[go: up one dir, main page]

JPS63216317A - Manufacture of radially oriented magnet - Google Patents

Manufacture of radially oriented magnet

Info

Publication number
JPS63216317A
JPS63216317A JP4884187A JP4884187A JPS63216317A JP S63216317 A JPS63216317 A JP S63216317A JP 4884187 A JP4884187 A JP 4884187A JP 4884187 A JP4884187 A JP 4884187A JP S63216317 A JPS63216317 A JP S63216317A
Authority
JP
Japan
Prior art keywords
metal container
powder
pieces
iron
radially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4884187A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
山口 紀繁
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4884187A priority Critical patent/JPS63216317A/en
Publication of JPS63216317A publication Critical patent/JPS63216317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain an anisotropic magnet whose shockproofness and distortion- resistance are excellent by a method wherein thin pieces or powder of an alloy composed of a rare-earth element, iron an boron are sealed hermetically into a metal container and the thin pieces or powder of said alloy are warm-deformed together with said metal container in the radial direction and in the inner direction with reference to the long axis of said metal container so that the density and the degree of orientation can be enhanced. CONSTITUTION:An alloy composed of a rare-earth element, iron and boron is melted to obtain a desired composition; it is then solidified in the form of an ingot, a ribbon, a thin belt, thin pieces, powder or the like; in the case of the ingot and the thin belt, this material is broken into pieces of a suitable size. After the powder or pieces have been filled in a metal container, the powder, pieces or the like are warm-deformed, together with said metal container, in the radial direction and in the inner direction with reference to the long axis of the metal container. The pieces, powder or the like filled in the metal container are deformed together with the metal container in the radial direction and in the inner direction with reference to the long axis of the metal container; they are made to be highly dense; the easy-to-magnetize direction becomes equal to the direction; the socalled anisotropy is obtained. The temperature for warm-working is preferably 600-1000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石の製造方法に関するものであ)、さ
らに詳しく述べるならば、希土類−鉄−ホウ素合金より
なるラジアル配向永久磁石の製造方法に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a permanent magnet, and more specifically, a method for manufacturing a radially oriented permanent magnet made of a rare earth-iron-boron alloy. It is related to.

(従来の技術) 希土類−鉄−ホウ素合金よりなる永久磁石材料は、高価
なコバルト等を必須成分とせずにまた安価な工業材料で
ある鉄を多量に用いることによって優れた磁石特性を実
現する。これまで、より一層の磁石特性の向上を図り、
より安価な元素を使用しつつ良好な磁石特性を達成し、
あるいは加工性を向上する等の方法によって、従来の一
般的永久磁石である希土類コバルト永久磁石、フェライ
ト永久磁石に代替し、これらの永久磁石と競合できる希
土類−鉄−ホウ素合金永久磁石材料を提供するための研
究が活発になされてきた。
(Prior Art) A permanent magnet material made of a rare earth-iron-boron alloy achieves excellent magnetic properties by not using expensive cobalt or the like as an essential component and by using a large amount of iron, which is an inexpensive industrial material. Until now, we have been working to further improve the magnetic properties,
Achieving good magnetic properties while using cheaper elements,
Alternatively, by improving processability, etc., we provide a rare earth-iron-boron alloy permanent magnet material that can replace conventional general permanent magnets such as rare earth cobalt permanent magnets and ferrite permanent magnets and compete with these permanent magnets. Research has been actively carried out for this purpose.

希土類−鉄−ホウ素合金永久磁石は、特開昭59−64
739号に開示された如き等方性材料と、特開昭59−
46008号に開示された如き異方性材料と、に大別さ
れる。
Rare earth-iron-boron alloy permanent magnets are disclosed in JP-A-59-64
Isotropic materials such as those disclosed in JP-A No. 739 and JP-A-59-
It is broadly classified into anisotropic materials such as those disclosed in No. 46008.

