[go: up one dir, main page]

JPS63218159A - activated carbon electrode - Google Patents

activated carbon electrode

Info

Publication number
JPS63218159A
JPS63218159A JP62052271A JP5227187A JPS63218159A JP S63218159 A JPS63218159 A JP S63218159A JP 62052271 A JP62052271 A JP 62052271A JP 5227187 A JP5227187 A JP 5227187A JP S63218159 A JPS63218159 A JP S63218159A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
carbon fibers
carbon fiber
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62052271A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Toshihiro Hamada
敏裕 浜田
Hiroshi Sugishima
杉島 博
Hideki Yasushiro
秀樹 保城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62052271A priority Critical patent/JPS63218159A/en
Publication of JPS63218159A publication Critical patent/JPS63218159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性炭素繊維を粉砕して得られる活性炭を用い
た電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode using activated carbon obtained by pulverizing activated carbon fibers.

〔従来の技術〕[Conventional technology]

近年、比表面積の大さな活性炭素繊維を用いた電極の開
発が積繊的に行わtしている。こ几らの電極の用途とし
ては燃料電池用極板(特開59−46762、特開58
−100364 ) 、電気二重ノーキヤハシタ用分極
性wLt!!ii(特開5B−206116、特開59
−4114)、二次電池用電極(特開59−15797
4、特開59−163765 )、電気化学的表示装置
用対向極(特開59−143130 )等様々のものが
提案されている。
In recent years, development of electrodes using activated carbon fibers with large specific surface areas has been carried out. The electrodes of Koori et al. are used as electrode plates for fuel cells (JP-A No. 59-46762, JP-A-58
-100364 ), polarizability wLt for electric double-headed no-kahashita! ! ii (JP 5B-206116, JP 59
-4114), secondary battery electrode (JP 59-15797
4, Japanese Unexamined Patent Publication No. 59-163765), and a counter electrode for electrochemical display devices (Japanese Unexamined Patent Publication No. 59-143130).

100〜3000ル′gのように大さな比表面積を有す
る活性炭素繊維は溶液との接触面積か太さいために各種
の電極材として極めて有用である。例えば活性炭素繊維
を分極性電極として用いた電気二重ノーキャパシタの場
合、大きな比表面積のために多量のドーピングが可能で
あり、このため高エネルギーの出力を有するキャパシタ
の作製が可能であるという特徴を有する。
Activated carbon fibers having a large specific surface area of 100 to 3000 l'g are extremely useful as various electrode materials because of their large contact area with solutions. For example, in the case of an electric double non-capacitor that uses activated carbon fiber as a polarizable electrode, a large amount of doping is possible due to its large specific surface area, which makes it possible to create a capacitor with high energy output. has.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのように有用な活性炭素繊維を用いた電
極も充填密度が低くかつ?711の抵抗が大きいという
欠点を有していた。このため各種の電池の容積が大きく
なりかつ各種電池の内部抵抗が大さくなるという欠点が
あった。
However, electrodes using such useful activated carbon fibers also have a low packing density. 711 had the disadvantage of high resistance. For this reason, there have been disadvantages in that the volumes of the various batteries become large and the internal resistance of the various batteries becomes large.

活性炭素繊維からなる電極の充#1イ度の向上と抵抗の
低下は当該業者の間では強く要望されていたことであっ
た。例えばW、極の導電性を上げる方法としては活性炭
素繊維に導電性改良層を担持させる方法がすでに提案さ
れている。また充填密度を上げる方法としては一般的な
活性炭粉末をテフロン結着剤で固型化した電極がすでに
報告されている(特開昭60−178713゜しかしな
がらこの方法を用いた場合においても電極の性能は十分
なものではなかった。
There was a strong desire among those in the industry to improve the chargeability and reduce the resistance of electrodes made of activated carbon fibers. For example, as a method for increasing the conductivity of a W electrode, a method has already been proposed in which a conductivity improving layer is supported on activated carbon fibers. Furthermore, as a method of increasing the packing density, an electrode in which general activated carbon powder is solidified with a Teflon binder has already been reported (Japanese Patent Application Laid-Open No. 178713/1983) However, even when this method is used, the electrode performance is was not sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の目的に鑑みて広範に亘る検討を行っ
たところ、活性炭素繊維を粉砕して得ら几る活性炭に炭
素繊維を粉砕して得られる炭素粉を混合しざらにテフロ
ン等の結着剤を用いて結着することによって得られる活
性炭1!!:fMは、従来の活性炭電極の有する有用な
特性を何ら失うことなくa極の高充填化と高4電化が同
時に達成でさることを見い出した。
The present inventors conducted extensive studies in view of the above objectives, and found that carbon powder obtained by pulverizing carbon fibers was mixed with active carbon obtained by pulverizing activated carbon fibers, and Teflon, etc. Activated carbon obtained by binding using a binder of 1! ! :fM has discovered that high filling of the a-electrode and high 4-electrification can be achieved at the same time without losing any of the useful properties of conventional activated carbon electrodes.

