JPS63217522A - Magnetic recording body - Google Patents
Magnetic recording bodyInfo
- Publication number
- JPS63217522A JPS63217522A JP5077787A JP5077787A JPS63217522A JP S63217522 A JPS63217522 A JP S63217522A JP 5077787 A JP5077787 A JP 5077787A JP 5077787 A JP5077787 A JP 5077787A JP S63217522 A JPS63217522 A JP S63217522A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- film
- substrate
- films
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 39
- 239000000696 magnetic material Substances 0.000 claims abstract description 15
- 239000011148 porous material Substances 0.000 claims abstract description 7
- 239000010407 anodic oxide Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 12
- 229910000676 Si alloy Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 abstract description 8
- 239000000956 alloy Substances 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 3
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000012856 packing Methods 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 79
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 27
- 229910052782 aluminium Inorganic materials 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 238000007743 anodising Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910018523 Al—S Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、特に垂直磁気記録に好適な磁気記録体に関
し、基板上に陽極酸化膜を設け、この陽極酸化膜の微細
孔に磁性体を充填し、これを磁性膜とした磁気記録体に
おいて、基板としてAl−Si合金膜を使用することに
より、磁性膜の機械的強゛度、表面硬度を高め、磁性膜
の耐久性を向上するようにしたちのである。Detailed Description of the Invention "Industrial Application Field" The present invention relates to a magnetic recording body particularly suitable for perpendicular magnetic recording, in which an anodic oxide film is provided on a substrate and a magnetic material is inserted into the fine pores of the anodic oxide film. By using an Al-Si alloy film as a substrate in a magnetic recording material filled with aluminum and made into a magnetic film, the mechanical strength and surface hardness of the magnetic film are increased, and the durability of the magnetic film is improved. It's Nishichino.
「従来の技術」
従来より、ガラス板などの硬質基板上に99゜99%以
上の高純度アルミニウムを真空蒸着法、スパッタ法など
の薄膜形成法によって数μmの厚さの膜状に密着形成し
、このアルミニウム膜を陽極酸化処理して陽極酸化膜を
形成し、この陽極酸化膜の微細孔内に鉄(Fe)、ニッ
ケル(N i)、コバルト(Co)やこれらの合金など
の磁性体を電解析出させて充填してなる磁気記録体が、
特に垂直磁気記録方式に好適であるとして知られている
。"Conventional technology" Conventionally, high-purity aluminum of 99°99% or higher is adhered to a film several micrometers thick on a hard substrate such as a glass plate using a thin film forming method such as vacuum evaporation or sputtering. This aluminum film is anodized to form an anodized film, and a magnetic material such as iron (Fe), nickel (Ni), cobalt (Co), or an alloy thereof is injected into the micropores of this anodic oxide film. A magnetic recording material formed by electrolytic deposition and filling is
It is known to be particularly suitable for perpendicular magnetic recording systems.
「発明が解決しようとする問題点」
しかし、上記のような基板上に高純度アルミニウム膜を
設けた磁気記録体には次のような問題点があった。``Problems to be Solved by the Invention'' However, the magnetic recording medium in which a high-purity aluminum film is provided on a substrate as described above has the following problems.
■8ガラスなどの基板上に高純度アルミニウムを気相析
出させるとき、基板上に析出したアルミニウムの結晶が
異常成長を起こしやすいので、このアルミニウム膜を陽
極酸化処理する際、この酸化処理が均一な状態で行なわ
れず、生成された陽極酸化膜の微細孔内に磁性体が充填
されない不良部分を生じ易く、これによって磁気記録体
の磁気記録性能が低下する。■8 When high-purity aluminum is vapor-phase deposited on a substrate such as glass, the aluminum crystals deposited on the substrate tend to grow abnormally, so when anodizing this aluminum film, this oxidation treatment is If the anodic oxide film is not filled with magnetic material, defective portions are likely to occur in the fine pores of the produced anodic oxide film, which deteriorates the magnetic recording performance of the magnetic recording body.
