invention] The above-mentioned conventional method of changing temperature has a finite size, so a temperature distribution occurs inside the material.
It is not possible to obtain a uniform supercooled state. For this reason, there is a drawback that it is difficult to distinguish whether the physical properties of a true supercooled state are being measured or whether the fluctuations in physical properties due to the temperature distribution inside the substance are simply being measured. Furthermore, the sample
It is surrounded by other materials such as sample containers and has a finite heat capacity. Furthermore, since the sample itself has heat capacity, it takes a finite amount of time to obtain a uniform desired temperature even if the temperature changes rapidly, making it unsuitable as a method for tracking rapidly changing phenomena. be.
本発明の目的は上述した問題点を解決し、瞬時に一様な
過冷却状態を得る圧力ジャンプによる過冷却状態の発生
方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method of generating a supercooled state by pressure jump, which instantly achieves a uniform supercooled state.
本発明の圧力ジャンプによる過冷却状態の発生方法は、
静水圧力を圧力媒体を介して物質に印加したうえ前記静
水圧力を瞬時に変化せしめることにより温度対圧力状態
図における相転移点を越える状態を前記物質にもならし
これを過冷却状態に導く手段を備えて構成される。The method of generating a supercooled state by pressure jump according to the present invention is as follows:
Means for applying hydrostatic pressure to a substance via a pressure medium and instantaneously changing the hydrostatic pressure to bring the substance into a state exceeding the phase transition point in a temperature versus pressure phase diagram and bringing it into a supercooled state. It is composed of:
熱が物質を伝わるのには有限な時間が必要であるが、静
水圧は即時かつ一様に物質に印加される。このことを利
用して、あらかじめ試料とする物質の温度TOと圧力P
oを温度対圧力状態図における相転移点近傍に設定した
うえ急激な加圧あるいは減圧を行ない、温度To、圧力
Pとする。While heat requires a finite amount of time to transfer through a material, hydrostatic pressure is applied to the material immediately and uniformly. Utilizing this fact, the temperature TO and pressure P of the substance to be sampled can be determined in advance.
o is set near the phase transition point in the temperature vs. pressure state diagram, and then rapid pressurization or depressurization is performed to obtain the temperature To and the pressure P.
この圧力がPが温度対圧力状態図において相転移点をよ
こぎるものであれば、この圧力Pのもとにおかれた物質
は一様な過冷却状態となる。If this pressure is such that P crosses the phase transition point in the temperature versus pressure phase diagram, the substance placed under this pressure P will be in a uniform supercooled state.
次に図面を参照して本発明を説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例を一部ブロック図で示す断面
図である。第1図において、油圧コンプレッサ1は一次
側の加圧装置であり、圧縮された圧力媒体としての油1
1が高圧用金属パイプ2により増圧機3に送り込まれる
。ここで増圧された圧力が圧力媒体の油11に印加され
高圧用金属パイプ2により高圧セル5の中に送り込まれ
る。高圧セル5の中には試料6が封入されてあり、増圧
機3で加圧された油11の圧力がそのまま試料6に加え
られる圧力となる。高圧セル5全体は、ヒータ4で加熱
可能の構造となっており、試料6の温度を可変とするこ
とができる。試料6の温度は熱電対7で測定される。試
料6の加圧、減圧は、油圧コンプレッサ1を制御するこ
とにより簡単に行なうことができる。第2図はは物質の
一般的な温度対圧力状態図である。相(I)、(n)は
、たとえば、それぞれ液体相および同体相に相当する。FIG. 1 is a cross-sectional view showing a partial block diagram of an embodiment of the present invention. In FIG. 1, a hydraulic compressor 1 is a pressurizing device on the primary side, and oil 1 as a compressed pressure medium
1 is fed into a pressure intensifier 3 through a high-pressure metal pipe 2. The increased pressure is applied to the pressure medium oil 11 and sent into the high pressure cell 5 through the high pressure metal pipe 2. A sample 6 is sealed in the high pressure cell 5, and the pressure of the oil 11 pressurized by the pressure intensifier 3 becomes the pressure directly applied to the sample 6. The entire high-pressure cell 5 has a structure that can be heated by a heater 4, and the temperature of the sample 6 can be made variable. The temperature of the sample 6 is measured with a thermocouple 7. Pressurization and depressurization of the sample 6 can be easily performed by controlling the hydraulic compressor 1. FIG. 2 is a general temperature versus pressure phase diagram of a substance. Phases (I) and (n) correspond, for example, to a liquid phase and a homogeneous phase, respectively.