本発明で用いられる活性炭素繊維とは、吸着能に特に優
れた炭素繊維であり、一般的には100己4以上の比表
面積を有するものである。好ましい比表面積は500r
IVg以上特に140 otrl1g以上のものを用い
るのがよい。
The activated carbon fiber used in the present invention is a carbon fiber that has particularly excellent adsorption ability, and generally has a specific surface area of 100:4 or more. The preferred specific surface area is 500r
It is preferable to use IVg or more, especially 140 otrl1g or more.

該活性炭電極は電気二重層キャパシター等様々なものに
用いることができるが特にリチウム二次電池用正極とし
て用いるのがよい。またこの場合には特に、活性炭とし
てIp / I□が0.3以下の主として非品性構造よ
りなる活性炭を用いるのがよい。
The activated carbon electrode can be used for various things such as electric double layer capacitors, but it is particularly suitable for use as a positive electrode for lithium secondary batteries. Further, in this case, it is particularly preferable to use activated carbon having an Ip/I□ of 0.3 or less and mainly having a non-grade structure.

ここでIPとはX線回折強度曲線の(002)面の回折
ピークの両裾に接線を引き、その接線から上の部分の強
度の最大値であり、loとはIPを示す回折角2θにお
ける実測回折強度から空気の散乱強度を差し引いた残り
のX線強度である。主として非品性構造よりなる活性炭
特に活性炭素繊維を正極に用いたリチウム二次電池は極
めて優れた性能を有することがすでに本発明の出願人と
同一の出願人により報告されている(特願昭6l−23
8951)。
Here, IP is the maximum value of the intensity above the tangent line drawn at both ends of the diffraction peak on the (002) plane of the X-ray diffraction intensity curve, and lo is the maximum intensity value at the diffraction angle 2θ indicating the IP. This is the X-ray intensity remaining after subtracting the air scattering intensity from the measured diffraction intensity. It has already been reported by the same applicant as the applicant of the present invention that a lithium secondary battery using activated carbon, particularly activated carbon fiber, as a positive electrode, which has a mainly non-standard structure, has extremely excellent performance. 6l-23
8951).

しかしながらこの活性炭も単位重量あたりの性能は繊め
て優几たものであるが、単位体積あたりの性能は今だ十
分なものではなく、活性炭電極の高密度化と同時に活性
炭電極の高導電化が強く要望されてさた。
However, although the performance per unit weight of this activated carbon is quite excellent, the performance per unit volume is still not sufficient, and at the same time as the density of activated carbon electrodes has been increased, the conductivity of activated carbon electrodes has also been improved. It was strongly requested.

本発明で用いられる活性炭素繊維の原料は合成有機高分
子またはピッチよりなるものが挙げられる。該合成有機
高分子にはポリビニルアルコール、フェノール樹脂、ポ
リアクリロニトリル等のような純合成高分子の他繊維素
誘導体等の半合成高分子を包含する。
Raw materials for the activated carbon fibers used in the present invention include synthetic organic polymers or pitch. The synthetic organic polymer includes purely synthetic polymers such as polyvinyl alcohol, phenol resin, polyacrylonitrile, etc., as well as semi-synthetic polymers such as cellulose derivatives.

本発明で用いら几る活性炭素繊維の直径は特に限定され
ないが1μm以上30μm以下のものを用いるのか良好
な性能の電極を得られるのでよい。
The diameter of the activated carbon fiber used in the present invention is not particularly limited, but it is preferable to use a diameter of 1 μm or more and 30 μm or less since an electrode with good performance can be obtained.

本発明において活性炭素繊維の微粉末状物を得る手段は
特に限定されないか、ボールミルを用いて粉砕するのが
均質な試料が得られるのでよい。
In the present invention, the means for obtaining a fine powder of activated carbon fibers is not particularly limited, and pulverization using a ball mill is preferable since a homogeneous sample can be obtained.

ボールミルを用いて好ましくは数時間程度粉砕するのが
よい。
Grinding is preferably carried out using a ball mill for several hours.

本発明において粉砕した後の繊維のアスペクト比は3以
上100以下が好ましく特に好ましくは5以上50以下
のものを用いるのがよい。
In the present invention, the aspect ratio of the fiber after pulverization is preferably 3 or more and 100 or less, particularly preferably 5 or more and 50 or less.