■、高純度アルミニウムは、ガラス製基板あるいはポリ
エチレンテレフタレートなどのプラスチック基板との密
着性が悪いので、衝撃や摩擦などにより基板上のアルミ
ニウム膜および磁性体が充填された陽極酸化膜が剥離し
やすい。(2) High-purity aluminum has poor adhesion to glass substrates or plastic substrates such as polyethylene terephthalate, so the aluminum film on the substrate and the anodic oxide film filled with magnetic material are likely to peel off due to impact or friction.
■、上記の磁気記録体では、その表面が硬質の陽極酸化
膜で構成されてはいるものの下地が比較的軟い高純度ア
ルミニウムからできているため、その軟い下地の影響を
受けて表面硬度が低く、磁気記録体の使用の際、その表
面に傷を生じやすい。■Although the surface of the magnetic recording medium described above is composed of a hard anodic oxide film, the base is made of relatively soft high-purity aluminum, so the surface hardness is affected by the soft base. The surface of the magnetic recording medium is easily scratched when the magnetic recording medium is used.
この発明は、上記の問題点を解消し、基板上のアルミニ
ウム膜および陽極酸化膜の機械的強度を向上させ、しか
も磁気記録性能の優れた磁気記録体を提供することを目
的としたものである。The present invention aims to solve the above-mentioned problems, improve the mechanical strength of the aluminum film and anodized film on the substrate, and provide a magnetic recording medium with excellent magnetic recording performance. .
「問題点を解決するための手段」
この発明では、基板上にAl−Si合金膜を設け、この
膜上に陽極酸化膜を設け、この陽極酸化膜の微細孔内に
磁性体を充填し、上記Al−Si合金をSi 10−
1,000ppm 、 AI残部の組成としたことをそ
の解決手段とした。"Means for Solving the Problems" In this invention, an Al-Si alloy film is provided on a substrate, an anodized film is provided on this film, and a magnetic material is filled in the micropores of this anodized film. The above Al-Si alloy is Si 10-
The solution was to set the composition to 1,000 ppm with the remainder of AI.
第1図は、この発明の磁気記録体の第1の例を示すもの
で、図中符号lは基板である。この基板1は、硬質ガラ
ス、セラミックスなどの無機非金属系硬質材料、ポリエ
チレンテレフタレートなどの合成樹脂材料などの材料を
板状に成形したものである。FIG. 1 shows a first example of the magnetic recording body of the present invention, and reference numeral l in the figure represents a substrate. The substrate 1 is formed into a plate shape from a material such as hard glass, an inorganic nonmetallic hard material such as ceramics, or a synthetic resin material such as polyethylene terephthalate.
この基板1上には、Al−Si合金膜2が設けられてい
る。このA I−S i合金膜は、Siを10〜I 、
000ppm 、 AI残部含有するアルミニウム合金
を材料として、真空蒸着法、スパッタ法、イオンブレー
ティング法、CVD法などの薄膜形成法により基板1上
に膜状に形成するかあるいは上記合金の薄膜を基板1上
に圧接することにより得られる。On this substrate 1, an Al-Si alloy film 2 is provided. This A I-S i alloy film contains Si of 10 to I,
Using an aluminum alloy containing 000 ppm and the remainder of AI as a material, a film is formed on the substrate 1 by a thin film forming method such as a vacuum evaporation method, a sputtering method, an ion blasting method, or a CVD method, or a thin film of the above alloy is formed on the substrate 1. Obtained by pressing on top.
上記のAl−Si合金中のSi含有虫は、IO〜1,0
00ppmであるが、このSi含有量が10 ppm未
満であると基板上に気相析出する際、結晶の微細化およ
び陽極酸化膜の硬度向上という効果が得られなくなる。The Si-containing insects in the above Al-Si alloy are IO ~ 1,0
00 ppm, but if the Si content is less than 10 ppm, the effect of making crystals finer and improving the hardness of the anodic oxide film cannot be obtained during vapor phase precipitation on the substrate.
また、Si含有量が1,000ppmを越えると陽極酸
化処理の際、陽極酸化膜の部分に高抵抗のAl−5i系
化合物(AlsSi等)が生成するために、磁性体の電
解析出が不可能となる。Additionally, if the Si content exceeds 1,000 ppm, high-resistance Al-5i compounds (AlsSi, etc.) are generated in the anodic oxide film during anodizing, making it impossible to electrolytically deposit magnetic materials. It becomes possible.