(a)は、温度を変えることにより変冷却状態を得る場
合の変化の方向を示し、(b)は圧力を変えることによ
り変冷却状態を得る場合の変化の方向を示す。第3図は
、物質の温度を変えた場合の温度対の時間変化特性図で
ある。時刻t。で温度TOを変えはじめ、tlで所望の
温度Tになっている。これは第2図における(a)に相
当する処理である。第4図は、物質の圧力を変えた場合
の圧力対の時間変化特性図である。1.で変化させれば
、短い時間で所望の圧力Pになることがわかる。これは
第2図における(b)に相当する処理である。(a) shows the direction of change when a variable cooling state is obtained by changing the temperature, and (b) shows the direction of change when obtaining a variable cooling state by changing the pressure. FIG. 3 is a diagram showing the temporal change characteristics of temperature versus temperature when the temperature of a substance is changed. Time t. The temperature TO starts to change at tl, and the desired temperature T is reached at tl. This is a process corresponding to (a) in FIG. FIG. 4 is a graph showing the time change characteristic of the pressure pair when the pressure of the substance is changed. 1. It can be seen that the desired pressure P can be achieved in a short time by changing the pressure P. This is a process corresponding to (b) in FIG.
第2図に示す如く、試料の温度と圧力をそれぞれ温度対
圧力状態図における相転移点近傍のPo、Toに設定し
ておき、第3図に示す温度変化に変えて第4図に示す急
激な加圧で相転移を試料にもたらすことにより、試料を
急激に一様な過冷却状態P、Tに導く、いわゆる圧力ジ
ャンプによる過冷却状態を実現することができる。第2
図の例では、この圧力ジャンプが加圧である場合を例と
しているが、相転移状態を減圧によって実施しても勿論
差支えない。As shown in Fig. 2, the temperature and pressure of the sample are set to Po and To near the phase transition points in the temperature vs. pressure phase diagram, respectively, and the temperature change is changed to the temperature change shown in Fig. 3 to cause the rapid change shown in Fig. 4. By bringing about a phase transition in the sample by applying a certain pressure, it is possible to realize a supercooled state due to a so-called pressure jump, which rapidly leads the sample to uniform supercooled states P and T. Second
In the illustrated example, this pressure jump is caused by increased pressure, but it goes without saying that the phase transition state may also be achieved by reduced pressure.
以上説明した如く本発明によれば、物質に外部から印加
した水圧を瞬時に変化させることにより、非常に短い時
間で状態図上でのある点から別なある点ヘジャンプして
移動させこれを過冷却状態とすることができ、物質を一
様な圧力、温度条件下におくことができる圧力ジャンプ
による加冷却状態の発生方法が実現できるという効果が
ある。As explained above, according to the present invention, by instantaneously changing the water pressure applied to a substance from the outside, it is possible to jump and move from one point to another point on a phase diagram in a very short time, and to avoid overshooting. This method has the effect of realizing a method of generating a supercooled state by pressure jump, which can bring the substance into a cooled state and keep the substance under uniform pressure and temperature conditions.
第1図は本発明の一実施例を一部ブロック図で示す断面
図、第2図は物質の一般的な温度対圧力状態図、第3図
は物質の温度を変えた場合の温度対時間変化特性図、第
4図は物質の圧力を変えた場合の圧力対時間変化特性図
である。
1・・・油圧コンプレッサ、2・・・高圧用金属パイプ
、3・・・増圧機、4・・・レータ、5・・・高圧セル
、6・・・試料、7・・・熱電対、11・・・油。
′・′代理人 弁理士 内 原 晋、゛。Fig. 1 is a cross-sectional view showing a partial block diagram of an embodiment of the present invention, Fig. 2 is a general temperature versus pressure state diagram of a substance, and Fig. 3 is a temperature versus time diagram when the temperature of the substance is changed. Fig. 4 is a pressure vs. time change characteristic diagram when the pressure of a substance is changed. DESCRIPTION OF SYMBOLS 1... Hydraulic compressor, 2... Metal pipe for high pressure, 3... Pressure intensifier, 4... Rator, 5... High pressure cell, 6... Sample, 7... Thermocouple, 11 ···oil.