太海囲の′II!虜を渇ふ協会には導電材と1−での炭
素繊維を混入する必要があった。活性炭素繊維の電導度
は100(l・α)−1以下であるために、これにバイ
ンダーを加え固型化した場合にざらに電気伝導度か低下
する。このため導電性向上のために他の導電材料を混合
する必要かあった。このための導電材としては金属細線
、炭素粉等様々なものが考えられるか、本発明者らの研
究によれば導電材としては炭素繊維を粉砕して得られる
炭素粉を用いるのが導電性の向上効果が極めて大きいの
でよいことが認められた。例えば金属細線を用いた場合
には、活性炭素繊維の粉砕物との比重が大きく違うため
に均一混合が極めて困難であって金属細線どうしが固ま
ってしまうために導電性の向上効果はほとんど望めなか
った。電極の電導性の向上のために炭素粉を混合する方
法は混合する炭素粉を電極重量の1096以上とかなり
多量に混合しなければならず、かつ電導性の大幅な向上
は期待できないために実際上はあまり良好な方法ではな
かった。
Taikai's 'II! It was necessary to mix conductive material and carbon fiber in 1- to the association that thirsts for prisoners. Since the electrical conductivity of activated carbon fibers is less than 100 (l·α) −1, when a binder is added to the activated carbon fibers and solidified, the electrical conductivity decreases considerably. Therefore, it was necessary to mix other conductive materials to improve conductivity. Various conductive materials can be used for this purpose, such as thin metal wires and carbon powder.According to the research of the present inventors, it is best to use carbon powder obtained by crushing carbon fibers as the conductive material. It was recognized that this method is good because the improvement effect is extremely large. For example, when thin metal wires are used, the specific gravity of the crushed activated carbon fibers is very different, making it extremely difficult to mix them uniformly and the thin metal wires clumping together, resulting in little improvement in conductivity. Ta. The method of mixing carbon powder to improve the conductivity of an electrode requires mixing a considerably large amount of carbon powder, which is at least 1096 times the weight of the electrode, and a significant improvement in conductivity cannot be expected, so it is not practical. The above was not a very good method.

本発明で用いる炭素繊維は特に限定されないか、導電性
か高い材料であり、一般的には100(l・cm)−’
以上、好ましくは101(l・cm)−’以上の電導度
を有するものである。導電性が高いことから特にピッチ
系の炭素繊維を用いるのがよい。ピッチ系の炭素繊維で
は電導度102(l・α)−1程度のものを容易に入手
でざる。これらの炭素繊維は活性炭素繊維の場合と同様
にボールミル等の手法によって容易に粉体化することが
できた。用いる炭素繊維粉体の大きざ形状は特に限定は
されないが、活性炭素繊維と同程度のものを用いるのが
混合が均一に行えかつ導電性の同上効果が大きいのでよ
い。即ち、該炭素繊維粉体はアスペクト比3以上100
以下、好ましくは5以上50以下、平均直径か1〜30
pm 、 電気型4工度はlOo(l・an)−’以上
、比表面積は100ル′g未満である。混合する炭素繊
維粉末の量は特に限定はされないが、活性炭素繊維粉末
に対し通常1〜20重量%、特に好ましくは4〜8重量
%程度混合するのがよい。これ以上混合しても電極の電
導性はほとんど向上しない。
The carbon fiber used in the present invention is not particularly limited, and is a material with high conductivity, generally 100 (l cm)-'
As mentioned above, it preferably has an electrical conductivity of 101 (l·cm)-' or more. It is particularly preferable to use pitch-based carbon fibers because of their high conductivity. Pitch-based carbon fibers with an electrical conductivity of about 102(l·α)-1 are easily available. These carbon fibers could be easily powdered using techniques such as a ball mill, as in the case of activated carbon fibers. The size and shape of the carbon fiber powder to be used is not particularly limited, but it is preferable to use one having the same size as the activated carbon fibers, since this allows for uniform mixing and a large effect on conductivity. That is, the carbon fiber powder has an aspect ratio of 3 or more and 100
Below, preferably 5 or more and 50 or less, average diameter 1 to 30
pm, the electric type 4 degree is more than lOo(l·an)-', and the specific surface area is less than 100 l'g. The amount of carbon fiber powder to be mixed is not particularly limited, but it is usually 1 to 20% by weight, particularly preferably 4 to 8% by weight, based on the activated carbon fiber powder. Even if more than this is mixed, the conductivity of the electrode will hardly improve.

本発明においては結着剤として各種の高分子樹脂例えば
ポリエチレン、ポリプロピレン等を用いるが特にテフロ
ン結着剤(水性またはアルコール性デスバージョン)を
用いるのがよい。添加する結着剤の量は活性炭素繊維粉
末に対し好ましくは5重量%以上20重量%以下の量を
混合するのがよい。
In the present invention, various polymeric resins such as polyethylene, polypropylene, etc. are used as the binder, but it is particularly preferable to use a Teflon binder (aqueous or alcoholic desversion). The amount of the binder added is preferably 5% by weight or more and 20% by weight or less based on the activated carbon fiber powder.

本発明の!極は高密度化高導電化が同時に達成されてお
り各種」L特に二次電池用正極として極めて有用である
。以下、二次゛電池としての利用例を述べる。
The invention! The electrode has achieved high density and high conductivity at the same time, and is extremely useful as a positive electrode for various kinds of batteries, especially secondary batteries. An example of its use as a secondary battery will be described below.