このAl−Si合金膜は、これの上に設けられる陽極酸
化膜の素地になると共に、陽極酸化処理時および磁性体
析出時の給電部材となるもので、陽極酸化膜を化成後の
残余の厚さが0.1〜2μl程度となるようにその厚さ
が調整される。この残余の厚さが0.1μm未満であれ
ば上記給電時の電気抵抗が大きくなって不都合であり、
2μmを越えると陽極酸化膜の見掛けの機械的強度、表
面硬度が低下して不都合である。このAl−Si合金は
、その材料としてゾーン精製等により高純度化したアル
ミニウム(A1)とケイ素(S i)を使用することが
好ましい。This Al-Si alloy film becomes the base for the anodic oxide film provided on it, and also serves as a power supply member during anodizing treatment and magnetic substance deposition. The thickness is adjusted so that the thickness is about 0.1 to 2 μl. If this remaining thickness is less than 0.1 μm, the electrical resistance during power supply will increase, which is disadvantageous.
If it exceeds 2 μm, the apparent mechanical strength and surface hardness of the anodic oxide film decreases, which is disadvantageous. It is preferable to use aluminum (A1) and silicon (Si) highly purified by zone refining etc. as materials for this Al-Si alloy.
このAl−Si合金膜2の上には磁性膜3が一体に設け
られている。この磁性膜3は、Al−Si合金膜2を蓚
酸電解浴、硫酸電解浴などの電解浴を用い、陽極酸化処
理することによりAl−Si合金膜2表面にこれに一体
に形成された陽極酸化膜に、その化成時に生成された微
細孔内に鉄(Pe)、ニッケル(N i)、コバルト(
Go)やこれらの合金などの磁性体を電解析出させて充
填し、その表面を研削してなるもので、その厚さは0.
5〜1,5μm程度になっている。この陽極酸化処理お
よび磁性体析出は、基板lの内周端縁あるいは外周端縁
に給電電極を接続し、上記Al−Si合金膜2を介して
給電して行なう方法等によって実施される。A magnetic film 3 is integrally provided on this Al--Si alloy film 2. This magnetic film 3 is formed integrally on the surface of the Al-Si alloy film 2 by anodizing the Al-Si alloy film 2 using an electrolytic bath such as an oxalic acid electrolytic bath or a sulfuric acid electrolytic bath. In the film, iron (Pe), nickel (Ni), cobalt (
It is made by electrolytically depositing and filling a magnetic material such as Go) or an alloy thereof, and then grinding the surface, and its thickness is 0.
The thickness is approximately 5 to 1.5 μm. The anodic oxidation treatment and magnetic substance deposition are carried out by connecting a power supply electrode to the inner or outer peripheral edge of the substrate 1 and supplying power through the Al--Si alloy film 2.
この磁性膜3の上には、必要に応じ、シリカ、グラファ
イトなどからなる保護膜、フロロカーボン系潤滑剤など
からなる潤滑膜等を適宜設けることもできる。On this magnetic film 3, a protective film made of silica, graphite, etc., a lubricating film made of fluorocarbon lubricant, etc. can be provided as appropriate.
上記の磁気記録体は、ガラスなどの基板上に、陽極酸化
膜の素地になると共に陽極酸化処理時および磁性体析出
時の給電部材になるものとして、Si 10−1,0
00ppm、残部AIの組成のAl−Si合金膜を設け
たことにより、磁気記録体の磁気記録性能および機械的
強度を向上させることができている。The above-mentioned magnetic recording body is made of Si 10-1,0 on a substrate such as glass, which serves as a base for an anodic oxide film and also serves as a power supply member during anodizing treatment and magnetic substance deposition.
By providing an Al-Si alloy film having a composition of 0.00 ppm and the remainder being AI, it is possible to improve the magnetic recording performance and mechanical strength of the magnetic recording medium.