′・′Representative: Susumu Uchihara, patent attorney.
Claims (1)
水圧力を瞬時に変化せしめることにより温度対圧力状態
図における相転移点を越える状態を前記物質にもたらし
これを過冷却状態に導くことを特徴とする手段を備えて
成る圧力ジャンプによる過冷却発生方法。It is characterized by applying hydrostatic pressure to a substance via a pressure medium and instantaneously changing the hydrostatic pressure, thereby bringing the substance into a state exceeding the phase transition point in a temperature vs. pressure phase diagram and leading it to a supercooled state. A method for generating supercooling by pressure jump, comprising means for:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5232887A JPS63218255A (en) | 1987-03-06 | 1987-03-06 | Method for producing supercooling state by pressure jump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5232887A JPS63218255A (en) | 1987-03-06 | 1987-03-06 | Method for producing supercooling state by pressure jump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63218255A true JPS63218255A (en) | 1988-09-12 |
Family
ID=12911727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5232887A Pending JPS63218255A (en) | 1987-03-06 | 1987-03-06 | Method for producing supercooling state by pressure jump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63218255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021508808A (en) * | 2017-12-29 | 2021-03-11 | エーエイチアール エナジー エスピーエー | A method of transferring heat between two or more types of media and a system for carrying out the method. |
-
1987
- 1987-03-06 JP JP5232887A patent/JPS63218255A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021508808A (en) * | 2017-12-29 | 2021-03-11 | エーエイチアール エナジー エスピーエー | A method of transferring heat between two or more types of media and a system for carrying out the method. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schmidt et al. | Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes | |
US4264556A (en) | Thermal isostatic densifying method and apparatus | |
Czernuszewicz et al. | Multicaloric effect: Toward a breakthrough in cooling technology | |
Tušek et al. | A regenerative elastocaloric heat pump | |
Nasersharifi et al. | Pool-boiling enhancement using multilevel modulated wick | |
DE69007305T2 (en) | Method and device for quickly regulating a wall temperature. | |
DE69412420T2 (en) | Quasi-infinite heat source / sink | |
US8779333B2 (en) | Column heater | |
Bundy et al. | Behavior of metals at high temperatures and pressures | |
Pépin et al. | Kinetics and structural changes in dynamically compressed bismuth | |
Jai-Young et al. | The activation processes and hydriding kinetics of FeTi | |
JPS63218255A (en) | Method for producing supercooling state by pressure jump | |
EP0196243A2 (en) | Temperature gradient furnace for materials processing | |
Gandikota et al. | Faraday instability in a near-critical fluid under weightlessness | |
SE0100255L (en) | Apparatus and method for cooling a brake component | |
López-Medina et al. | Reversible elastocaloric effect related to B2–R transformation in Ni50. 5Ti49. 5 alloy | |
Wang et al. | Electric field effects on boiling heat transfer of liquid nitrogen | |
Shen et al. | In situ x-ray diffraction study of polyamorphism in H2O under isothermal compression and decompression | |
US2898434A (en) | Adjustable reference device | |
Koss et al. | Pressure-mediated effects on thermal dendrites | |
Yamamoto | Supercooling of the coexisting state of ice VII and water within ice VI region observed in diamond-anvil pressure cells | |
SU659285A1 (en) | Apparatus for isostatic pressing of powders | |
Kamachali et al. | Multiscale simulations on the grain growth process in nanostructured materials: paper presented at the 2nd Sino-German symposium on computational thermodynamics and kinetics and their applications to solidification | |
Midorikawa et al. | Hydrostatic pressure effect on Sm2 (MoO4) 3 | |
JPH10281582A (en) | Apparatus and method for regulating temperature |