JPS63215563A - Zro2 base sintered body - Google Patents
Zro2 base sintered bodyInfo
- Publication number
- JPS63215563A JPS63215563A JP62047321A JP4732187A JPS63215563A JP S63215563 A JPS63215563 A JP S63215563A JP 62047321 A JP62047321 A JP 62047321A JP 4732187 A JP4732187 A JP 4732187A JP S63215563 A JPS63215563 A JP S63215563A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- zro
- whiskers
- based sintered
- crystal structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高温で高靭性であり、かつ耐熱衝撃性に優れ
たZrO3系焼結体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ZrO3-based sintered body that is highly tough at high temperatures and has excellent thermal shock resistance.
従来、ZrO3にY2O3等の安定化剤を添加し、準安
定な正方品を主体としたZrO3系焼結体は、正方品か
ら単斜晶への応力誘起変態が起こるため、低温域での強
靭性が高く、刃物、ダイス等の冷間で使用される工具と
して主に利用されてきた。しかしながら、前記応力誘起
変態は、3AO℃以上ではこの作用が働かなくなるため
、大きく靭性が低下する。Conventionally, ZrO3-based sintered bodies made by adding stabilizers such as Y2O3 to ZrO3 and mainly consisting of quasi-stable tetragonal bodies undergo stress-induced transformation from square to monoclinic, resulting in poor toughness at low temperatures. Due to its high properties, it has been mainly used for cold-working tools such as knives and dies. However, the stress-induced transformation does not work at temperatures above 3 AO° C., resulting in a significant decrease in toughness.
また、ZrO3単独では、他のSiN、やSiCセラミ
ックスと比べると熱衝撃に弱く、耐熱衝撃性の改善が要
求されていた。そこで、特開昭61−101463号や
特開昭62−12662号にZrO3にA1□03やム
ライトを添加し、熱衝撃抵抗を向上させようとする例が
見られるが、これらの方法では、高温での大幅な靭性低
下に対しては。Furthermore, ZrO3 alone is weaker in thermal shock than other SiN or SiC ceramics, and there has been a demand for improvement in thermal shock resistance. Therefore, in JP-A-61-101463 and JP-A-62-12662, there are examples in which A1□03 and mullite are added to ZrO3 in an attempt to improve thermal shock resistance. for the significant decrease in toughness.
あまり改善の効果がなく、高温の靭性、さらにはこれと
耐熱衝撃性の両方の特性を具備したZ r Oz系セラ
ミックスが要求されてきた。There has been a demand for ZrOz-based ceramics that have not had much of an improvement effect and have both high-temperature toughness and thermal shock resistance.
上記のように、ZrO□系セラミックスを高温用途に用
いる場合には、高温での靭性の低下と耐熱衝撃性が問題
となり、応用が限られてきた。As mentioned above, when ZrO□-based ceramics are used for high-temperature applications, their applications have been limited due to problems of decreased toughness and thermal shock resistance at high temperatures.
本発明の目的は、上記事実に鑑み、高温靭性に優れ、さ
らには耐熱衝撃性の優れたZrO□系焼結体の提供を目
的とする。In view of the above facts, an object of the present invention is to provide a ZrO□-based sintered body having excellent high-temperature toughness and further excellent thermal shock resistance.
本発明者は、Z r O、系焼結体につき高温での靭性
向上を図るべく、種々検討を行なった結果、A1□03
ウィスカーを添加・分散させることにより、高温での靭
性を向上させることができることを知見した。さらに、
Al、O3ウィスカーを添加・分散したZrO2系焼結
体に、ムライj・を含有せしめると耐熱衝撃性の向上に
効果があること、および強度の点では、A1□03粒子
を含有せしめることが有効であることを知見するに至っ
た。The present inventor conducted various studies in order to improve the toughness of ZrO-based sintered bodies at high temperatures, and as a result, A1□03
It has been found that toughness at high temperatures can be improved by adding and dispersing whiskers. moreover,
Adding and dispersing Al and O3 whiskers to a ZrO2-based sintered body containing Murai J is effective in improving thermal shock resistance, and in terms of strength, including A1□03 particles is effective. I have come to the conclusion that this is the case.