(発明が解決しようとする問題点) 異方性永久磁石のなかでラジアル配向に異方性を有する
永久磁石は、希土類コバルト合金を用いたプラスチック
磁石が広く知られているが、希土類−鉄−ホウ素合金は
粉末にすると保磁力が低下するため、ラジアル配向異方
性磁石の製造は困難であった。本出願人が特願昭61−
235481号(特願昭61−102086号の国内優
先出願)にて提案した。溶湯急冷された希土類−鉄−ホ
ウ素合金材料を厚み方向に塑性変形して厚み方向に異方
性を付与された1枚以上の薄帯をリング状に加工して、
ラジアル配向永久磁石を製造する方法は、粉末処理工程
を経由しないため、保磁力低下の問題を回避することが
できる。しかし、この方法で製造できるラジアル配向永
久磁石の寸法は溶湯急冷によシ作られるり、pン等の寸
法に、制限される。
(Problems to be Solved by the Invention) Among anisotropic permanent magnets, plastic magnets using rare earth cobalt alloys are widely known as permanent magnets having anisotropy in radial orientation. Since the coercive force of boron alloys decreases when powdered, it has been difficult to manufacture radially oriented anisotropic magnets. The applicant filed a patent application in 1986-
This was proposed in No. 235481 (domestic priority application of Japanese Patent Application No. 102086/1986). A rare earth-iron-boron alloy material that has been quenched as a molten metal is plastically deformed in the thickness direction to give anisotropy in the thickness direction, and one or more thin strips are processed into a ring shape.
Since the method for manufacturing a radially oriented permanent magnet does not involve a powder processing step, it is possible to avoid the problem of a decrease in coercive force. However, the dimensions of the radially oriented permanent magnets that can be manufactured by this method are limited to those produced by rapid cooling of a molten metal, or to the dimensions of a magnet.

溶湯急冷法によシ通常薄帯形態で製造される希土類−鉄
−ホウ素合金を重性加工する方法として、圧延による加
工方法(例えば、特盟昭61−235481号に記載さ
れている方法)によると、板厚方向に変形力が加えられ
るため、ラジアル配向磁石の製造は不可能である。また
公知のホットプレス法によると、加圧方向を中心軸とし
て外側ラジアル方向とかつ加圧方向に粉末材料が変形す
ることとなるが、かかる外側ラジアル方向変形による加
圧方向の異方性が現われる。また、特殊形状の金型を用
いればラジアル配向品の作製も可能であるが、ホットプ
レス法は量産性が低いことの他に、強加工が困難である
との関係がある。
As a method for heavy processing of a rare earth-iron-boron alloy which is usually produced in the form of a thin ribbon by a molten metal quenching method, a processing method by rolling (for example, the method described in Tokumei No. 1983-235481) is used. Since deforming force is applied in the plate thickness direction, it is impossible to manufacture radially oriented magnets. In addition, according to the known hot press method, the powder material is deformed in the outer radial direction and in the pressing direction with the pressing direction as the central axis, but anisotropy in the pressing direction appears due to the deformation in the outside radial direction. . Further, it is possible to produce radially oriented products using a specially shaped mold, but the hot press method has low mass productivity and is difficult to perform strong processing.

(問題点を解決するための手段) 本発明者らは、優れた磁石特性を有する、ラジアル配向
希土類−鉄一ホク累合金永久磁石を製造することができ
る加工方法を研究し、その結果、前記合金の薄片もしく
は粉末を金属製容器に密閉し、該金属製容器の長軸に対
してラジアル方向かつ内側方向に、該金属製容器ととも
に前記合金の薄片もしくは粉末を温間変形する方法によ
り所期の目的が達成されることを、見出した。
(Means for Solving the Problems) The present inventors have researched a processing method capable of manufacturing a radially oriented rare earth-iron alloy permanent magnet having excellent magnetic properties, and as a result, the above-mentioned An alloy flake or powder is hermetically sealed in a metal container, and the alloy flake or powder is warmly deformed together with the metal container in a radial direction and inward direction relative to the long axis of the metal container. It was found that the objective was achieved.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

まづ、希土類−鉄−ホウ素合金を所望の組成に溶解し、
これを凝固させインゴット、リボン、薄帯、薄片、粉末
等の形態とし、得られた薄片、粉末等をそのまま温間変
形に供するが、あるいはインゴット、薄帯の場合には適
当な寸法に粉砕して温間変形に供する。その寸法は数n
程度の大きいものから数μm程度の小さいものまで任意
である。
First, a rare earth-iron-boron alloy is dissolved to a desired composition,
This is solidified into ingots, ribbons, thin strips, flakes, powders, etc., and the obtained flakes, powders, etc. are subjected to warm deformation as they are, or in the case of ingots and thin strips, they are crushed into appropriate dimensions. and subjected to warm deformation. Its dimensions are number n
It can be any size from a large one to a small one of several μm.