本発明の電極を用いて作られる二次電池の電解質として
は例えば金属の陽イオン、4級アンモニウムイオン、カ
ルボニウムカチオン、オキソニウムカチオン及びピリジ
ニウムカチオン等の陽イオンと陰イオンの塩を挙げるこ
とができる。ここで用いら几る陰イオンとしてはαu4
−1BF4−18bF6−1sb(支)6−1Δ5F6
−1P上′6−1計゛2−等を挙げることができる。特
に好ましい陰イオンとしてはClO4−又はBF4−で
ある。具体的な補助電解質としてはLiCj+04、L
iBF4、LiA!l’F6、NaBF4、NaCJO
4J3u4N; CI!04、KBF4、(06)15
 )30BF4、NH4HF2、LiI、 Liar等
を挙げることができるがこれらに限定されるものではな
い。
Examples of electrolytes for secondary batteries made using the electrode of the present invention include salts of cations and anions such as metal cations, quaternary ammonium ions, carbonium cations, oxonium cations, and pyridinium cations. can. The anion used here is αu4
-1BF4-18bF6-1sb (support)6-1Δ5F6
-1P top '6-1 total '2-, etc. can be mentioned. Particularly preferred anions are ClO4- or BF4-. Specific auxiliary electrolytes include LiCj+04, L
iBF4, LiA! l'F6, NaBF4, NaCJO
4J3u4N; CI! 04, KBF4, (06)15
)30BF4, NH4HF2, LiI, Liar, etc., but are not limited to these.

二次電池の電解液としての有機溶媒は有機非水溶媒であ
り、非プロトン性でかつ高誘電率のものが好ましい。具
体例としてはプロピレンカーボネート、r−ブチロラク
トン、ジメチルスルフオキシド、ジメチルフォルムアミ
ド、アセトニトリル、エチレンカーボネート、テトラヒ
ドロフラン、ジメトキシエタン、ジクロロエタン等を挙
げることができるがこれらに限定されるものではない。
The organic solvent used as the electrolyte of the secondary battery is an organic non-aqueous solvent, and is preferably aprotic and has a high dielectric constant. Specific examples include, but are not limited to, propylene carbonate, r-butyrolactone, dimethyl sulfoxide, dimethyl formamide, acetonitrile, ethylene carbonate, tetrahydrofuran, dimethoxyethane, and dichloroethane.

これらの有機溶媒は一種又は二種以上の混合溶媒として
用いてもよい。
These organic solvents may be used alone or as a mixed solvent of two or more.

電解質の濃度は用いる負極又は正極の種類、電解質の種
類及び有機溶媒の種類等によって異なるので一概に規定
することはでさないが通常は0.001〜10モル/l
の範囲である。
The concentration of the electrolyte varies depending on the type of negative electrode or positive electrode used, the type of electrolyte, the type of organic solvent, etc., so it cannot be specified unconditionally, but it is usually 0.001 to 10 mol/l.
is within the range of

電解質あるいは溶媒中に存在する酸素や水分が電池の性
能を低下させる場合があるため常法に従い、あらかじめ
十分に精製しておくことが望ましい。
Oxygen and moisture present in the electrolyte or solvent may degrade battery performance, so it is desirable to sufficiently purify the material in advance using conventional methods.

本発明の負極として用いられる金属は特に限定されない
が、アルカリ金属、アルカリ土類金属、周期律表第3族
および第4族の金属等が好ましく、例えば、Li 、N
a、 KlBb、 Cs%Be、 Mg、Ca、 Sr
、Ba1Sc、 Y%La、 Ti、 Zr、 AI、
Pb、 Bi、KgSNi等を用いることができる。あ
るいは上記の金属の合金、例えばLi−Mg合金、拍−
AI−へtg金合金Li −k1g合金、Li−a1合
金、l、1−Pb合金等が挙げられる。また炭素繊維や
活性炭素繊維、ポリアセチレン、ポリフェニレン等の導
電性高分子に上記金属を担持させたものを用いることも
でさる。
The metal used as the negative electrode of the present invention is not particularly limited, but alkali metals, alkaline earth metals, metals of Group 3 and Group 4 of the periodic table, etc. are preferable, such as Li, N
a, KlBb, Cs%Be, Mg, Ca, Sr
, Ba1Sc, Y%La, Ti, Zr, AI,
Pb, Bi, KgSNi, etc. can be used. Alternatively, alloys of the above metals, such as Li-Mg alloys,
Examples include AI-hetg gold alloy, Li-k1g alloy, Li-a1 alloy, l, 1-Pb alloy, and the like. It is also possible to use conductive polymers such as carbon fibers, activated carbon fibers, polyacetylene, polyphenylene, etc., on which the above metals are supported.

上記の金属および合金の中でも高電圧および電池の軽量
化のうえで特にリチウム系の金属を用いるのがよい。リ
チウム系の金属を含むものとしては金属リチウムの他に
金属リチウムを含む合金あるいは表面に金属リチウムを
担持させた材料を例示することかできる。
Among the above-mentioned metals and alloys, lithium-based metals are particularly preferably used in view of high voltage and weight reduction of the battery. Examples of materials containing lithium-based metals include, in addition to metallic lithium, alloys containing metallic lithium or materials in which metallic lithium is supported on the surface.

