[go: up one dir, main page]

JPS6321370A - Pulsationless metering pump - Google Patents

Pulsationless metering pump

Info

Publication number
JPS6321370A
JPS6321370A JP16367486A JP16367486A JPS6321370A JP S6321370 A JPS6321370 A JP S6321370A JP 16367486 A JP16367486 A JP 16367486A JP 16367486 A JP16367486 A JP 16367486A JP S6321370 A JPS6321370 A JP S6321370A
Authority
JP
Japan
Prior art keywords
metering pump
pulsation
shaft
plungers
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16367486A
Other languages
Japanese (ja)
Other versions
JP2552654B2 (en
Inventor
Yoshiaki Konishi
義昭 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP61163674A priority Critical patent/JP2552654B2/en
Publication of JPS6321370A publication Critical patent/JPS6321370A/en
Application granted granted Critical
Publication of JP2552654B2 publication Critical patent/JP2552654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To permit the proper adjustment of flow rate by constituting a cam mechanism for driving two plungers so that the three-dimensional eccentricity adjustment is permitted so that the stroke length of the plungers can be adjusted at the same time and in symmetrical form. CONSTITUTION:Each one edge of the cross heads 14 and 16 formed integrally with plungers 10 and 12, the hard balls 22 and 24 as cam follower are installed. The cams 26a and 26b in contact with the hard balls 22 and 24 are installed in eccentricity with respect to a turning shaft 28 which crosses at right angles with the cross heads 14 and 16. A three-dimensional structure in symmetrical form which is constituted so that the quantity of eccentricity varies in straight line form in the axial direction of the rotary shaft 28 is provided. Therefore, the quantity of eccentricity of a cam mechanism for each plunger 10, 12 is relatively varied by adjusting the shift in the axial direction of the rotary shaft 28, and the stroke length can be adjusted, and the flow rate can be adjusted simply and smoothly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、往復動形プランジャポンプを使用した無脈
動定量ポンプに係り、特に駆動モータの速度制御を行う
ことなく、機械的な構成によって安定した無脈動特性を
得ると共に流量調節も簡便に行うことができる無脈動定
量ポンプの改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-pulsating metering pump using a reciprocating plunger pump, which is stabilized by a mechanical configuration without particularly controlling the speed of a drive motor. The present invention relates to an improvement in a pulsation-free metering pump that can obtain pulsation-free characteristics and easily adjust the flow rate.

〔従来の技術〕[Conventional technology]

一般に、シングルプランジャ式往復動ポンプは、吸入行
程時に吐出量が零となるため、吐出流体は大きな脈動を
発生することから、2本の同径のプランジャポンプを使
用して各プランジャの往復動の位相を1/2サイクルず
らして各プランジャの合計移動容積が常に一定となるよ
うに制御する無脈動定量ポンプが実施されている。この
種の無脈動定量ポンプは、各プランジャの合計移動容積
が常に一定になるよう作動さIる特殊な曲線を有する1
個または2個のカムを使用し、2本のプランジャのポン
プ動作による合計吐出量を理論上無脈動にすることがで
きる。しかしながら、実際にはカムの加工−ヒの問題点
から、前述した合成吐出量の脈動を完全に回避すること
が困難であり、特に2本のプランジャの合成部分におい
て、流量が局部的に減少すると共に吐出圧力も低下して
脈動が発生する。
In general, single-plunger reciprocating pumps have a discharge volume of zero during the suction stroke, and the discharge fluid generates large pulsations. Therefore, two plunger pumps with the same diameter are used to control the reciprocating motion of each plunger. A non-pulsating metering pump has been implemented in which the phase is shifted by 1/2 cycle so that the total displacement of each plunger is always constant. This type of pulsationless metering pump has a special curve that operates in such a way that the total displacement of each plunger is always constant.
By using one or two cams, the total discharge amount due to the pumping operations of the two plungers can theoretically be made pulsating-free. However, in reality, due to the problem of cam machining, it is difficult to completely avoid the pulsation in the combined discharge amount described above, and the flow rate may locally decrease, especially in the combined portion of the two plungers. At the same time, the discharge pressure also decreases and pulsation occurs.