このような性能向上の要因を説明すると、まず、上記A
l−Si合金は基板上に気相析出させても、高純度アル
ミニウムで起こるような結晶の異常成長がなく、Al−
Si合金は結晶粒が非常に微細な状態で基板上に析出し
、Al−Si合金膜を形成するので、このAl−Si合
金膜の陽極酸化処理が均一に行なわれ、陽極酸化膜に生
成された微細孔内に磁性体が充填されない不良の発生を
防ぎ、この結果磁気記録体の磁気記録性能を向上させる
ことができる。To explain the factors behind this performance improvement, first,
Even if the l-Si alloy is deposited on a substrate in a vapor phase, there is no abnormal crystal growth that occurs with high-purity aluminum, and the Al-Si alloy
Since the Si alloy precipitates on the substrate with very fine crystal grains and forms an Al-Si alloy film, the anodic oxidation treatment of this Al-Si alloy film is performed uniformly, and the anodic oxidation film is produced. This prevents the occurrence of defects in which the magnetic material is not filled into the fine holes, and as a result, the magnetic recording performance of the magnetic recording body can be improved.
また、上記Al−Si合金は、ガラスなど基板として使
用される材料との密着性が優れている。これはAl−S
i合金に含有されるSiにより5iftを含むガラスな
どの基板上に密着しやすいためと考えられる。したがっ
て上記Al−Si合金では、衝撃や摩擦などにより、基
板上からこの合金膜が剥離してしまう不都合を生じにく
く、磁気記録体の機械的強度を向上させることができる
。また、高純度アルミニウムはポリエチレンテレフタレ
ートとの密着性が悪く、容易に剥離を起こすためにポリ
エチレンテレフタレートを基板として使用するのが難し
かったが、Al−Si合金では、ポリエチレンテレフタ
レートとの密着性が良好に得られ、ポリエチレンテレフ
タレートを材料とする基板が使用可能となる。Furthermore, the Al-Si alloy has excellent adhesion to materials used as substrates, such as glass. This is Al-S
This is thought to be because the Si contained in the i-alloy makes it easier to adhere to a substrate such as glass containing 5ift. Therefore, with the Al-Si alloy, the alloy film is less likely to peel off from the substrate due to impact or friction, and the mechanical strength of the magnetic recording medium can be improved. In addition, high-purity aluminum has poor adhesion with polyethylene terephthalate and easily peels off, making it difficult to use polyethylene terephthalate as a substrate, but Al-Si alloy has good adhesion with polyethylene terephthalate. As a result, a substrate made of polyethylene terephthalate can be used.
また、上記A I−S i合金は、高純度アルミニウム
に比べ機械的強度が高いので、これを下地とする陽極酸
化膜の表面硬度を高め、この結果磁気記録体表面の機械
的強度を向上させることができる。Furthermore, since the above-mentioned AI-Si alloy has higher mechanical strength than high-purity aluminum, it increases the surface hardness of the anodic oxide film that is based on it, and as a result, improves the mechanical strength of the surface of the magnetic recording body. be able to.
第2図は、この発明の磁気記録体の第2の例を示すもの
で、この例では、基板lがアルミニウムまたはアルミニ
ウム合金からなる素地1aと、この素地1aの上に形成
された第1の陽極酸化膜1bとからなっている。第1の
陽極酸化膜1bは、素地1aを蓚酸電解浴、硫酸電解浴
などの電解浴を用い、陽極酸化処理することにより素地
la上にこれに一体に形成されたもので、その厚さが1
0〜20μm程度のものである。この第1の陽極酸化膜
!bは、基板lを硬質化するためのものであり、したが
ってその厚さが108m未満では基板1の硬質化に寄与
せず、最低でも5μmは必要である。また、第1の陽極
酸化膜tbは、硬質化のために低温浴、高電圧で電解処
理したものが好ましい。この基板l上には、先の例と同
様に、厚さ0.1〜2μm程度のAl−Si合金膜(S
i10〜LOOOppm、AI残部)が設けられ、さら
に磁性膜3が同様に設けられている。FIG. 2 shows a second example of the magnetic recording body of the present invention. In this example, the substrate l is made of aluminum or an aluminum alloy, and a first base material 1a formed on the base material 1a. It consists of an anodic oxide film 1b. The first anodic oxide film 1b is formed integrally on the substrate la by anodizing the substrate 1a using an electrolytic bath such as an oxalic acid electrolytic bath or a sulfuric acid electrolytic bath. 1
It is about 0 to 20 μm. This first anodic oxide film! b is for hardening the substrate 1, and therefore, if its thickness is less than 108 m, it does not contribute to hardening the substrate 1, and a thickness of at least 5 μm is required. Further, the first anodic oxide film tb is preferably electrolytically treated in a low temperature bath at high voltage in order to harden it. On this substrate l, as in the previous example, an Al-Si alloy film (S
i10 to LOOOppm, remainder of AI), and a magnetic film 3 is similarly provided.