本発明において、必要ならば例えばポリエチレン、ポリ
プロピレン、テフロン等の合成樹脂製の多孔質膜や天然
繊維を両極の間の隔膜として使用してもよい。また電池
は密閉式にして外界からの酸素や水分の混入を防止する
のがよい。
In the present invention, if necessary, a porous membrane made of synthetic resin such as polyethylene, polypropylene, Teflon, etc. or natural fiber may be used as a diaphragm between the two electrodes. It is also preferable that the battery be sealed to prevent oxygen and moisture from entering the battery from the outside world.

以上、二次電池の例を述べたが、同様な電解質を用い両
極に本発明の活性炭電極を用いることによりキャパシタ
ーとしても利用できる。
Although the example of a secondary battery has been described above, it can also be used as a capacitor by using a similar electrolyte and using the activated carbon electrodes of the present invention for both electrodes.

〔実 施 例〕〔Example〕

以下実施例により本発明をざらに詳しく説明する。 The present invention will be explained in more detail with reference to Examples below.

合成例1 〔活性炭素繊維の合成〕 出発原料として平均重合度1700のPVA(ポリビニ
ルアルコール)水溶液より湿式紡糸法により紡糸したP
VA繊維(デニール1800 d、フィラメント数10
0Of 、強度10.5 g/d、伸度7%)から得た
織布を用いた。次に脱水・炭化剤として(8M4 )2
MO4と(NH4)2KPO4の各509を1000g
の水に溶解し、この水溶液を60°に加温しその中に織
布を5分間浸漬し、その後マングルで絞液し、105℃
で3分間乾燥させた。脱水剤の付宥率は重量法で109
6であった。この脱水剤の付着した織布を210℃で3
0分間加熱する際に織布のla幅当り50.gの低張力
をかけることにより繊維の収縮率を制御し4096とし
た。ざらに炭化条件である330℃×10分間とその?
+400℃X20分間の2段階で加熱する際にも織布の
ICm幅当り30Qの低張力をかけて繊維の収縮率を出
発PVA繊維から見て6096とした。なおその時の重
R1m少率は55%であった。以上の様に脱水・炭化を
行った黒色の炭素質繊維よりなる織布を燃焼ガス中で9
50℃1時間30分賦活を行うことにより活性炭素繊維
シートを得た。N2カスにょるB E ’l’法の比表
面積は2300べろであった。この活性炭素繊維のX線
回折強度曲線を理学電機■製回転対陰准型X線回折装遣
Type )IAD −rAを用いて測定した。測定条
件は40 kV 100mA 、 CuK−a線(λ=
1.5418A )、スリット1/2.0.15m++
+、定食速度1°/ min 、フルスケール800 
cpsにおいて透過法で測定した。2θか25″′付近
に存在する筈成していることがわかった( Ip/Io
= o、o 7 )。
Synthesis Example 1 [Synthesis of activated carbon fiber] P was spun by a wet spinning method from a PVA (polyvinyl alcohol) aqueous solution with an average degree of polymerization of 1700 as a starting material.
VA fiber (denier 1800 d, number of filaments 10
0Of, strength 10.5 g/d, elongation 7%) was used. Next, as a dehydration/carbonizing agent (8M4)2
1000g of each 509 of MO4 and (NH4)2KPO4
This aqueous solution was heated to 60°, the woven fabric was immersed in it for 5 minutes, and then the liquid was squeezed with a mangle and heated to 105°C.
and dried for 3 minutes. The acceptance rate of dehydrating agent is 109 by gravimetric method.
It was 6. The woven fabric with this dehydrating agent attached was heated to 210℃ for 3
50.0 per la width of the woven fabric when heated for 0 minutes. The shrinkage rate of the fiber was controlled by applying a low tension of 4096 g. Rough carbonization conditions of 330℃ x 10 minutes and that?
During heating in two steps at +400° C. for 20 minutes, a low tension of 30Q per ICm width of the woven fabric was applied, and the shrinkage rate of the fiber was set to 6096 when viewed from the starting PVA fiber. Note that the weight R1m fraction at that time was 55%. A woven fabric made of black carbonaceous fibers that has been dehydrated and carbonized as described above is placed in a combustion gas for 9 minutes.
An activated carbon fiber sheet was obtained by performing activation at 50° C. for 1 hour and 30 minutes. The specific surface area of the B E 'l' method using N2 gas was 2300 mm. The X-ray diffraction intensity curve of this activated carbon fiber was measured using a rotating anisotropic X-ray diffraction instrument (Type) IAD-rA manufactured by Rigaku Denki. The measurement conditions were 40 kV 100 mA, CuK-a line (λ=
1.5418A), slit 1/2.0.15m++
+, set meal speed 1°/min, full scale 800
Measured by transmission method at cps. It was found that it should exist near 2θ or 25'' (Ip/Io
= o, o7).