特に溶液から高速急冷法によシ作製したり?ンおよび粉
末は、結晶粒径が小さくて保磁力が高く、高特性が得ら
れ易い。
In particular, is it produced from a solution using a high-speed quenching method? The crystal grains and powders have small crystal grain sizes and high coercive force, making it easy to obtain high properties.

本発明の方法に供する希土類−鉄−ホウ素合金の組成は
磁石としての特性を有する任意のものであってよいが、
希土類元素のうち、C・、Laの含有量は全希土類元素
に対して0原子チがら2o原子チとする。Co、Laの
含有量が全希土類元素に対して20原子%を越えると、
磁石特性が劣化するからである。なお、希土類元素はY
を含むものとする。
The composition of the rare earth-iron-boron alloy used in the method of the present invention may be any composition having magnetic properties, but
Among the rare earth elements, the content of C. and La is 0 to 20 atoms based on the total rare earth elements. When the content of Co and La exceeds 20 atomic% based on the total rare earth elements,
This is because the magnetic properties deteriorate. In addition, the rare earth element is Y
shall be included.

続いて、所望の寸法の粉末、薄片等を金属製容器に密閉
する。この方法としては、粉末、薄片等をある程度加圧
して、これらがばらばらにならないようにし、またかさ
密度を高めた後に、金属性容器に入れる方法が好ましい
。このようにすると温間変形中に粉末、薄片等が金属性
容器内で均一に変形するとともに強加工が可能になる。
Subsequently, the powder, flakes, etc. of desired dimensions are sealed in a metal container. A preferred method for this is to press the powder, flakes, etc. to a certain extent to prevent them from falling apart, and to increase the bulk density before placing them in a metal container. In this way, the powder, flakes, etc. are uniformly deformed within the metal container during warm deformation, and strong processing becomes possible.

この方法の他に、粉末、薄片等を金属性容器に詰めた後
に、これらを容器とともに任意の方向に圧縮して、粉末
、薄片等が容器内で偏って充填されないようにする方法
も好ましい方法である。容器内には粉末、薄片等をでき
るだけ高密度で詰め、なるべく酸素等の磁気特性に悪影
響を及ぼすガスを少なくするのが望ましい。
In addition to this method, another preferred method is to pack the powder, flakes, etc. into a metal container and then compress them together with the container in any direction to prevent the powder, flakes, etc. from being packed unevenly in the container. It is. It is desirable to pack powder, flakes, etc. in the container as densely as possible to reduce the amount of gases such as oxygen that adversely affect magnetic properties.

しかる後、金属製容器の長軸に対してラジアル方向かつ
内側方向に、該金属製容器とともに薄片、粉末等′t−
温間変形すると、金属製容器は容易に変形するから、そ
の中に詰められた薄片、粉末等は金属製容器とともに、
金属製容器の長軸に対してラジアル方向かつ内側方向に
変形され、高密度化されるとともにその方向に磁化容易
方向が実質的に斉い、いわゆる異方性となる。温間加工
の温度は、好ましくは600〜1000℃、よシ好まし
くは、650〜800°Cである。この温度への加熱は
電気炉加熱など任意の方法でおこなってよいが、高周波
誘導加熱、あるいは電気炉加熱と高周波誘導加熱の併用
法によると、希土類−鉄−ホウ素合金の磁石特性劣化の
大きな原因である粒成長を抑制できる短時間加熱が可能
となる。加工の方法は、スウエーゾ、押出、引抜、伸長
鍛造などいかなる方法でもよい。これらの加工法による
と、変形圧力はラジアル内何方向に主として加えられる
から、この方向への薄片、粉末等の変形が起る。
Thereafter, flakes, powder, etc.
Since a metal container easily deforms during warm deformation, the flakes, powder, etc. packed inside it will be damaged along with the metal container.
It is deformed in the radial direction and inward direction with respect to the long axis of the metal container, resulting in high density, and the direction of easy magnetization is substantially aligned in that direction, resulting in so-called anisotropy. The temperature of warm working is preferably 600 to 1000°C, more preferably 650 to 800°C. Heating to this temperature can be done by any method such as electric furnace heating, but high-frequency induction heating, or a combination of electric furnace heating and high-frequency induction heating, is a major cause of deterioration of the magnetic properties of rare earth-iron-boron alloys. Short-term heating that can suppress grain growth becomes possible. The processing method may be any method such as sweezing, extrusion, drawing, and elongation forging. According to these processing methods, deformation pressure is mainly applied in any direction within the radial direction, so that the flakes, powder, etc. are deformed in this direction.