すなわち本発明は、
A1□03ウィスカーを5〜409七%含有し、残部が
主として正方晶型の結晶構造を有するZrO2からなる
ことを特徴とするZrO2系焼結体、A1□O3ウィス
カーおよびムーライトが、合計で5〜70wt%含有(
ただしAl、O3ウィスカー5〜40wt%)し、残部
が主として正方晶型の結晶構造を有するZ r Ozか
らなることを特徴とするZrO3系焼結体、Al2O3
ウィスカーおよびA1□O1粒子が合計で5〜70wt
%含有(ただしAl、01ウィスカー5〜40wt%)
し、残部が主として正方晶型の結晶構造を有するZrO
3からなることを特徴とするZrO2系焼結体、Al2
O3ウィスカー、At20.粒子およびムライトが合計
で5〜70wt%含有(ただしA1.O3ウィスカー5
〜40wt%)し、残部が主として正方晶型の結晶構造
を有する2rO□からなることを特徴とするZro、系
焼結体である。That is, the present invention provides a ZrO2-based sintered body characterized by containing 5 to 4097% of A1□03 whiskers and the remainder mainly consisting of ZrO2 having a tetragonal crystal structure, A1□O3 whiskers and mullite. , containing 5 to 70 wt% in total (
ZrO3-based sintered body, Al2O3, characterized in that the ZrO3-based sintered body contains 5 to 40 wt% of Al and O3 whiskers), and the remainder mainly consists of ZrOz having a tetragonal crystal structure.
Whiskers and A1□O1 particles total 5-70wt
% content (Al, 01 whisker 5-40wt%)
However, the remainder is ZrO, which has a mainly tetragonal crystal structure.
ZrO2-based sintered body characterized by consisting of 3, Al2
O3 whisker, At20. Contains a total of 5 to 70 wt% of particles and mullite (however, A1. O3 whisker 5
~40wt%), with the remainder mainly consisting of 2rO□ having a tetragonal crystal structure.
本発明焼結体において、ZrO3には一般的に安定化剤
とシテ用いられるY2O3、CeO3、MgO等を単独
または複合で適宜添加して、主として正方品の結晶構造
を有するZ r Oz系焼結体を得る。In the sintered body of the present invention, Y2O3, CeO3, MgO, etc., which are generally used as stabilizers, are appropriately added to ZrO3 alone or in combination to create a ZrOz-based sintered body having a mainly square crystal structure. Get a body.
正方品の結晶構造を有するZrO3系焼結体は、冷間で
強靭性があり、加工・取扱等の点で好ましい。A ZrO3-based sintered body having a square crystal structure is strong in cold conditions and is preferable in terms of processing, handling, etc.
安定化剤の添加量としては、Y、031〜4wzo1%
、Ce Oz 4−16mo1%、、MgO3−12m
o1%の範囲で適宜選択される。The amount of stabilizer added is Y, 031-4wzo1%
, CeOz 4-16mo1%, ,MgO3-12m
It is appropriately selected within the range of o1%.
次に本発明焼結体の成分限定理由について述べる。Next, the reason for limiting the components of the sintered body of the present invention will be described.
A1□03ウィスカーの添加は、靭性の向上に効果があ
り、高温まで作用するため、ZrO3単独の場合に比べ
ると、高温での急激な靭性の低下を防止することができ
る。添加量としては、5wt%未満では効果が小さく
+ 40wt%を越えて添加する場合には成形性が悪く
なること、及びコストが著しく高くなることにより、5
〜40wt%に限定した。Addition of A1□03 whiskers is effective in improving toughness and acts up to high temperatures, so compared to the case of ZrO3 alone, it is possible to prevent a sharp decrease in toughness at high temperatures. If the amount added is less than 5wt%, the effect will be small.
+ If it is added in excess of 40 wt%, moldability will deteriorate and the cost will increase significantly.
It was limited to ~40 wt%.