固体高分解能N M Itにより内部のざらに微細な構
造の検討を行った。MAS GATE法により測定した
データーポイントは8に、サンプリングポイント1.5
に、スキャン数10000回、の条件で測定を行った1
40PPM付近にピークを有する曲線が得られた事から
フェニル基骨格を中心とする構造である事が確認ざrし
た。表面反射赤外においてC−Hの吸収はまったく観察
ざrしずほぼ完全に炭素化している事が確認された。ま
たこの活性炭素繊維の見かけの比重は0.2であった。
The rough and fine internal structure was examined using solid-state high-resolution NMIt. Data points measured by MAS GATE method are 8, sampling points are 1.5
Measurements were conducted under the following conditions: 10,000 scans
Since a curve having a peak around 40 PPM was obtained, it was confirmed that the structure was centered on a phenyl group skeleton. No C-H absorption was observed in the surface reflection infrared, and it was confirmed that carbonization was almost complete. Further, the apparent specific gravity of this activated carbon fiber was 0.2.

実施例1 合成例1で得ら11だ活性炭素繊維をボールミルを用い
24時間粉砕し粉末状活性炭素繊維を得た。
Example 1 The 11 activated carbon fibers obtained in Synthesis Example 1 were ground for 24 hours using a ball mill to obtain powdered activated carbon fibers.

粒度分布は350メツシユ下が99.6%であった。The particle size distribution was 99.6% below 350 mesh.

走食型亀顕で観察を行ったところ活性炭素繊維粉末は平
均直径が約10μm″Cあってアスペクト比は約15程
度であった。またこの粉末の比表面積は約23ood/
gであり電導度は約5 X 10−’(l・cIn)−
1で仏っだ。
When observed using a scanning microscope, the activated carbon fiber powder had an average diameter of about 10 μm''C and an aspect ratio of about 15.The specific surface area of this powder was about 23 ood/cm.
g, and the conductivity is approximately 5 x 10-'(l・cIn)-
1 is Buddha.

炭素繊維にはピッチ系炭素繊維(ユニオンカーバイド社
製)であって電導度は約102(l・cm)−’のもの
を用いた。この炭素繊維をボールミルによって上記の条
件とまったく同一の条件において粉砕した。粒度分布は
350メツシユ下か99.4%であった。この炭素繊維
粉末の平均直径は15μであり、アスペクト比は約20
であった。
The carbon fibers used were pitch-based carbon fibers (manufactured by Union Carbide) with an electrical conductivity of about 102 (l·cm)-'. This carbon fiber was pulverized using a ball mill under exactly the same conditions as above. The particle size distribution was below 350 mesh or 99.4%. The average diameter of this carbon fiber powder is 15μ, and the aspect ratio is about 20.
Met.

このようにして得られた粉末状活性炭素繊維および粉末
状炭素繊維をテフロン結着剤をバインダーとして成形し
た。用いた粉末状活性炭素繊維は80%(重量%)、粉
末状炭素繊維は6%、テフロン結着剤は1496を用い
た(テフロン結着剤はテフロンの水性ディスパージョン
を使用したまた電極中に含まれるテフロン結着剤の重量
は乾燥重量とした)。おのおのを混合した後に170℃
で圧縮成形を行い厚さ約iMnのシートを得た。このシ
ートの電尋度は3 X 10’LΩ・cm)−’であっ
た。また見かけの比重は0.6であって大きく向上して
いた。
The powdered activated carbon fibers and powdered carbon fibers thus obtained were molded using a Teflon binder as a binder. The powdered activated carbon fiber used was 80% (weight%), the powdered carbon fiber was 6%, and the Teflon binder was 1496 (the Teflon binder was an aqueous dispersion of Teflon. The weight of the Teflon binder included was the dry weight). 170℃ after mixing each
Compression molding was performed to obtain a sheet with a thickness of about iMn. The electrical resistance of this sheet was 3×10'LΩ·cm)-'. Further, the apparent specific gravity was 0.6, which was greatly improved.

比較例1 実施例1で得られた粉末状活性炭素繊維を′86%、テ
フロン結着剤を14%混合し実施例1と同様にして厚ざ
約1mmのシートを得た。このシートの屯導度は6 X
 10−2(l・cm)−’であって粉末状炭素繊維を
混入した場合と比較し大幅に低下していた。
Comparative Example 1 A sheet having a thickness of approximately 1 mm was obtained in the same manner as in Example 1 by mixing 86% of the powdered activated carbon fiber obtained in Example 1 and 14% of the Teflon binder. The conductivity of this sheet is 6X
10-2 (l·cm)-', which was significantly lower than when powdered carbon fiber was mixed.

比較例2 実施例1で得られた粉末状活性炭素繊維を70%、テフ
ロン結着剤を15%、電導性カーボン粉〔ケツチュンブ
ラックEC;■ライオン製〕を15%混合し実施例1と
同様に加圧成形を行った。
Comparative Example 2 70% of the powdered activated carbon fiber obtained in Example 1, 15% of Teflon binder, and 15% of conductive carbon powder [Ketsutun Black EC; manufactured by Lion] were mixed to produce the same as Example 1. Pressure molding was performed in the same manner.