このような観点から、出願人は先に、2本のプランジャ
を駆動するカムに駆動モータを連結すると共に駆動モー
タに駆動制御回路を接続し、さらに合成吐出量の圧力を
検出して圧力変動位置を検出する回路と、カムの回転位
置を検出する回123とを設けて、これらの回路で得ら
れる出力信号を前記駆動制御回路に供給して駆動モータ
の速度制御を行うよう構成した無脈動定置ポンプを提案
し特許出願を行った(特開昭57−70976号)。こ
のように構成された無脈動定量ポンプは、合成吐出量の
圧力変動の生じる位置を圧力検出器の検出信号で発生し
、一方実際のカムの回転位置信号を発生し、これらの信
号に基づいて圧力変動の生じる時点において適宜駆動モ
ータの速度制御を行うことにより、カム特性に頼る方式
に比べて脈動の発生を極めて小さく抑えることができる
From this perspective, the applicant first connected a drive motor to the cam that drives the two plungers, connected a drive control circuit to the drive motor, and further detected the pressure of the combined discharge amount to determine the pressure fluctuation position. A pulsation-free stationary motor is provided with a circuit for detecting the rotational position of the cam and a circuit 123 for detecting the rotational position of the cam, and is configured to supply output signals obtained from these circuits to the drive control circuit to control the speed of the drive motor. He proposed a pump and filed a patent application (Japanese Patent Application Laid-open No. 70976/1983). The non-pulsating metering pump configured in this way uses the detection signal of the pressure detector to generate the position where the pressure fluctuation of the composite discharge amount occurs, and also generates the actual rotational position signal of the cam, and calculates the position where the pressure fluctuation of the composite discharge amount occurs based on these signals. By appropriately controlling the speed of the drive motor at the time when pressure fluctuations occur, the occurrence of pulsation can be suppressed to an extremely low level compared to a method relying on cam characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、この種の定量ポンプにおいては、プランジャの
ストローク長を変更することにより、ポンプ室の容積変
化量を変化させてポンプ吐出量を調整することが可能で
ある。しかしながら、前述したように、無脈動ポンプに
おいては、脈動を防止するために2連のプランジャポン
プの吐出方向の中位時間当りの容積変化量の和を常に一
定とするものであり、カム形状は一定となることから流
量は一定となり調整することはできない。このため、流
量調整を行うには、カムを回転1動させる駆動モータの
回転数を変化させることにより、中位時間当りの流量変
化を実現することができる。従って、前述した従来の無
脈動定量ポンプにおいては、流量調整を行うために可変
速モータを必要とした。
Generally, in this type of metering pump, by changing the stroke length of the plunger, it is possible to change the volume change amount of the pump chamber and adjust the pump discharge amount. However, as mentioned above, in a pulsation-free pump, in order to prevent pulsation, the sum of the volume changes per medium time in the discharge direction of the two plunger pumps is always constant, and the cam shape is Since the flow rate is constant, the flow rate is constant and cannot be adjusted. Therefore, in order to adjust the flow rate, by changing the rotational speed of the drive motor that moves the cam one rotation, it is possible to realize a change in the flow rate per medium time. Therefore, the conventional pulsationless metering pump described above requires a variable speed motor to adjust the flow rate.

しかし、可変速モータによって無脈動の安定化や流量調
整を行うためには、制御回路が複雑となり、特に流量調
整を行う場合に無脈動特性が不安定化することも考えら
れ、この種ポンプシステムの設備コストが嵩む等の難点
がある。
However, in order to achieve pulsation-free stabilization and flow rate adjustment using a variable speed motor, the control circuit becomes complex, and the pulsation-free characteristic may become unstable, especially when adjusting the flow rate. There are disadvantages such as increased equipment costs.