またムライトの添加は、ZrO3の熱膨張係数を低下さ
せ、耐熱衝撃性を改善するものであり、Al、O3ウィ
スカー、あるいはさらにAl、O3粒子と複合して含有
せしめ、本発明の目的を達成するものである。しかし多
量に添加すると強度低下が大きく、実用化において妨げ
となるためA1.O。Further, the addition of mullite lowers the thermal expansion coefficient of ZrO3 and improves the thermal shock resistance, and when it is contained in combination with Al and O3 whiskers or further with Al and O3 particles, the object of the present invention can be achieved. It is something. However, if added in a large amount, the strength will be greatly reduced, which will hinder practical application, so A1. O.
ウィスカー等と合計で5〜70wt%に限定した。The total amount including whiskers etc. was limited to 5 to 70 wt%.
次にA1□03粒子は強度の向上に効果があり、特に高
温においてもZrO3単独の場合と比べると強度の低下
が小さく、本発明においてはAl2O。Next, A1□03 particles are effective in improving strength, especially at high temperatures, the decrease in strength is smaller compared to the case of ZrO3 alone, and in the present invention Al2O.
ウィスカー、あるいはさらにムライトと複合して含有せ
しめ、本発明の目的を達成するものである。The object of the present invention can be achieved by containing whiskers or in combination with mullite.
しかしAl、O3粒子の量が多くなると、焼結体中のA
1□○、同志の界面が多くなり、逆に強度が急激に低下
するためAt、O3ウィスカー等と合計で5〜70%i
t%に限定した。However, when the amount of Al and O3 particles increases, the amount of A in the sintered body increases.
1□○, the number of like-minded interfaces increases, and on the contrary, the strength decreases rapidly, so a total of 5 to 70% i with At, O3 whiskers, etc.
It was limited to t%.
さらに、本発明焼結体の製造方法としては、組成が均一
で微細な結晶粒の焼結体を得るために、共沈法等の湿式
プロセスによる1μ復以下の粒径を持つ粉末を用いるこ
と、内部欠陥を小さくするためには、仮焼結して密度を
93%以上とした後、さらに熱間静水圧プレス(HIP
)を適用することが好ましい。HIP条件は、Arガス
を用い、圧力500atm以上、温度1300−160
0℃の範囲であれば良い。1300℃未満では緻密化せ
ず、1600℃を越えると結晶粒子が粗大化するためで
ある。Furthermore, in order to obtain a sintered body with uniform composition and fine crystal grains, the method for manufacturing the sintered body of the present invention involves using powder having a particle size of 1 μm or less by a wet process such as a co-precipitation method. In order to reduce internal defects, after pre-sintering the density to 93% or more, hot isostatic pressing (HIP) is necessary.
) is preferably applied. HIP conditions are Ar gas, pressure 500 atm or more, temperature 1300-160
It may be within the range of 0°C. This is because if the temperature is lower than 1300°C, the crystal grains will not be densified, and if the temperature exceeds 1600°C, the crystal grains will become coarse.
以下、本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
実施例l
Zr0.粉末はZrO3に対し、安定化剤のY2O1、
CeO2、MgOが第1表の組成となるように含有され
た共沈法による市販の粉末(粒径約0.05μm)を用
いた。Example l Zr0. The powder contains ZrO3, stabilizer Y2O1,
A commercially available powder (particle size: approximately 0.05 μm) prepared by a coprecipitation method and containing CeO2 and MgO as shown in Table 1 was used.
A1.O3粉末は、粒径約0−03μm、ALO3ウィ
スカーは、径が約1μmで長さが30〜100μm、ム
ライト粉末は幅0.1μ鳳、長さ0.5μ−1厚さ0.
01μmの薄片状の形状を持つ市販のものを用いた。A1. The O3 powder has a particle size of about 0-03 μm, the ALO3 whisker has a diameter of about 1 μm and a length of 30-100 μm, and the mullite powder has a width of 0.1 μm, a length of 0.5 μm, and a thickness of 0.0 μm.
A commercially available product having a flaky shape of 0.01 μm was used.