この際、薄片、粉末等は金属製容器の壁面により拘束さ
れているから、ラジアル方向に効率的に圧縮され、密度
と配向度が高められる。また、加工においては、上記方
法を組み合わせて実施することもできる。この場合は、
中間加熱が必要となることが多く、操作が繁雑になるが
、ある程度の寸法までスウエーゾを行ない、その後押出
することによシ寸法が小さい磁石の製造が可能になるな
どの利点がある。なお、加工工程の途中で断面寸法を小
さくする目的で圧延を行なってもよいが、圧延加工は被
加工材の長さ方向への変形力が主であるため、ラジアル
配向には殆ど寄与しないため、所望の断面寸法が得られ
る程度の加工率を圧延加工の限度とし、主たる加工は上
記した方法によらなければならない。ところで、本発明
の特徴とするラジアル方向への温間変形の加工率は、変
形前後の金属容器の断面積の比率で表わして、50チ未
満であると、磁気特性向上の効果が少なり、一方95%
を越えると加工に要する圧力が著しく高くなシ、加工段
階数が極端に多くなりあるいは大出力装置を要するなど
の点で実用的温間加工法が実施できなくなるので好まし
くない。金属製容器の形状は通常円筒状であるが、ラジ
アル方向への所望の加工率での加工ができるものであれ
ば、どのようなものであってもよい。また金属製容器の
寸法は、加工中に破壊されず、伸長変形を抑制するなど
、本発明の効果の一層の達成を図るよう工夫することは
当然である。磁石特性に有害な酸素と希土類−鉄−ホウ
素合金の接触を避けるために、金属製容器内を真空にす
るかその雰囲気を不活性ガス雰囲気としてもよい。
At this time, since the flakes, powder, etc. are restrained by the wall surface of the metal container, they are efficiently compressed in the radial direction, increasing their density and degree of orientation. Further, in processing, the above methods can also be combined. in this case,
Intermediate heating is often required, making the operation complicated, but it has the advantage that magnets with small dimensions can be manufactured by performing sweezing to a certain size and then extruding. Note that rolling may be performed in the middle of the processing process to reduce the cross-sectional dimension, but since rolling mainly causes deformation force in the length direction of the workpiece, it hardly contributes to the radial orientation. The rolling processing should be limited to a processing rate that allows the desired cross-sectional dimensions to be obtained, and the main processing must be performed by the method described above. By the way, if the processing rate of warm deformation in the radial direction, which is a feature of the present invention, is less than 50 inches, expressed as the ratio of the cross-sectional area of the metal container before and after deformation, the effect of improving magnetic properties will be small. On the other hand, 95%
Exceeding this is not preferable because the pressure required for processing becomes extremely high, the number of processing steps becomes extremely large, or a high output device is required, making it impossible to carry out a practical warm processing method. The shape of the metal container is usually cylindrical, but it may be of any shape as long as it can be processed at a desired processing rate in the radial direction. Further, it is natural that the dimensions of the metal container should be designed to further achieve the effects of the present invention, such as preventing destruction during processing and suppressing elongation deformation. In order to avoid contact between oxygen and the rare earth-iron-boron alloy, which are harmful to the magnetic properties, the inside of the metal container may be evacuated or the atmosphere may be an inert gas atmosphere.

最後に、温間加工が終了した後は、金属製容器を切削、
研摩などの方法で被加工片から除去し、磁石本体を取り
出す。これを製品形状に加工するかあるいはさらに粉砕
して、プラスチック磁石にする。
Finally, after the warm processing is completed, the metal container is cut,
Remove it from the work piece by polishing or other methods and take out the magnet body. This is then processed into a product shape or further crushed to become a plastic magnet.