この例の磁気記録体は、磁気記録性能および機械的強度
を向上させることができるなど、先の例と同様の効果を
得ることができる。The magnetic recording body of this example can obtain the same effects as the previous example, such as being able to improve magnetic recording performance and mechanical strength.
「実施例」
ガラス基板上に、Si含有量30 ppm(残部Al)
の組成をもつAl−Si合金膜(厚さ1μm)とこの膜
の表面に化成した陽極酸化膜に磁性体として鉄を充填し
た磁性膜(厚さ1μm)とにより構成されたこの発明の
磁気記録体(実施例1)を以下の操作により作成した。"Example" Si content 30 ppm (remaining Al) on a glass substrate
The magnetic recording device of the present invention is composed of an Al-Si alloy film (thickness: 1 μm) having a composition of A body (Example 1) was prepared by the following operations.
また、上記Al−Si合金の代わりに99.999%の
高純度アルミニウムを使用した比較例を同様操作により
作成し、両者の性能まず、表面を清浄化したガラス基板
に、真空蒸着法により厚さ2μmのAl−Si合金膜(
第1実施例)あるいは高純度アルミニウム(比較例りを
各々形成した。第3図および第4図に示す写真はこれら
の基板上の結晶成長状態を示すもので、第3図はSiを
30 ppm(残部AI)含有したAl−Si合金(実
施例1)、第4図は高純度アルミニウム(比較例1)で
ある。これら写真からも明らかなように実施例1のAl
−Si合金膜は、高純度アルミニウム膜に見られるよう
な結晶の異常成長による凹凸がなく、微細な結晶粒が均
一な状態で析出していることがわかる。In addition, a comparative example using 99.999% high-purity aluminum instead of the Al-Si alloy was created using the same procedure, and the performance of both samples was first measured by vacuum evaporation on a glass substrate whose surface had been cleaned. 2μm Al-Si alloy film (
1st Example) or high-purity aluminum (Comparative Example) were formed. The photographs shown in Figures 3 and 4 show the state of crystal growth on these substrates. Figure 3 shows the state of crystal growth on these substrates. (Remaining AI) containing Al-Si alloy (Example 1), and Figure 4 shows high-purity aluminum (Comparative Example 1).As is clear from these photographs, the Al-Si alloy of Example 1
It can be seen that the -Si alloy film does not have irregularities caused by abnormal growth of crystals as seen in high-purity aluminum films, and fine crystal grains are precipitated in a uniform state.
ついでこれら厚さ2μmのAl−Si合金膜あるいは高
純度アルミニウム膜を形成した状態の基板を用いて、テ
ープによる剥離テストを行なった。Next, using the substrates on which the 2 μm thick Al-Si alloy film or high-purity aluminum film was formed, a peel test was conducted using a tape.
このテストを上記実施例1および比較例1の各々につい
て10回づつ行なった結果、剥離率は比較例1が7/1
0であったのに対し、実施例1では2/10と低率であ
った。As a result of performing this test 10 times for each of Example 1 and Comparative Example 1, the peeling rate was 7/1 for Comparative Example 1.
In contrast, in Example 1, the rate was as low as 2/10.
また、上記実施例Iおよび比較例1におけるガラス製基
板の代わりに厚さ60μmのポリエチレンテレフタレー
ト製の基板を用い、この基板上にSiを30 ppm(
A I残部)含有するAl−Si合金膜(実施例2とす
る)および上記高純度アルミニウム膜(比較例2とする
)を各々2μmの厚さで形成し、上記テープによる剥離
テストを行なった。この結果、剥離率は比較例2が10
/10であるのに対し、実施例2では3/10と低率で
あった。In addition, a 60 μm thick polyethylene terephthalate substrate was used instead of the glass substrate in Example I and Comparative Example 1, and 30 ppm of Si was applied on this substrate.