そこで、本発明の目的は、制御回路が複雑となる可変速
モーフを使用することなく、2連のプランジャポンプの
プランジャを同時に連動させてストローク長の調整が可
能なカム機構を設けることにより、常に安定した無脈動
特性を保持しながら流量調整を簡便かつ円滑に達成する
ごとができる無脈動定量ポンプを提供するにある。
Therefore, an object of the present invention is to provide a cam mechanism that can adjust the stroke length by simultaneously interlocking the plungers of two plunger pumps without using a variable speed morph that requires a complicated control circuit. To provide a pulsation-free metering pump that can easily and smoothly adjust the flow rate while maintaining stable pulsation-free characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る無脈動定量ポンプは、2本のプランジャを
カム駆動により往復動させて各プランジャのポンプ動作
による合成吐出量を得るよう構成した無脈動定量ポンプ
において、前記各プランジャの軸線に対しこれと直交す
る軸方向に変位しかつその変位と共に偏心量が次第に変
化する相似形のカム機構を設け、このカム機構の回転軸
を回転自在にかつ軸方向に摺動自在に軸支し、前記回転
軸の一部に軸方向の移動調節機構を設けると共に回転駆
動手段を結合することを特徴とする。
The pulsation-free metering pump according to the present invention is a pulsation-free metering pump configured to reciprocate two plungers by cam drive to obtain a composite discharge amount by the pump operation of each plunger. A cam mechanism of a similar shape that is displaced in an axial direction perpendicular to the axial direction and whose eccentricity gradually changes with the displacement is provided, and the rotating shaft of this cam mechanism is rotatably and slidably supported in the axial direction. It is characterized in that a part of the shaft is provided with an axial movement adjustment mechanism and is coupled to a rotational drive means.

前記の無脈動定量ポンプにおいて、カム機構は、共通の
回転軸に設けられ、回転軸の軸方向移動に際し2本のプ
ランジャの往復動の単位時間当りの速度の和が一定とな
るよう構成することができる。
In the above-mentioned pulsationless metering pump, the cam mechanism is provided on a common rotating shaft, and configured so that the sum of the speeds of the reciprocating motions of the two plungers per unit time is constant when the rotating shaft moves in the axial direction. Can be done.

また、回転軸の移動調節機構は、回転軸の一端部に継手
を介して調節ねじ軸を結合し、この調節ねじ軸をダイヤ
ルで回転することにより回転軸を移動させて流量調整を
行うよう構成することができる。
In addition, the rotation shaft movement adjustment mechanism is configured such that an adjustment screw shaft is connected to one end of the rotation shaft via a joint, and the adjustment screw shaft is rotated with a dial to move the rotation shaft and adjust the flow rate. can do.

さらに、回転軸の回転駆動手段は、回転軸の一部と駆動
軸とを平歯車もしくはウオームホイールを介して結合す
るかまたは駆動軸と直結して構成することができる。
Furthermore, the rotational drive means for the rotary shaft can be constructed by coupling a part of the rotary shaft and the drive shaft via a spur gear or a worm wheel, or by directly connecting the drive shaft.

〔作用〕[Effect]

矛発明に係る無脈動定量ポンプによれば、プランジャの
往復動を制御するためのカム機構につき、前記各プラン
ジャの軸線に対しこれと直交する軸方向に変位しかつそ
の変位と共に偏心量が次第に変化する相似形の一体構成
とすることにより、前記カム機構の回転軸を軸方向に移
動調節すれば、前記各プランジャに対するカム機構の偏
心量が相伯的に変化してそのストローク長が加減調節さ
れて、流N調整を簡便かつ円泪に達成することができる
According to the pulsationless metering pump according to the invention, the cam mechanism for controlling the reciprocating motion of the plungers is displaced in an axial direction perpendicular to the axis of each plunger, and the amount of eccentricity gradually changes with the displacement. By adopting an integral structure with similar shapes, when the rotation axis of the cam mechanism is adjusted by moving in the axial direction, the eccentricity of the cam mechanism with respect to each plunger changes in a similar manner, and the stroke length thereof can be adjusted. Therefore, the flow N adjustment can be easily and smoothly achieved.

〔実施例〕〔Example〕

次に、本発明に係る無脈動定量ポンプの実施例につき添
付図面を参照しながら以下詳細に説明する。
Next, embodiments of the pulsationless metering pump according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明に係る無脈動定量ポンプの一実施例を
示す機構説明図である。第1図において、参照符号10
.12は2本の平行に配置したプランジャを示し、これ
らのプランジャ10゜12の一端部をクロスヘッド14
.16の一端部に固定すると共にクロスヘッド14,1
6の他端部に球受18,20を設けて、これらの球受1
8,20にそれぞれカムフォロアとしての硬球22.2
4を転勤自在に収納配置する。そこで、本実施例におい
て、前記カムフォロアとしての硬球22.24と当接す
るカム26a。
FIG. 1 is a mechanical explanatory diagram showing an embodiment of a pulsationless metering pump according to the present invention. In FIG. 1, reference numeral 10
.. Reference numeral 12 indicates two plungers arranged in parallel, and one end of these plungers 10°12 is connected to a crosshead 14.
.. 16 and the cross head 14,1
Ball receivers 18 and 20 are provided at the other end of 6, and these ball receivers 1
Hard ball 22.2 as a cam follower in 8 and 20 respectively
4 is stored and arranged so that it can be transferred freely. Therefore, in this embodiment, the cam 26a comes into contact with the hard balls 22 and 24 as the cam followers.

26bは、図示のように、クロスヘッド14゜16と直
交する回転軸28に対し偏心して設けられかつ前記回転
輪28の軸方向にその偏心量が直線的に変化するよう構
成された相似形の三次元構造を有するものである。この
場合、前記カム26a、26bはその間に平歯車30を
介して一体構成とされ、吐出行程時の2本のプランジャ
10,12の合計移動容積が常に一定となるような速度
曲線(第4図参照)を有するよう位相を180°ずらし
て前記回転軸28に軸着する。一方、前記カム26a、
26bに対し、クロスヘッド14.16の外周にスプリ
ング32゜34を設けて前記硬球22.24が常に圧接
するよう設定する。また、回転軸28は、それぞれ軸受
36.38を介して回転自在に支承すると共に、その一
端を継手40等を介して調節ねじ軸42に結合し、この
調節ねじ軸42に設けたダイヤル44を操作することに
より前記調節ねじ軸42をその軸方向に進退させて回転
軸28を移動させ、カム26a、26bと硬球22.2
4との当接位置を変化し得るよう構成する。
As shown in the figure, 26b is a similar-shaped ring which is provided eccentrically with respect to the rotating shaft 28 orthogonal to the crosshead 14 and 16, and whose eccentricity changes linearly in the axial direction of the rotating ring 28. It has a three-dimensional structure. In this case, the cams 26a and 26b are integrated with a spur gear 30 between them, and the speed curve (see Fig. 4 (see) and is mounted on the rotating shaft 28 with the phase shifted by 180°. On the other hand, the cam 26a,
26b, a spring 32.34 is provided around the outer periphery of the crosshead 14.16 so that the hard balls 22.24 are always in pressure contact with each other. The rotating shafts 28 are rotatably supported through bearings 36 and 38, respectively, and one end thereof is coupled to an adjusting screw shaft 42 through a joint 40 or the like, and a dial 44 provided on the adjusting screw shaft 42 is connected to the rotating shaft 28. By operating the adjusting screw shaft 42, the rotating shaft 28 is moved by moving the adjusting screw shaft 42 in its axial direction, and the cams 26a, 26b and hard balls 22.2
The structure is such that the contact position with 4 can be changed.

なお、プランジャ10,12の他端部は、それぞれポン
プ室46.48にグランドシール50゜52を介して挿
通する。この場合、各ポンプ室46.48に連通される
流体吸込配管は、それぞれ逆止弁を介して共通の流体供
給源54と接続し、また各ポンプ室46.48から導出
される流体吐出配管はそれぞれ逆止弁を介して合流黒人
で合流するよう配管構成する。
The other ends of the plungers 10 and 12 are inserted into the pump chambers 46 and 48, respectively, via gland seals 50 and 52. In this case, the fluid suction piping that communicates with each pump chamber 46.48 is connected to the common fluid supply source 54 via a check valve, and the fluid discharge piping led out from each pump chamber 46.48 is The piping is configured so that they merge at the junction via check valves.

さらに、前記カム26a、26bと一体的に設けられた
平歯車30に対し、これと噛合すると共にその軸方向の
移動を許容し得るよう構成した平歯車56を回転駆動軸
54に設ける。従って、この回転駆動軸58を電動モー
タ等の駆動源(図示せず)に結合して駆動することによ
り、カム26a、26bを回転軸28を中心にして偏心
回転させることができる。
Furthermore, a spur gear 56 is provided on the rotary drive shaft 54, which is configured to mesh with the spur gear 30 provided integrally with the cams 26a, 26b and to allow movement in the axial direction. Therefore, by coupling and driving the rotation drive shaft 58 with a drive source (not shown) such as an electric motor, the cams 26a and 26b can be eccentrically rotated about the rotation shaft 28.

第2図および第3図は、前述したカム26a。FIGS. 2 and 3 show the cam 26a described above.

26bを回転させるための駆動手段の別の実施例を示す
ものである。すなわち、第2図においては、回転軸28
の他端部にウオームホイール60を結合すると共にウオ
ームホイール60にウオーム62を噛合させてこのウオ
ーム軸64を駆動源に結合するよう構成したものである
26b shows another embodiment of the drive means for rotating 26b. That is, in FIG. 2, the rotating shaft 28
A worm wheel 60 is connected to the other end, a worm 62 is engaged with the worm wheel 60, and the worm shaft 64 is connected to a drive source.

また、第3図においては、回転軸28の他端部に直接駆
動源の出力軸66を同軸結合したものである。このよう
に駆動手段を構成すれば、カム26a、26bから平歯
車30を省略することができるので、構成が簡略化され
る。
Further, in FIG. 3, an output shaft 66 of a drive source is directly coaxially coupled to the other end of the rotating shaft 28. By configuring the driving means in this way, the spur gear 30 can be omitted from the cams 26a, 26b, so the configuration is simplified.

次に、このように構成した本発明に係る無脈動定量ポン
プの動作につき説明する。
Next, the operation of the pulsationless metering pump according to the present invention configured as described above will be explained.

今、第1図に示す状態において、カム26a526bが
回転すると、これらのカム26a。
Now, in the state shown in FIG. 1, when the cams 26a526b rotate, these cams 26a.

26bの所定位置と硬球22.24を介して弾力的に当
接するクロスヘッド14,16は、それぞれプランジャ
10.12と共に回転軸28に対し遠心方向と求心方向
(二次元の偏位)にそれぞれ180°の位相差を以って
変位する。
The crossheads 14, 16, which come into elastic contact with a predetermined position of the ball 26b via the hard ball 22.24, are moved together with the plunger 10.12 in the centrifugal direction and centripetal direction (two-dimensional deviation), respectively, with respect to the rotation axis 28 by 180 degrees. Displaced with a phase difference of °.

この時、各プランジャ10.12の遠心方向(吐出行程
)のみの速度の和が常に一定となるように設定され(第
4図参照)、実質的にポンプ吐出配管の合流黒人では無
脈動定量吐出特性が得られる。
At this time, the sum of the speeds of each plunger 10 and 12 in the centrifugal direction (discharge stroke) is set to be always constant (see Fig. 4), and virtually pulsation-free constant discharge is achieved at the confluence of the pump discharge piping. characteristics are obtained.

そこで、例えば、ダイヤル44を操作して調節ねじ軸4
2を進退させて、回転軸28を軸方向に移動させれば、
硬球22.24が当接する力A26a、26bの部分は
偏心量が変化(三次元の偏位)することになる。すなわ
ち、図示例において、カム26a、26bが右へ移動す
れば偏心量が増大し、またカム26a、26bが左へ移
動すれば偏心量が減少する。なお、この場合のポンプ吐
出配管の合流点Aにおける吐出流量の変化は第4図に示
す通りである。
Therefore, for example, by operating the dial 44, the adjusting screw shaft 4
2 and move the rotating shaft 28 in the axial direction,
The amount of eccentricity changes (three-dimensional deviation) in the portions of force A26a, 26b that the hard balls 22, 24 abut. That is, in the illustrated example, if the cams 26a, 26b move to the right, the amount of eccentricity increases, and if the cams 26a, 26b move to the left, the amount of eccentricity decreases. Incidentally, the change in the discharge flow rate at the confluence point A of the pump discharge piping in this case is as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
2本のプランジャを往復動させて各プランジャのポンプ
動作による合成吐出量を得て無脈動定量吐出特性を得る
ため、前記プランジャをカム駆動させるカム機構につき
、前記2本のプランジャのストローク長を同時にしかも
対称的に調整し得るよう三次元の偏心量調整が可能な構
成とすることにより、このカム機構の回転軸の軸方向位
置調整を行うだけで、簡便にしかも無脈動特性に影響を
与えることなく適正な流量調整を行うことができる。
As is clear from the embodiments described above, according to the present invention,
In order to reciprocate the two plungers and obtain a composite discharge amount by the pumping operation of each plunger and obtain a pulsation-free constant discharge characteristic, the stroke length of the two plungers is simultaneously controlled by the cam mechanism that drives the plungers with a cam. Moreover, by adopting a configuration that allows three-dimensional eccentricity adjustment for symmetrical adjustment, simply adjusting the axial position of the rotating shaft of this cam mechanism can easily affect the pulsation-free characteristic. Appropriate flow rate adjustment can be performed without any problems.

特に、本発明に係る無脈動定量ポンプによれば、前述し
たような特殊なカム構造を採用することにより、簡単な
構成でしかも調整操作も容易にして精度の高い流量調整
を行うことができる。従って、従来のように、カム機構
の駆動を行う駆動源としての電動モータに高価な可変速
モータを使用して高精度の速度制御を行う必要もなくな
り、この種無脈動定量ポンプシステムを低コストに製作
することができる。
In particular, according to the non-pulsating metering pump of the present invention, by employing the special cam structure as described above, it is possible to perform highly accurate flow rate adjustment with a simple configuration and easy adjustment operation. Therefore, it is no longer necessary to use an expensive variable speed motor for the electric motor as the drive source for driving the cam mechanism to perform highly accurate speed control as in the past, making this type of pulsationless metering pump system low cost. can be produced.

また、本発明に係る無脈動定量ポンプにおいて、流量調
整を行う場合は、従来のようにカムの回転速度を変化さ
せて単位時間当りの流量を変化させる場合に比べて、カ
ムの回転速度は一定に保持することができるために無脈
動特性は常に安定化させることができ、流量調整特性に
直線性を保持することができる。
In addition, in the non-pulsating metering pump according to the present invention, when adjusting the flow rate, the rotation speed of the cam is constant compared to the conventional case where the flow rate per unit time is changed by changing the rotation speed of the cam. Therefore, the pulsation-free characteristic can be always stabilized, and the linearity can be maintained in the flow rate adjustment characteristic.

以上、本発明の好適な実施例について説明したが、本発
明の精神を逸脱しない範囲内において種々の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る無脈動定量ポンプの一実施例を示
す機構説明図、第2図および第3図は本発明に係る無脈
動定量ポンプのカム機構の駆動手段のそれぞれ異なる実
施例を示す要部機構説明図、第4図は本発明に係る無脈
動定量ポンプの吐出流量特性を示す波形図である。 10.12.、、プランジャ  14.16.、、クロ
スへ・ノド1B、20.、、球受     22,24
.、、硬球26、、、カム      2B、、、回転
軸30、、、平歯車     32,34 、、、スプ
リング36.38.、、軸受     40.、、継手
42)、、調節ねじ軸   44.、、ダイヤル46.
48.、、ポンプ室  50.52.、、グランドシー
ル54、、、流体供給源   56.、、平歯車581
9、回転駆動軸  60.、、ウオームホイール62)
、、ウオーム    64.、、ウオーム軸66、、、
出力軸 FIG  3 FIG、4
FIG. 1 is a mechanism explanatory diagram showing one embodiment of the pulsationless metering pump according to the present invention, and FIGS. 2 and 3 show different embodiments of the driving means of the cam mechanism of the pulsationless metering pump according to the present invention. FIG. 4 is a waveform diagram showing the discharge flow rate characteristics of the pulsationless metering pump according to the present invention. 10.12. ,, plunger 14.16. ,, Cross to Throat 1B, 20. ,,Ball receiver 22,24
.. ,, Hard ball 26, , Cam 2B, , Rotating shaft 30, , Spur gear 32, 34, , Spring 36, 38. ,,Bearing 40. ,, joint 42), adjustment screw shaft 44. ,, dial 46.
48. ,,Pump room 50.52. ,,Gland seal 54,,Fluid supply source 56. ,, spur gear 581
9. Rotation drive shaft 60. ,,worm wheel 62)
,, Warm 64. ,,worm shaft 66,,,
Output shaft FIG 3 FIG, 4

Claims (4)

【特許請求の範囲】[Claims] (1)2本のプランジャをカム駆動により往復動させて
各プランジャのポンプ動作による合成吐出量を得るよう
構成した無脈動定量ポンプにおいて、前記各プランジャ
の軸線に対しこれと直交する軸方向に変位しかつその変
位と共に偏心量が次第に変化する相似形のカム機構を設
け、このカム機構の回転軸を回転自在にかつ軸方向に摺
動自在に軸支し、前記回転軸の一部に軸方向の移動調節
機構を設けると共に回転駆動手段を結合することを特徴
とする流量調整可能な無脈動定量ポンプ。
(1) In a non-pulsating metering pump configured to reciprocate two plungers by cam drive to obtain a combined discharge amount by the pumping operation of each plunger, displacement in an axial direction perpendicular to the axis of each plunger. In addition, a similar-shaped cam mechanism whose eccentricity gradually changes with its displacement is provided, and the rotating shaft of this cam mechanism is rotatably and slidably supported in the axial direction. What is claimed is: 1. A non-pulsation metering pump capable of adjusting flow rate, characterized in that it is provided with a movement adjustment mechanism and is coupled to a rotational drive means.
(2)特許請求の範囲第1項記載の無脈動定量ポンプに
おいて、カム機構は、共通の回転軸に設けられ、回転軸
の軸方向移動に際し2本のプランジャの往復動の単位時
間当りの速度の和が一定となるよう構成してなる無脈動
定量ポンプ。
(2) In the pulsation-free metering pump according to claim 1, the cam mechanism is provided on a common rotating shaft, and when the rotating shaft moves in the axial direction, the speed of the reciprocating motion of the two plungers per unit time is A non-pulsating metering pump configured so that the sum of
(3)特許請求の範囲第1項記載の無脈動定量ポンプに
おいて、回転軸の移動調節機構は、回転軸の一端部に継
手を介して調節ねじ軸を結合し、この調節ねじ軸をダイ
ヤルで回転することにより回転軸を移動させて流量調整
を行うよう構成してなる無脈動定量ポンプ。
(3) In the pulsation-free metering pump according to claim 1, the movement adjustment mechanism for the rotary shaft connects an adjusting screw shaft to one end of the rotating shaft via a joint, and connects the adjusting screw shaft with a dial. A non-pulsating metering pump configured to adjust the flow rate by moving the axis of rotation as it rotates.
(4)特許請求の範囲第1項記載の無脈動定量ポンプに
おいて、回転軸の回転駆動手段は、回転軸の一部と駆動
軸とを平歯車もしくはウォームホイールを介して結合す
るかまたは駆動軸と直結してなる無脈動定量ポンプ。
(4) In the pulsation-free metering pump according to claim 1, the rotational drive means for the rotary shaft may be configured such that a part of the rotary shaft and the drive shaft are coupled via a spur gear or a worm wheel, or the drive shaft is Pulsation-free metering pump directly connected to.
JP61163674A 1986-07-14 1986-07-14 Pulseless metering pump Expired - Lifetime JP2552654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163674A JP2552654B2 (en) 1986-07-14 1986-07-14 Pulseless metering pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163674A JP2552654B2 (en) 1986-07-14 1986-07-14 Pulseless metering pump

Publications (2)

Publication Number Publication Date
JPS6321370A true JPS6321370A (en) 1988-01-28
JP2552654B2 JP2552654B2 (en) 1996-11-13

Family

ID=15778440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163674A Expired - Lifetime JP2552654B2 (en) 1986-07-14 1986-07-14 Pulseless metering pump

Country Status (1)

Country Link
JP (1) JP2552654B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267471A (en) * 1988-09-02 1990-03-07 Nikkiso Co Ltd Nonpulsating quantitative pump
JPH0267469A (en) * 1988-09-02 1990-03-07 Nikkiso Co Ltd Nonpulsating quantitative pump
JP2003534841A (en) * 2000-04-21 2003-11-25 ビオメリオークス エス.ア. Apparatus for operating at least one piston and method of detecting defects in the apparatus
CN114396368A (en) * 2021-12-09 2022-04-26 西安航天泵业有限公司 Additive filling device
CN114396369A (en) * 2021-12-09 2022-04-26 西安航天泵业有限公司 Plunger type adding pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082722B2 (en) * 2014-10-14 2017-02-15 株式会社タクミナ Reciprocating pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559829A (en) * 1978-07-05 1980-01-24 Hayakawa Rubber Co Ltd Molding method of rubber product with multi-color pattern
JPS58114883U (en) * 1982-01-29 1983-08-05 日本電子株式会社 pump mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559829A (en) * 1978-07-05 1980-01-24 Hayakawa Rubber Co Ltd Molding method of rubber product with multi-color pattern
JPS58114883U (en) * 1982-01-29 1983-08-05 日本電子株式会社 pump mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267471A (en) * 1988-09-02 1990-03-07 Nikkiso Co Ltd Nonpulsating quantitative pump
JPH0267469A (en) * 1988-09-02 1990-03-07 Nikkiso Co Ltd Nonpulsating quantitative pump
JP2003534841A (en) * 2000-04-21 2003-11-25 ビオメリオークス エス.ア. Apparatus for operating at least one piston and method of detecting defects in the apparatus
JP4861592B2 (en) * 2000-04-21 2012-01-25 ビオメリオークス エス.ア. Device for operating at least one piston and method for detecting defects in the device
CN114396368A (en) * 2021-12-09 2022-04-26 西安航天泵业有限公司 Additive filling device
CN114396369A (en) * 2021-12-09 2022-04-26 西安航天泵业有限公司 Plunger type adding pump

Also Published As

Publication number Publication date
JP2552654B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5312233A (en) Linear liquid dispensing pump for dispensing liquid in nanoliter volumes
US5158441A (en) Proportioning pump
JP2000505524A (en) Pump device
US5733105A (en) Axial cam driven valve arrangement for an axial cam driven parallel piston pump system
JP4230081B2 (en) Multiple plunger pump
JP2021505816A (en) Micropump with cam mechanism for axial displacement of rotor
EP2352920A1 (en) A volumetric pump and its driving mechanism
JPS6321370A (en) Pulsationless metering pump
EP1536138A1 (en) Rotor machine
JPS6343591B2 (en)
CN111852810B (en) Two-dimensional pressure servo variable pump
JP4401539B2 (en) Reciprocating pump
JPH0267471A (en) Nonpulsating quantitative pump
KR19990073188A (en) Rotary pump by the piston
JPS61142373A (en) Variable capacity pump
US7314354B2 (en) Rotor machine
JP3005797B2 (en) Hydraulic piston device
US4090817A (en) High displacement-to-size ratio rotary fluid mechanism
KR102405381B1 (en) Rotary fluid transmission device
JPH0267470A (en) Nonpulsating quantitative pump
WO2005119059A1 (en) Displacer machine, particularly a hydraulic motor or pump
JPH0267469A (en) Nonpulsating quantitative pump
US11867162B2 (en) Precision, constant-flow reciprocating pump
JP2007162534A (en) Bidirectional reversible common mechanism for internal combustion engine and pump
JP2012002114A (en) Reciprocating pump and method for adjusting discharge quantity using the pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term