得られたシートの愼導度は8 X 10−’(l・on
)−’であって粉末状炭素繊維を用いた場合と比較し大
幅に低下していた。
The conductivity of the obtained sheet was 8 x 10-' (l・on
)-', which was significantly lower than when powdered carbon fiber was used.

比較例3 ステンレス繊維〔ナスロン;■日本精線製〕を31rr
mの長さに切断し金属細線を得た。実施例1で得られた
粉末状活性炭素繊維を60%、上記の金属細線を259
6、テフロン結着剤を15%加え混合した。ざらに加圧
成形を行いシートを得た。得られたシートの電導度は5
×10°(l・cm)−’であって、粉末状炭素繊維を
混合した場合程大きな効果はなかった。顕微鏡において
観察したところ活性炭素繊維と金属細線とは相分離して
いた。
Comparative Example 3 Stainless fiber [NASLON; ■Made by Nippon Seisen] 31rr
A thin metal wire was obtained by cutting into a length of m. 60% of the powdered activated carbon fiber obtained in Example 1, 259% of the above metal wire
6. 15% Teflon binder was added and mixed. Rough pressure molding was performed to obtain a sheet. The electrical conductivity of the obtained sheet is 5
×10° (l·cm)-', and the effect was not as great as when powdered carbon fiber was mixed. When observed under a microscope, the activated carbon fiber and the thin metal wire were found to be phase separated.

粉末状活性炭素繊維よりなる電極の電導性を上げるため
には粉末状炭素繊維を混合することが最も効果があった
The most effective way to increase the conductivity of electrodes made of powdered activated carbon fibers was to mix powdered carbon fibers.

使用例1 実施例1で得られた厚さ約1+++mのシートを直径1
αの円盤状に打ち抜いた。これを正極に用い、負極に金
属リチウムを用いた二次電池をアルゴン雰囲気化で作製
した。正極と負極は厚さ0.5rrtnのガラス繊維フ
ィルタを介して両極に設置された。
Usage example 1 The sheet with a thickness of about 1+++m obtained in Example 1 was cut into a sheet with a diameter of 1
It was punched out into a disk shape of α. A secondary battery using this as a positive electrode and metallic lithium as a negative electrode was fabricated in an argon atmosphere. The positive electrode and the negative electrode were placed through a glass fiber filter with a thickness of 0.5 rrtn.

1lEN液にはプロピレンカーボネートに過塩素酸リチ
ウムをI M/7の濃度で溶解させたものを用いた。
The 11EN solution was prepared by dissolving lithium perchlorate in propylene carbonate at a concentration of IM/7.

正極側の集電用の電極としてはニッケルエキスバンドメ
タルを用いた。この二次電池の出力密度を開放端電圧が
3Vの場合において測定したところ9 kW/&pであ
った。また比較例で得ら几た試料を用いてリチウム二次
電池を作製し出力密度を求め、その結果を表1に示した
Nickel expanded metal was used as the current collecting electrode on the positive electrode side. The output density of this secondary battery was measured at an open circuit voltage of 3V and was found to be 9 kW/&p. In addition, a lithium secondary battery was manufactured using the sample obtained in the comparative example, and the output density was determined, and the results are shown in Table 1.

実施例は極めて饅れた出力密度を示したがその他の出力
密度は大さく低下していた。
The examples showed extremely low power densities, but the other power densities were greatly reduced.

実施例2 市販の活性炭素繊維(比表面積約2500rrVg、I
P/Io= 0.4 )をボールミルを用いて24時間
粉砕し粉末状活性炭素繊維を得た。粒度分布は350メ
ツシユ下が99.596であった。走査型電顕て観察を
行ったところ粉末状活性炭素繊維は平均直径が約15μ
mであって7スベクト比は約10であった。こ几を用い
て実施例1とまったく同様にして電極を作製した。
Example 2 Commercially available activated carbon fiber (specific surface area approximately 2500rrVg, I
P/Io=0.4) was ground for 24 hours using a ball mill to obtain powdered activated carbon fibers. The particle size distribution was 99.596 below 350 mesh. When observed using a scanning electron microscope, the powdered activated carbon fibers had an average diameter of approximately 15 μm.
m, and the 7 spectral ratio was approximately 10. An electrode was produced in exactly the same manner as in Example 1 using the oven.

比較例4〜6 実施例2で得られた粉末状活性炭素繊維を用いた以外は
比較例1〜3とまったく同様にして電極を作製した。
Comparative Examples 4 to 6 Electrodes were produced in exactly the same manner as Comparative Examples 1 to 3, except that the powdered activated carbon fiber obtained in Example 2 was used.

使用例2 実施例2および比較例4.5.6の電極を用い使用例1
と同様にしてリチウム二次電池を作製した。おのおのの
電極の電導度とそれを用いたリチウム二次電池の出力密
度を表2に示した。
Usage Example 2 Usage Example 1 using the electrodes of Example 2 and Comparative Example 4.5.6
A lithium secondary battery was produced in the same manner as above. Table 2 shows the electrical conductivity of each electrode and the output density of a lithium secondary battery using the electrode.

実施例は極めて優rした出力密度を示したかその他の出
力密度は大さく低下していた。
The examples showed extremely superior output densities, while the other output densities were greatly reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の1!極は充填密度の向上と高導電化を同時に達
成でさるために垣気二重層キャパシタあるいはリチウム
二次電池等の電画として工業的に極めて有用である。
1 of the present invention! The electrode is extremely useful industrially as an electrical device for double-layer capacitors or lithium secondary batteries because it can simultaneously improve packing density and high conductivity.

Claims (1)

【特許請求の範囲】[Claims] (1)主としてアスペクト比3以上100以下であり、
比表面積が100m^2/g以上、平均直径が1〜30
μmである微粉末繊維状炭素粉とアスペクト比3以上1
00以下であり、比表面積が100m^2/g未満、平
均直径が1〜30μm、電気伝導度が10^0(l・c
m)^−^1以上である微粉末繊維状炭素粉との混合物
より成形されてなる電極。
(1) Mainly the aspect ratio is 3 or more and 100 or less,
Specific surface area is 100m^2/g or more, average diameter is 1 to 30
Micron powder fibrous carbon powder and aspect ratio of 3 to 1
00 or less, the specific surface area is less than 100 m^2/g, the average diameter is 1 to 30 μm, and the electrical conductivity is 10^0 (l・c
m) An electrode formed from a mixture with finely powdered fibrous carbon powder having a particle size of ^-^1 or more.
JP62052271A 1987-03-06 1987-03-06 activated carbon electrode Pending JPS63218159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052271A JPS63218159A (en) 1987-03-06 1987-03-06 activated carbon electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052271A JPS63218159A (en) 1987-03-06 1987-03-06 activated carbon electrode

Publications (1)

Publication Number Publication Date
JPS63218159A true JPS63218159A (en) 1988-09-12

Family

ID=12910113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052271A Pending JPS63218159A (en) 1987-03-06 1987-03-06 activated carbon electrode

Country Status (1)

Country Link
JP (1) JPS63218159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
JP2009525415A (en) * 2006-01-31 2009-07-09 ラドヤード, ライル イストバン, Nonwoven fiber materials and electrodes made therefrom
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
JP2017076485A (en) * 2015-10-13 2017-04-20 株式会社ギャラキシー Carbon electrode and method for manufacturing carbon electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358641A (en) * 1976-11-05 1978-05-26 Fuji Electric Co Ltd Method of manufacturing electrode for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358641A (en) * 1976-11-05 1978-05-26 Fuji Electric Co Ltd Method of manufacturing electrode for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
KR100752945B1 (en) * 2003-05-09 2007-08-30 티디케이가부시기가이샤 Electrochemical capacitor
US7310219B2 (en) 2003-05-09 2007-12-18 Tdk Corporation Electrochemical capacitor
JP2009525415A (en) * 2006-01-31 2009-07-09 ラドヤード, ライル イストバン, Nonwoven fiber materials and electrodes made therefrom
KR101299085B1 (en) * 2006-01-31 2013-08-27 루디야드 라일 이스트반 Non-woven fibrous materials and electrodes therefrom
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
JP2017076485A (en) * 2015-10-13 2017-04-20 株式会社ギャラキシー Carbon electrode and method for manufacturing carbon electrode

Similar Documents

Publication Publication Date Title
TWI527299B (en) Lithium-ion battery negative electrode with carbon particles, lithium-ion battery with a negative and lithium-ion battery
US20030158342A1 (en) Activated carbon material, process for producing the same and electric double layer capacitor employing the same
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
JP5540470B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP3076416B1 (en) Lithium ion capacitor
KR20010106487A (en) Fibril composite electrode for electrochemical capacitors
JP2003132889A (en) Anode material for lithium ion secondary battery and its manufacturing method
KR20200035447A (en) Positive electrode coating solution, positive electrode precursor, and non-aqueous lithium power storage element
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP5817872B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3402656B2 (en) Non-aqueous electrolyte battery
JP7406405B2 (en) Activated carbon for electricity storage device electrodes
JPS63218159A (en) activated carbon electrode
JPH09232190A (en) Electric double layer capacitor
JP2010238808A (en) Capacitor separator electrode integrated element and capacitor using the same
JP3638642B2 (en) Activated carbon sheet and electric double layer capacitor
EP0721230A1 (en) Organic electrolyte cell
JP2002151364A (en) Electric double-layer capacitor and its manufacturing method
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2627033B2 (en) Manufacturing method of organic electrolyte battery
JP3973170B2 (en) Lithium ion secondary battery and method for producing electrode for lithium secondary battery
JPS63168973A (en) Electric cell
JP3310695B2 (en) Carbon electrode and lithium secondary battery using the same
CN118076559B (en) Negative electrode for non-graphitizable carbon and lithium ion secondary battery, and lithium ion secondary battery
JPS63254667A (en) activated carbon fiber electrode