An Al-Si alloy film (referred to as Example 2) and the above-mentioned high-purity aluminum film (referred to as Comparative Example 2) containing A (remaining part of I) were each formed to a thickness of 2 μm, and a peel test using the above-mentioned tape was conducted. As a result, the peeling rate of Comparative Example 2 was 10
/10, whereas in Example 2 the rate was as low as 3/10.
ついでAl−Si合金膜あるいは高純度アルミニウム膜
を形成した各々の基板の内周端縁および外周端縁に給電
端子を接続して上記Al−Si合金膜および高純度アル
ミニウム膜を3%蓚酸電解浴中、直流45V、浴温10
℃で陽極酸化処理し、厚さ1μmの陽極酸化膜を形成し
た。次に、これを硫酸第1鉄アンモニウム電解浴中で電
解し、上記陽極酸化膜の微細孔内に鉄を電解析出させて
充填し、磁性膜とした。Next, power supply terminals were connected to the inner and outer edges of each substrate on which the Al-Si alloy film or high-purity aluminum film was formed, and the Al-Si alloy film and high-purity aluminum film were soaked in a 3% oxalic acid electrolytic bath. Medium, DC 45V, bath temperature 10
An anodic oxidation treatment was performed at ℃ to form an anodic oxide film with a thickness of 1 μm. Next, this was electrolyzed in a ferrous ammonium sulfate electrolytic bath, and the fine pores of the anodic oxide film were electrolytically deposited and filled with iron to form a magnetic film.
このようにして作成した実施例1および比較例1の表面
を検査した結果、実施例Iでは、陽極酸化膜の微細孔内
に鉄(磁性体)が充填されていない不良部分が半分以下
であり、実施例1は上記不良部分の発生が少ないことが
確認された。As a result of inspecting the surfaces of Example 1 and Comparative Example 1 prepared in this way, it was found that in Example I, less than half of the defective areas where iron (magnetic material) was not filled in the micropores of the anodic oxide film were found. It was confirmed that in Example 1, the occurrence of the defective portions described above was small.
また、上記実施例1および比較例1の各々の表面硬度を
測定した結果、比較例1の表面硬度が250HV(ビッ
カース硬さ)であるのに対し、実施例1では300Hv
であった。Furthermore, as a result of measuring the surface hardness of each of Example 1 and Comparative Example 1, the surface hardness of Comparative Example 1 was 250 HV (Vickers hardness), while that of Example 1 was 300 Hv.
Met.
「発明の効果」
以上説明したように、この発明の磁気記録体は、基板の
表面にAl−Si合金膜を設置3、この陽極酸化膜の微
細孔内に磁性体を充填し、上記Al−Si合金をSil
O〜1,000ppm、残部AIの組成としたので、
基板上にAl−Si合金膜を均一な状態で形成すること
ができ、このA I−S i合金膜を陽極酸化処理し、
その微細孔内に磁性体を充填する際に磁性体が充填され
ない不良部分を生じにくく、これによって磁気記録体の
磁気記録性能を向上させることができる。"Effects of the Invention" As explained above, the magnetic recording body of the present invention includes an Al-Si alloy film provided on the surface of the substrate 3, a magnetic material filled in the fine pores of this anodic oxide film, and the Al-Si alloy film Si alloy
Since the composition was set to O ~ 1,000 ppm and the balance was AI,
An Al-Si alloy film can be formed on the substrate in a uniform state, and this AI-Si alloy film is anodized,
When filling the micropores with a magnetic material, defective portions where the magnetic material is not filled are less likely to occur, thereby improving the magnetic recording performance of the magnetic recording body.
また、Al−Si合金は、ガラス、セラミックスあるい
はポリエチレンテレフタレートなどの基板材料との密着
性が優れていると共に、高純度アルミニウムに比べ機械
的強度が高いので、基板からのAl−Si合金膜および
磁性膜の剥離が起きにくく、磁性膜の表面硬度が高くな
るなど、磁気記録体の機械的強度を向上させることがで
きる。In addition, Al-Si alloy has excellent adhesion to substrate materials such as glass, ceramics, or polyethylene terephthalate, and has higher mechanical strength than high-purity aluminum. The mechanical strength of the magnetic recording medium can be improved, such as by making the film less likely to peel off and increasing the surface hardness of the magnetic film.