(発明の効果) 上記した方法によシ金属製容器内の席上頌−鉄−ホウ素
合金薄片、粉末等を温間変形すると、磁石特性がすぐれ
、モーターなどに使用できるラジアル配向磁石が能率的
に製造できるようになる。また、具体的効果として、(
イ)粒成長が抑制されそして粒成長による磁石特性の劣
化がなくなり、(ロ)効率的なう・シアル変形により密
度と配向度を高めることができ、(ハ)焼結磁石と比較
して、結晶粒が小さい傾向があるため、耐衝撃性、耐歪
み性に優れた製品が得られ、e→高い変形力を短時間で
加えることにより所望の変形が可能である加工が能率的
であり、に)優れた異方性によシ磁石特性が向上するの
で、焼結磁石の場合と比較して希土類元素の使用量を少
なくすることができる等の顕著な効果が達成可能である
ので、磁石の使用用途、製品の仕様、要求コスト等に応
じて、これらの効果のうちで有益と考えられるものを適
宜達成することができる。
(Effects of the invention) When hot deformation of iron-boron alloy flakes, powder, etc. in a metal container is performed by the method described above, the magnetic properties are excellent, and a radially oriented magnet that can be used in motors, etc. is efficiently produced. will be able to be manufactured in In addition, as a specific effect, (
(b) grain growth is suppressed and deterioration of magnet properties due to grain growth is eliminated; (b) density and degree of orientation can be increased through efficient radial deformation; and (c) compared to sintered magnets. Since the crystal grains tend to be small, products with excellent impact resistance and distortion resistance can be obtained, and the processing is efficient, as the desired deformation can be achieved by applying high deformation force in a short time. ) Excellent anisotropy improves the magnetic properties, making it possible to achieve remarkable effects such as reducing the amount of rare earth elements used compared to the case of sintered magnets. Among these effects, those considered to be beneficial can be achieved as appropriate depending on the intended use, product specifications, required cost, etc.

以下、本発明を実施例によシさらに説明する。The present invention will be further explained below using examples.

(実施例) 実施例1 13.596Nd、80%Fe * 6.5 % B 
(%は原子%)の合金を溶解し、溶湯急冷法(Cu単ロ
ール、50 m/sec周速)によシ非晶質合金IJ 
、l?ンを作製した。これを平均寸法が100μmの薄
片に粉砕した後、3 ton/crrL2の圧力で直径
25.51111.高さ20關の円柱状ブロックにプレ
スし、このブロックの5個をステンレス鋼の円管(外径
30朋、長さ150朋、肉厚2闘)に詰め、その両端を
溶接蓋で閉鎖した状態で、炉内温度で700℃に加熱し
た。この円管の直径ヲ捧にするスケエージ加工を行なっ
た。得られた円形成形体はラジアル配向しており、円周
部での最大エネルギ積(BH)   はmag ゛ 25 MGOa 、残留磁束密度Brは11.0 kO
eであった。
(Example) Example 1 13.596Nd, 80%Fe*6.5%B
(% is atomic %) alloy was melted and the amorphous alloy IJ
,l? We created a new version. After crushing this into thin pieces with an average size of 100 μm, they were crushed into thin pieces with a diameter of 25.51111 mm under a pressure of 3 tons/crrL2. It was pressed into a cylindrical block with a height of 20 mm, and 5 of these blocks were packed into a stainless steel circular tube (outer diameter 30 mm, length 150 mm, wall thickness 2 mm), and both ends of the tube were closed with welded lids. In this state, the furnace was heated to 700°C. A squeage process was performed to reduce the diameter of this circular tube. The obtained circular compact is radially oriented, the maximum energy product (BH) at the circumference is mag ゛25 MGOa, and the residual magnetic flux density Br is 11.0 kO.
It was e.

比較例1 実施例1と同じ組成かつ同じ外径を有するラジアル配向
磁石を焼結法で作シ、特性を測定したところ、最大エネ
ルギ積(BH)m工、は18 MGOeであった。
Comparative Example 1 A radially oriented magnet having the same composition and the same outer diameter as Example 1 was produced by a sintering method and its characteristics were measured, and the maximum energy product (BH) was 18 MGOe.

比較例2 実施例1と同じ組成の合金の溶湯急冷りzンを50〜2
00μmに粉砕して、グラスチック磁石とし、特性を測
定したところ、最大エネルギ積(BI()   は12
 MGOsであった。
Comparative Example 2 The molten metal of an alloy having the same composition as Example 1 was rapidly cooled to 50 to 2
When we crushed it to 00 μm to make a glass magnet and measured its characteristics, the maximum energy product (BI()) was 12
It was MGOs.

maX  。maX.