ただし、No、4ではAl、O3もZrO3、y、o、
とともに共沈法で製造された粉末を用いた6以上の粉末
を、第1表の組成となるように配合し、ボールミルで湿
式で混合し、スプレードライヤーで造粒した後、ラバー
プレスで3ton/ alの圧力で成形した。成形体を
大気中1500℃でlhr保持し仮焼結した後、さらに
Arガス中で1450℃、1o00at+*、lhr保
持の条件でHIP処理を施した。However, in No. 4, Al and O3 are also ZrO3, y, o,
6 or more powders using powders manufactured by the coprecipitation method were blended so as to have the composition shown in Table 1, mixed wet in a ball mill, granulated in a spray dryer, and then 3 tons/kg in a rubber press. It was molded under the pressure of Al. After the molded body was temporarily sintered in the atmosphere at 1500° C. for lhr, it was further subjected to HIP treatment in Ar gas at 1450° C., 1o00at+*, and lhr maintained.
以上のようにして得られた焼結体を用いて、密度、抗折
強度、破壊靭性、熱衝撃抵抗を測定した。Using the sintered body obtained as described above, density, bending strength, fracture toughness, and thermal shock resistance were measured.
抗折強度は、JIS規格のR1601に従って測定した
。破壊靭性は、20℃と700℃で、ビッカース圧痕法
によるインデンテーション法で測定し、新涼の式を用い
て計算した。熱衝撃抵抗は、上記抗折試験片を一定温度
に30分間保持した後、10℃の水中に投入し、抗折強
度が低下し始める時の水との温度差で表わした。The bending strength was measured according to JIS standard R1601. Fracture toughness was measured at 20° C. and 700° C. by an indentation method using the Vickers indentation method, and calculated using Shinryo's formula. Thermal shock resistance was determined by holding the bending test piece at a constant temperature for 30 minutes, then putting it into water at 10°C, and expressing the temperature difference from the temperature at which the bending strength began to decrease.
また、本実施例の焼結体の結晶構造をX線回析で調べる
と、80%以上が正方晶で残部は立方晶であった。Further, when the crystal structure of the sintered body of this example was examined by X-ray diffraction, 80% or more was tetragonal and the remainder was cubic.
第1表中、比較例のNo、3と本発明の実施例によるN
005とを比較すると、A1.○、ウィスカー添加によ
る高靭化の効果が大きいこと、No、5とNo、8とを
比較するとムライト添加による熱衝撃抵抗の向上に効果
が有ることがわかる。In Table 1, No. 3 of the comparative example and No. 3 according to the example of the present invention.
005, A1. ○: Addition of whiskers has a large effect of increasing toughness. Comparing No. 5 and No. 8, it can be seen that addition of mullite is effective in improving thermal shock resistance.
そして1本実施例ではすべて700℃での破壊靭性が3
以上で、しかも熱衝撃抵抗が400℃以上であった。In this example, the fracture toughness at 700°C was 3.
Moreover, the thermal shock resistance was 400°C or more.
以上説明したように1本発明によれば高温でも破壊靭性
が高く、かつ耐熱衝撃性に優れたZrO2系セラミック
スが得られ、耐摩部品、エンジン部品等に有用なもので
ある。As explained above, according to the present invention, a ZrO2-based ceramic having high fracture toughness even at high temperatures and excellent thermal shock resistance can be obtained, and is useful for wear-resistant parts, engine parts, etc.
Claims (1)
、残部が主として正方晶型の結晶構造を有するZrO_
2からなることを特徴とするZrO_2系焼結体。 2 Al_2O_3ウィスカーおよびムライトが合計で
5〜70wt%含有(ただしAl_3O_3ウィスカー
5〜40wt%)し、残部が主として正方晶型の結晶構
造を有するZrO_2からなることを特徴とするZrO
_2系焼結体。 3 Al_2O_3ウィスカーおよびAl_2O_3粒
子が合計で5〜70wt%含有(ただしAl_2O_3
ウィスカー5〜40wt%)し、残部が主として正方晶
型の結晶構造を有するZrO_2からなることを特徴と
するZrO_2系焼結体。 4 Al_2O_3ウィスカー、Al_2O_3粒子お
よびムライトが合計で5〜70wt%含有(ただしAl
_2O_3ウィスカー5〜40wt%)し、残部が主と
して正方晶型の結晶構造を有するZrO_2からなるこ
とを特徴とするZrO_2系焼結体。 5 共沈法等の湿式のプロセスで製造された1μm以下
の粒径を持つ粉末を使用した特許請求の範囲第1項〜第
4項いずれかに記載のZrO_2系焼結体。 6 仮焼結した後熱間静水圧プレス(HIP)を適用し
てある特許請求の範囲第1項〜第5項いずれかに記載の
ZrO_2系焼結体。[Claims] 1 ZrO_ containing 5 to 40 wt% of Al_2O_3 whiskers, with the remainder having a mainly tetragonal crystal structure.
A ZrO_2-based sintered body comprising: 2 ZrO containing a total of 5 to 70 wt% of Al_2O_3 whiskers and mullite (however, 5 to 40 wt% of Al_3O_3 whiskers), and the remainder mainly consisting of ZrO_2 having a tetragonal crystal structure
_2 series sintered body. 3 Contains a total of 5 to 70 wt% of Al_2O_3 whiskers and Al_2O_3 particles (however, Al_2O_3
A ZrO_2-based sintered body characterized by having whiskers (5 to 40 wt%) and the remainder mainly consisting of ZrO_2 having a tetragonal crystal structure. 4 Contains a total of 5 to 70 wt% of Al_2O_3 whiskers, Al_2O_3 particles and mullite (however, Al
A ZrO_2-based sintered body comprising ZrO_2 having 5 to 40 wt% of _2O_3 whiskers and the remainder mainly having a tetragonal crystal structure. 5. The ZrO_2-based sintered body according to any one of claims 1 to 4, which uses powder having a particle size of 1 μm or less produced by a wet process such as a coprecipitation method. 6. The ZrO_2-based sintered body according to any one of claims 1 to 5, which is subjected to hot isostatic pressing (HIP) after pre-sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047321A JPS63215563A (en) | 1987-03-02 | 1987-03-02 | Zro2 base sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047321A JPS63215563A (en) | 1987-03-02 | 1987-03-02 | Zro2 base sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63215563A true JPS63215563A (en) | 1988-09-08 |
Family
ID=12772005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62047321A Pending JPS63215563A (en) | 1987-03-02 | 1987-03-02 | Zro2 base sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63215563A (en) |
-
1987
- 1987-03-02 JP JP62047321A patent/JPS63215563A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4626517A (en) | High toughness sintered bodies | |
KR910005053B1 (en) | High toughness zro2 sintered body and method of producing the same | |
EP0269108A2 (en) | Zirconia ceramics | |
Chen et al. | A new approach for toughening of ceramics | |
JPS5832066A (en) | Tenacious zirconia sintered body | |
JPS60141673A (en) | Zirconia ceramic and manufacture | |
Morishima et al. | Development of aluminum titanate‐mullite composite having high thermal shock resistance | |
DUTTA et al. | Microstructure, strength, and oxidation of a 10 wt% zyttrite‐Si3N4 ceramic | |
JP2847818B2 (en) | Conductive zirconia sintered body and method for producing the same | |
JPS63215563A (en) | Zro2 base sintered body | |
JP3076682B2 (en) | Alumina-based sintered body and method for producing the same | |
JPS6186466A (en) | Spinel ceramics | |
JP2645894B2 (en) | Method for producing zirconia ceramics | |
Thavoriniti et al. | Influence of grain boundary β-spodumene glass on the superplastic flow in tetragonal zirconia polycrystal (TZP) | |
JP2650049B2 (en) | Ceramic cutting tool and its manufacturing method | |
JPH03223159A (en) | Alumina-zirconia compounded sintered material | |
JP3837516B2 (en) | Zirconia-based superplastic ceramics | |
Moya et al. | Influence of additives on the microstructural development of mullite-ZrO2 and alumina-ZrO2 | |
JPH07157362A (en) | Aluminum oxide-based ceramic having high strength and high toughness | |
JPS5832067A (en) | Tenacious zirconia sintered body | |
JPS61242956A (en) | High tenacity ceramic alloy | |
JP2854340B2 (en) | Ceramic composite sintered body and method of manufacturing the same | |
JPS62202856A (en) | Al2o3 sintered body and manufacture | |
JPS62202862A (en) | Zro2 sintered body and manufacture | |
Takagi et al. | Preparation and mechanical properties of mullites and mullite-zirconia composites |