第1図および第2図はいずれもこの発明の磁気記録体の
例を示す概略断面図、
第3図はこの発明でのAl−Si合金を蒸着させた表面
の金属組織を示す顕微鏡写真、
第4図は高純度アルミニウムを蒸着させた表面の金属組
織を示す顕微鏡写真である。
■・・・基板
2・・・Al−Si合金膜
3・・・磁性膜。1 and 2 are both schematic cross-sectional views showing examples of the magnetic recording medium of the present invention, FIG. 3 is a micrograph showing the metal structure of the surface on which the Al-Si alloy of the present invention is deposited, and FIG. Figure 4 is a micrograph showing the metal structure of the surface on which high-purity aluminum was deposited. ■...Substrate 2...Al-Si alloy film 3...Magnetic film.
Claims (1)
酸化膜を設け、この陽極酸化膜の微細孔内に磁性体を充
填した記録媒体であって、 上記Al−Si合金をSi10〜1,000ppm、A
l残部の組成としたことを特徴とする磁気記録体。[Scope of Claims] A recording medium in which an Al-Si alloy film is provided on a substrate, an anodic oxide film is provided on the surface of this film, and a magnetic material is filled in the fine pores of the anodic oxide film, the recording medium comprising: -Si alloy with 10 to 1,000 ppm of Si, A
A magnetic recording material having a composition of l remainder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077787A JPS63217522A (en) | 1987-03-05 | 1987-03-05 | Magnetic recording body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077787A JPS63217522A (en) | 1987-03-05 | 1987-03-05 | Magnetic recording body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63217522A true JPS63217522A (en) | 1988-09-09 |
Family
ID=12868258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5077787A Pending JPS63217522A (en) | 1987-03-05 | 1987-03-05 | Magnetic recording body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63217522A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0380073A2 (en) * | 1989-01-27 | 1990-08-01 | Ciba-Geigy Ag | Layered material |
US5923511A (en) * | 1995-05-26 | 1999-07-13 | International Business Machines Corporation | Directly contactable disk for vertical magnetic data storage |
-
1987
- 1987-03-05 JP JP5077787A patent/JPS63217522A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0380073A2 (en) * | 1989-01-27 | 1990-08-01 | Ciba-Geigy Ag | Layered material |
US5923511A (en) * | 1995-05-26 | 1999-07-13 | International Business Machines Corporation | Directly contactable disk for vertical magnetic data storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4659606A (en) | Substrate members for recording disks and process for producing same | |
EP0175614A2 (en) | Magnetic recording medium and manufacturing method thereof | |
JPS63311626A (en) | Manufacture of magnetic recording disc | |
JPS62120629A (en) | Magnetic disk and its production | |
JPS63217522A (en) | Magnetic recording body | |
US4236940A (en) | Wear resistant titanium alloy coating | |
US5139884A (en) | Magnetic recording medium comprising an aluminum substrate in which pores formed by anodic oxidation contain crystallographicaly discontinuous particles of fe-alloy | |
JPS57158036A (en) | Magnetic storage body | |
JPS61142525A (en) | Magnetic recording medium | |
JPS58189823A (en) | Magnetic recording medium and its manufacturing method | |
JPS63167409A (en) | Magnetic recording medium | |
JPH01271908A (en) | Magnetic storage body, magnetic storage device, and manufacturing method | |
JPS59217225A (en) | Base plate for magnetic disc | |
JPH01315027A (en) | Production of magnetic recording medium | |
JPS61175920A (en) | Magnetic disk substrate | |
JP3114253B2 (en) | Metal electrodeposition | |
JPS61220120A (en) | Magnetic recording medium | |
JPS62164209A (en) | Substrate for magnetic disk | |
Nanis | Sputter seeded nucleation of smooth electroless nickel growth | |
JPH08100290A (en) | Treatment of adhesive substrate of anodic oxide film forming aluminum | |
JPS62164208A (en) | Substrate for magnetic disk | |
JPS6270040A (en) | Multilayer film and forming method thereof | |
JPH0456779B2 (en) | ||
JPS61163294A (en) | Alumite method by chromic acid solution | |
JPS59110796A (en) | Manufacture of magnetic disk substrate |