実施例2 実施例1と同じ組成の合金の溶湯急冷リボンの粉砕薄片
を、内径40朋の鉄製管に、直径16朋の鉄の棒ととも
に詰め、750”Oに加熱し、押出加工機を用いて、鉄
製管を、その直径が22.5朋に減少するように、加工
した。鉄製管と鉄棒を除いた後、得られた成形体はラジ
アル配向しており、円周部での最大エネルギ積(BH)
rnax、は24.7MGOの、残留磁束密度Brは1
0.6 ko・であった。
Example 2 Pulverized flakes of quenched molten ribbon of an alloy having the same composition as in Example 1 were packed into an iron tube with an inner diameter of 40 mm together with an iron rod with a diameter of 16 mm, heated to 750"O, and extruded using an extrusion processing machine. The iron tube was machined so that its diameter was reduced to 22.5 mm. After removing the iron tube and iron rod, the obtained compact was radially oriented and the maximum energy at the circumference was Product (BH)
rnax, is 24.7MGO, residual magnetic flux density Br is 1
It was 0.6 ko.

Claims (1)

【特許請求の範囲】 1、希土類元素(ただし、Ce、Laの含有量は全希土
類元素に対して0原子%から20原子%)−鉄−ホウ素
永久磁石合金の薄片もしくは粉末を金属製容器に密閉し
、該金属製容器の長軸に対してラジアル方向にかつ内側
に、該金属製容器とともに前記薄片もしくは粉末を温間
変形することを特徴とするラジアル配向磁石の製造方法
。 2、前記薄片もしくは粉末が金属製容器内に不活性もし
くは真空雰囲気下で密閉されていることを特徴とする特
許請求の範囲第1項記載のラジアル配向磁石の製造方法
。 3、温間変形温度が600〜1000℃であることを特
徴とする特許請求の範囲第1項または第2項記載のラジ
アル配向磁石の製造方法。
[Claims] 1. Rare earth elements (however, the content of Ce and La is 0 at % to 20 at % based on the total rare earth elements)-iron-boron permanent magnet alloy flakes or powder in a metal container. A method for manufacturing a radially oriented magnet, comprising: sealing the metal container; and warmly deforming the flakes or powder together with the metal container in a radial direction and inward with respect to the long axis of the metal container. 2. The method for manufacturing a radially oriented magnet according to claim 1, wherein the flake or powder is sealed in a metal container under an inert or vacuum atmosphere. 3. The method for manufacturing a radially oriented magnet according to claim 1 or 2, wherein the warm deformation temperature is 600 to 1000°C.
JP4884187A 1987-03-05 1987-03-05 Manufacture of radially oriented magnet Pending JPS63216317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4884187A JPS63216317A (en) 1987-03-05 1987-03-05 Manufacture of radially oriented magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4884187A JPS63216317A (en) 1987-03-05 1987-03-05 Manufacture of radially oriented magnet

Publications (1)

Publication Number Publication Date
JPS63216317A true JPS63216317A (en) 1988-09-08

Family

ID=12814474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4884187A Pending JPS63216317A (en) 1987-03-05 1987-03-05 Manufacture of radially oriented magnet

Country Status (1)

Country Link
JP (1) JPS63216317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960469A (en) * 1987-11-27 1990-10-02 Hitachi Metals, Ltd. Method of manufacturing magnetically anisotropic magnet materials and device for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960469A (en) * 1987-11-27 1990-10-02 Hitachi Metals, Ltd. Method of manufacturing magnetically anisotropic magnet materials and device for same
US5039292A (en) * 1987-11-27 1991-08-13 Hitachi Metals, Ltd. Device for manufacturing magnetically anisotropic magnets

Similar Documents

Publication Publication Date Title
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
JPH09275004A (en) Permanent magnet and its manufacturing method
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
JPH06302417A (en) Permanent magnet and manufacturing method thereof
JPS61268006A (en) Anisotropic magnet
JPS63216317A (en) Manufacture of radially oriented magnet
JPH0444301A (en) Manufacturing method of rare earth permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH01308757A (en) magnetic airtight container
JP2583113B2 (en) Rare earth magnet manufacturing method
JPH04321202A (en) Manufacture of anisotropic permanent magnet
JPH02102504A (en) Method for producing rare earth-iron-boron anisotropic magnet powder
JPH01175207A (en) Permanent magnet manufacturing method
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH04263403A (en) Anisotropic permanent magnet and manufacture thereof
JPH04218903A (en) Method for producing anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH0422104A (en) Permanent magnet manufacturing method
JPH01146307A (en) Manufacture of rare-earth permanent magnet
JPH0349961B2 (en)
JPS63192205A (en) Manufacturing method of rare earth alloy permanent magnet
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet