[go: up one dir, main page]

JPS63213317A - Rare earth-iron permanent magnet - Google Patents

Rare earth-iron permanent magnet

Info

Publication number
JPS63213317A
JPS63213317A JP62047044A JP4704487A JPS63213317A JP S63213317 A JPS63213317 A JP S63213317A JP 62047044 A JP62047044 A JP 62047044A JP 4704487 A JP4704487 A JP 4704487A JP S63213317 A JPS63213317 A JP S63213317A
Authority
JP
Japan
Prior art keywords
atomic
less
rare earth
coercive force
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62047044A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62047044A priority Critical patent/JPS63213317A/en
Publication of JPS63213317A publication Critical patent/JPS63213317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄系永久磁石に閃する。[Detailed description of the invention] [Industrial application field] The present invention focuses on rare earth-iron permanent magnets.

〔υC/、lこの技術〕[υC/, l this technology]

従来、希土類−鉄系の磁石には次の3通りの方法による
磁石が報告されている。
Conventionally, rare earth-iron magnets have been reported using the following three methods.

(1)  ち)末冶金法に基づく焼結法による磁石(参
考文献1) (2)  アルモノ1ス金合を製造するに用いる急冷薄
帯製造装置で、厚さ30μm程度の急冷薄片を作り、そ
の−,17片を樹脂で結合する磁石。
(1) H) Magnet by sintering method based on advanced metallurgy method (Reference 1) (2) A quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon production device used for producing an aluminum alloy. A magnet that combines 17 pieces with resin.

(参考文献2) (31(21の方法で使用した同じ薄片を、2段階の:
1ソトプレス法で機械的配向処理を施した磁石(参考文
献2) 参考文献ls M、Sagawa、  S、Fujim
ura、   N、To+7awa、  Il、yam
amoLo  and  Y、Matsuura;J、
Apf)!、■’hys、Vo1.55(6)、15M
arcb  1984.P2O83参考文献2.R,W
、Lce;Apple、Phys、I、c L L、V
o 1.4G (8)、15Δ1)ril  1085
.P700 文献に添って上記のfiff来技術全技術する。まず(
1)の〃を桔磁石では、n’T解、鋳造により合金イン
ゴットを作製し、粉砕されて3μmくらいの粒径をイ[
する磁石粉にされる。磁石粉は成形助剤となるバインダ
ーと混練され、磁場中でプレス成形されて、成形体がで
きあがる。成形体はアルゴン中で1100°Ci’+i
f後の温度で1時間焼結され、その後室温まで急冷され
る。゛ゲl結後、000°C前後の温度で熱処理すると
保磁力はさらに向上する。
(Reference 2) (31) The same thin section used in method 21 was subjected to two steps:
1 Magnet subjected to mechanical orientation treatment using the sotopress method (Reference 2) Reference ls M, Sagawa, S, Fujim
ura, N, To+7awa, Il, yam
amoLo and Y, Matsuura;J,
Apf)! , ■'hys, Vo1.55 (6), 15M
arcb 1984. P2O83 References 2. R,W
,Lce;Apple,Phys,I,c L L,V
o 1.4G (8), 15Δ1) ril 1085
.. P700 In accordance with the literature, all the above-mentioned fiff techniques are explained. first(
In 1), an alloy ingot is produced by n'T solution and casting, and is crushed to a particle size of about 3 μm.
It is turned into magnetic powder. Magnetic powder is kneaded with a binder, which serves as a molding aid, and press-molded in a magnetic field to complete a molded product. The compact was heated at 1100°Ci'+i in argon.
It is sintered at a temperature after f for 1 hour and then rapidly cooled to room temperature. After gelation, the coercive force is further improved by heat treatment at a temperature of around 000°C.

(2)の磁石ではまず急冷p、B(帯製造装置の最適な
回転数で12− F c −n合金の急冷薄帯を作る。
For the magnet (2), first, a quenched ribbon of 12-Fc-n alloy is made by quenching P, B (at the optimal rotation speed of the band manufacturing device).

得られたハリ帯は厚さ30μmのリボン状をしており。The obtained elastic band has a ribbon shape with a thickness of 30 μm.

直径が1000Å以下の多結晶が集合している。Polycrystals with a diameter of 1000 Å or less are aggregated.

RV 4’+シは脆くて割れやすく、結晶粒は等方向に
分布しているので磁気的にも等方性である。この薄帯を
適度な粒度にして、(÷1脂と混練してプレス成形すれ
ば7ton/am’程度の圧力で、約85体JJ’i%
の充填が可能となる。
RV4'+Si is brittle and easily cracked, and since the crystal grains are distributed in the same direction, it is also magnetically isotropic. If this ribbon is made into an appropriate particle size and kneaded with (÷1 fat) and press-molded, it will form approximately 85 pieces at a pressure of about 7 tons/am'.
It becomes possible to fill the

に3)の磁石では、始めにリボン状の急冷薄帯あるいは
薄帯の片を、真空中あるいは不活性雰囲気中で約700
°Cで予備加熱したグラファイトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達したと
きの一軸の圧力が加えられる。温度、時間は特定しない
が、充分な靭性が出る条件としてT=725±250°
C1圧力は1’ 〜1 、 4 L o n / c 
In ’程度が適している。この段階では6石はわずか
にプレス方向に配向しているとはいえ、全体的には等方
性である。次の;1;、・ドブレスは、大面積をイrす
る型で行なわれる。
In the case of the magnet described in 3), a ribbon-like quenched ribbon or a piece of ribbon is first heated at approximately 700° C. in a vacuum or in an inert atmosphere.
Place in graphite or other heat-resistant press mold preheated at °C. Uniaxial pressure is applied when the ribbon reaches the desired temperature. Temperature and time are not specified, but T = 725 ± 250° as a condition to obtain sufficient toughness.
C1 pressure is 1' to 1,4 L on/c
In' level is suitable. At this stage, although the six stones are slightly oriented in the pressing direction, the overall structure is isotropic. The following; 1; · Doblessing is performed in a type that covers a large area.

最も一般的には700°Cで0.7tonで数秒間プレ
スする。すると試料は最初の厚みの172になりプレス
方向と平行に磁化容易軸が配向してきて、合金は異方性
化する。これらの工[呈は、二段階、1−ットゾレス法
(two−stage  h。
Most commonly, it is pressed at 700°C and 0.7 ton for a few seconds. Then, the sample has the initial thickness of 172 mm, the axis of easy magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These techniques are a two-stage, one-stage method.

t −1) r c c s  p r o c c 
d u r e )と呼ばれている。この方法により緻
密で異方性をイfする12− F c −13磁石が製
造できる。なお、最初のメルトスピニング法で作られる
リボン薄帯の結晶粒は、それが最大の保磁ツノを示す時
の粒径よりも小さめにしておき、後にホットプレス中に
結晶粒のil1人が生じて最Δの粒径になるようにして
おく。
t-1) r c c s p r o c c
It is called d u r e ). By this method, a dense and anisotropic 12-Fc-13 magnet can be manufactured. Note that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit the maximum coercive horns, and later, during hot pressing, the grain size of the crystal grains is determined to be smaller. to obtain the maximum particle size of Δ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術で、希土類−鉄系の磁石は一応作製で
きるのであるが、これらの技術を利用した磁石は次のよ
うな欠点をイ■している。(1)の焼結磁石では合金を
粉末にするのが必須であるが、R−F c −13系合
金はたいへん酸素に対して活性であるので、粉末化する
と会計酸化が激しくなり。
Although it is possible to fabricate rare earth-iron based magnets using the above-mentioned conventional techniques, magnets using these techniques have the following drawbacks. For the sintered magnet (1), it is essential to turn the alloy into powder, but since the R-F c-13 alloy is very active against oxygen, turning it into powder causes severe oxidation.

111結体中の1M索bり度はどうしても高くなってし
まう。また粉末を成形するときに1例えばステアリン酸
亜鉛のような成形助剤を使用しなければならず、これは
27A結゛工程で前もって地り除かれるのであるが5数
割は磁石体の中に炭素の形で残ってしまう。この炭素は
著しく R−F c −13の磁気性能を低下させる。
The degree of 1M striations in the 111 concretions inevitably becomes high. Furthermore, when molding the powder, it is necessary to use a molding aid such as zinc stearate, which is removed in advance during the 27A binding process, but about 50% of this is contained in the magnet. It remains in the form of carbon. This carbon significantly reduces the magnetic performance of R-F c-13.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われる。これはたいへん脆く、ハンドリングが難
しい。従って焼結炉にきれいに並べて入れるのには、相
当の手間がかかることも大きな欠点である。これらの欠
点があるので一般的に言ってR−Fe−Il系の焼結磁
石の製造には、高価な設υ;tが必要になるばかりでな
く、生産効率が悪く、磁石の製造費が高くなってしまう
。従って、R−Pc−B系磁石の口料費の安さを充分に
引き出す磁石とは言い難い。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle. Therefore, another major drawback is that it takes a considerable amount of effort to neatly arrange them in the sintering furnace. Because of these drawbacks, generally speaking, the production of R-Fe-Il sintered magnets not only requires expensive equipment, but also has poor production efficiency and increases magnet manufacturing costs. It gets expensive. Therefore, it is difficult to say that it is a magnet that fully takes advantage of the low cost of R-Pc-B magnets.

(2)と(3)の磁石は真空メルトスピニング装置を使
う。この装置は現在では、たいへん生産性が悪くしかも
高価である。■では原理的に等方性であるので低エネル
ギー積であり、ヒステリシスループの角形性もよくない
ので温度性に対しても、使用する面においても不利であ
る。(3)の方法は、:1;フトプレスを2段階に使う
というユニークな方法であるが、実際にmmを考えると
たいへん非効率になることは否めないであろう。
Magnets (2) and (3) use a vacuum melt spinning device. This equipment is currently very unproductive and expensive. In (2), since it is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is not good, so it is disadvantageous in terms of temperature properties and usage. Method (3) is: 1; It is a unique method in which a foot press is used in two stages, but it cannot be denied that it is very inefficient when actually considering mm.

本発明による希土類−鉄系永久磁石はこれらの欠点を解
決するものであり、その目的とするところは高性能低コ
ストな希土類−鉄系永久磁石を得ることにある。
The rare earth-iron permanent magnet according to the present invention solves these drawbacks, and its purpose is to obtain a high-performance, low-cost rare earth-iron permanent magnet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石は、希土類−鉄系永久磁石に閃するも
のであり、具体的にはRが8〜30原子%、■が2〜2
8原子%%CO50原子%以下、A 1151i:i子
%以下、添加元素M (Mg1C1、Srs ロa10
Cのうちから1!lあ! イは2種以上)8原子%以下
、及び残部が鉄及びその他の’A a1不可避な不純物
からなる合金を溶解及び鋳造後、該鋳造インゴットを5
00°C以上の温度で熱間加工することにより結晶粒を
微細化し。
The permanent magnet of the present invention is similar to rare earth-iron permanent magnets, and specifically, R is 8 to 30 atomic % and ■ is 2 to 2 atomic %.
8 atomic %% CO50 atomic % or less, A 1151i: i atomic % or less, additive element M (Mg1C1, Srs loa10
1 out of C! Ah! After melting and casting an alloy consisting of 8 atomic % or less, and the balance being iron and other unavoidable impurities, the cast ingot is
The crystal grains are refined by hot working at a temperature of 00°C or higher.

またその結晶軸を特定の方向に配向せしめて、該鋳造合
金を磁気的に異方性化することを特徴とする。さらに磁
気特性、特に保磁力の向上のためには、前記組成中でも
1<が8〜25原子%、Bが2〜8原子%、Co 40
 [1I−r−%以下、A115原子%以下。添加元素
M(Mg%Cユs S r%B1、l c tv ’l
 チカラ1 a アZ イLt 2 i1i1i)8原
子%以下、及び残部が鉄及びその他の製造上不可避な不
純物からなり、250°C以上の温度で熱処理すること
により、磁気的に硬化する鋳造磁石合金全使用すること
を特徴とする。また樹脂結合化のためには、熱間加工に
より粒子が微細化する性質を利用し、樹脂結合のための
粉砕を施した後にも各粉末内に、磁性相R*Fc+a 
ロ粉子を複数個含むような粉末を作製し、イf機搬物イ
ンダーとともに混練・硬化させて、樹脂結合磁石とする
ことを特徴とする。
Another feature is that the cast alloy is made magnetically anisotropic by orienting its crystal axis in a specific direction. Furthermore, in order to improve magnetic properties, especially coercive force, 1< is 8 to 25 atomic %, B is 2 to 8 atomic %, and Co 40 is
[1I-r-% or less, A115 atomic% or less. Additive element M (Mg%Cyus S r%B1, l c tv 'l
Chikara 1 a Z I Lt 2 i1i1i) Cast magnet alloy consisting of 8 atomic % or less, with the balance consisting of iron and other impurities unavoidable in manufacturing, and which is magnetically hardened by heat treatment at a temperature of 250°C or higher. It is characterized by full use. In addition, for resin bonding, we take advantage of the property that particles become finer due to hot processing, and even after pulverization for resin bonding, a magnetic phase R*Fc+a is present in each powder.
The present invention is characterized in that a powder containing a plurality of powder particles is prepared, and is kneaded and hardened together with an if machine conveyance inder to form a resin-bonded magnet.

前記のように現在の希土類−鉄系永久磁石の製造方法で
ある焼結法、急冷法はそれぞれ粉砕による粉末管理の困
難さ、生産性の悪さといった大きな欠点をイ「している
。本発明者らは、これらの欠点を改良するため、バルク
状態での磁石化の研究の岩手し、まず特許請求の範囲m
1項の組成域で熱間加工による結晶粒の微細化と異方化
ができる、組成域を特許請求の範囲第2項にまでせばめ
れば、鋳造状態のまま熱処理するだけで十分な保磁力が
得られる。
As mentioned above, the current methods of manufacturing rare earth-iron permanent magnets, the sintering method and the rapid cooling method, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity. In order to improve these drawbacks, Iwate et al. conducted research on magnetization in the bulk state, and first disclosed the claims m.
In the composition range of item 1, grain refinement and anisotropy can be achieved through hot working.If the composition range is narrowed to claim 2, sufficient coercive force can be obtained by simply heat-treating the cast state. is obtained.

また熱間加工後のインゴットの粉砕によって樹脂結合型
磁石が作製できることを発明した。この方法では、熱間
加工による異方化は参考文献2に示した急冷法のような
2段階ではな(、一段階のみでよく、加工後の保磁力は
粒子の微細化により大幅に増加するという全く異った′
IA象を呈する。
He also invented the ability to produce resin-bonded magnets by crushing ingots after hot processing. In this method, the anisotropy caused by hot working is not a two-step process like the quenching method shown in Reference 2 (only one step is required, and the coercive force after processing increases significantly due to grain refinement). A completely different
Exhibits IA symptoms.

また鋳造インゴットを粉砕する必要がないので。Also there is no need to crush the casting ingot.

焼結法はどの厳密な雰囲気管理を行なう必要はなく、設
備費が大きく低減される。さらに樹脂結合磁石において
も、急冷法によった磁石のように原理的に等方性である
といった問題点がなく、異方性の樹1lfi拮合磁合が
得られ、R−Fe−n磁石の高性能、低コストという特
徴を生かすことができる。
The sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced. Furthermore, resin-bonded magnets do not have the problem of being isotropic in principle like magnets produced by the rapid cooling method, and anisotropic tree 1lfi antagonistic magnetic coupling can be obtained, making it possible to obtain R-Fe-n magnets. It is possible to take advantage of the features of high performance and low cost.

バルク状態で磁石化するという研究には、参考文献3、
三保広晃他(日本金属学会、昭和60年度秋゛期講演会
、講演番号(544))があるが同研究はNd10.2
  Fe、50.7  Co22゜OVl、3  B9
.2という組成でのアルゴンガス吹きつけ大気中溶解で
吸い上げた小型サンプルによるものであり、小量採取の
ために結晶粒の急?”l l細化効果が出たものと考え
られる。この組成では通1B’の鋳造では主相であるN
d*Pe5a口4(1が111大化してしまい、熱間加
工による異方化は可能だが、永久磁石として十分な保磁
力が得にくいことを我々は実験的に確めた。通常の鋳造
で十分な保磁力を得るには、本発明の特許請求の範囲2
にしるしたような低B組成であることが必須である。
For research on magnetization in the bulk state, see Reference 3,
Hiroaki Miho et al. (Japan Institute of Metals, 1985 Autumn Lecture, Lecture number (544)), but the same research was conducted on Nd10.2.
Fe, 50.7 Co22゜OVl, 3 B9
.. This is due to a small sample taken up by blowing argon gas and dissolving in the atmosphere with a composition of 2. Because of the small amount collected, the crystal grains are sharp. It is thought that this is due to the thinning effect.With this composition, N, which is the main phase in the casting of 1B'
We experimentally confirmed that d*Pe5a port 4 (1 becomes 111 large, and although it is possible to make it anisotropic by hot working, it is difficult to obtain sufficient coercive force as a permanent magnet. In order to obtain sufficient coercive force, claim 2 of the present invention
It is essential to have a low B composition as shown in .

従来のR−F c −13系、&n石の組成は、参考文
献lに代表されるようなR+ s Fct t Dmが
最適とされていた。この組成は主相Rt I°C,a 
n化合物を原子百分率にした組成R11,7Fc82.
4135.0に比してR−[3に富む側に移行している
。このことは保磁力を得るためには、主相のみでなくR
rich相5llrich相という非磁性相が必要であ
るという点から説明されている。ところが本発明による
組成では逆にBが少ない側に移行したところに保磁力の
ピーク値が存在する。この組成域では、焼結法の場合、
保磁力が激減するので、これまであまり問題にされてい
なかった。しかし通常の鋳造法では、本発明の特許請求
の範囲第2項の組成範囲でのみ、高保磁力が得られ、逆
に焼結法の主流組成であるBに富む側では十分な保磁力
は得られない。
The optimal composition of the conventional R-F c -13 series stone was R+ s Fct t Dm as typified by Reference 1. This composition is the main phase Rt I°C,a
Composition R11,7Fc82.n compound expressed as atomic percentage.
Compared to 4135.0, it has shifted to the side rich in R-[3. This means that in order to obtain coercive force, not only the main phase but also R
This is explained from the point that a non-magnetic phase called a rich phase is required. However, in the composition according to the present invention, on the contrary, the peak value of the coercive force exists where the B content shifts to the side where there is less B. In this composition range, in the case of the sintering method,
Until now, this has not been much of a problem because the coercive force is drastically reduced. However, in the ordinary casting method, a high coercive force can be obtained only in the composition range specified in claim 2 of the present invention, and on the contrary, a sufficient coercive force cannot be obtained in the B-rich side, which is the mainstream composition of the sintering method. I can't.

これらの点は以下のように考えられる。1まず焼結法を
用いても鋳造法を用いても、保磁力Ui lX?そのも
のはnucleation、modelに従っている。
These points can be considered as follows. 1 First, whether using the sintering method or the casting method, the coercive force Ui IX? It follows the nucleation and model.

これは、両者の初磁化曲腺がSmC。This is because both initial magnetization curves are SmC.

、のように急峻な立ち上がりを示すことかられかる。こ
のタイプの磁石の保磁力は)、(本釣には単磁区モデル
によっている。すなわちこの場合、大きな結晶磁気異方
性を仔するR 4“F Q + a n化合物が、大き
ずぎる七粒内に磁壁を口するようになるため、磁化の反
転が磁壁の移動によって容易に起きて、保磁力は小さい
。一方、粒子が小さくなって、ある寸法以下になると、
粒子内に磁壁を有さなくなり、磁化の反転は回転のみに
よって進行するため、保磁力は大きくなる。つまり適切
な保磁力を得るには、Rt Fct a D相が適切な
粒径をイ1することが必要である。この粒径としては1
0tt m前後が辺当であり、焼結タイプの場合は、焼
結前の粉末粒度の調整によって粒径を適合させることが
できる。ところが鋳造法の場合s R* F c141
1化合物の大きさは溶融から凝固する段階で決定される
ため、組成と凝tya程に生食を払う必要がある。特に
組成の意味合いは太き(、Bが8原子%以上含むと、鋳
造上がりの11FO+a ロ相の大きさが容易に100
μmを越えてしまい、参考文献2のような急冷装置を用
いないと鋳造状態では保磁力を得ることは困難である。
, because it shows a steep rise. The coercive force of this type of magnet is), Since the magnetic domain walls come into contact with each other, reversal of magnetization easily occurs due to the movement of the magnetic domain walls, and the coercive force is small.On the other hand, when the particles become smaller and become smaller than a certain size,
Since the particles no longer have domain walls and the reversal of magnetization proceeds only by rotation, the coercive force increases. In other words, in order to obtain an appropriate coercive force, it is necessary for the Rt Fct a D phase to have an appropriate particle size. This particle size is 1
The average value is around 0tt m, and in the case of a sintered type, the particle size can be adjusted by adjusting the powder particle size before sintering. However, in the case of the casting method, s R* F c141
Since the size of a compound is determined at the stage of melting and solidifying, it is necessary to pay attention to the composition and solidification of the raw material. In particular, the meaning of the composition is thick (if B is included at 8 atomic percent or more, the size of the 11FO+a phase after casting will easily increase to 100%).
μm, and it is difficult to obtain a coercive force in a cast state without using a quenching device as described in Reference 2.

これに対して、特許請求の範囲第2項で述べたような低
ボロン領域では、鋳型・鋳込温度等の工夫で容易に粒径
を微細化できる。しかしいずれの場合でも、熱間加工を
施せば主相Re Fe、a B相が微細化するので、加
工前よりは保磁力は増大する。鋳造状態で保磁力を得ら
れる領域は、見方を変えればRmFc+aI3に比して
Fcに富んだ組成とも言え、凝固段階ではまず初品とし
てFeが出現し、続いて包晶反応によってRt Fct
 a B相が現われる。このとき冷却スピードは平衡反
応に比してはるかに速いため、初品FcのまわりをR*
 F e1413相が取り囲むような形で凝固する。こ
の組成域では偏口な領域であるため、当然のことながら
焼結タイプの代表組成Rs * Fe7 ? 8mの磁
石に見られるようなロ r i c h相は2的にほと
んど無視できる。特許請求の範囲第2項で述べた表処理
は初品P cを拡散させ、平衡状態に到達させるための
もので保磁力は、このFc相の拡散に大きく依存してい
る。
On the other hand, in the low boron region as described in claim 2, the grain size can be easily refined by adjusting the mold, casting temperature, etc. However, in any case, if hot working is performed, the main phases Re Fe, a and B will become finer, so the coercive force will increase compared to before working. From a different perspective, the region where coercive force can be obtained in the cast state can be said to have a composition rich in Fc compared to RmFc+aI3, and in the solidification stage, Fe first appears as an initial product, and then RtFct is produced by a peritectic reaction.
a B phase appears. At this time, the cooling speed is much faster than the equilibrium reaction, so R*
It solidifies in such a way that it is surrounded by the Fe1413 phase. Since this composition range is unbalanced, it goes without saying that the representative composition of the sintered type is Rs * Fe7? The low r ic h phase seen in the 8m magnet can be almost ignored. The surface treatment described in claim 2 is intended to diffuse the initial product Pc and reach an equilibrium state, and the coercive force largely depends on the diffusion of the Fc phase.

次に特許請求の範囲第2項の樹脂結合化について説明す
る。前記参考文献2の急冷法でも確かに樹脂結合磁石は
作成できる。しかし急冷法で作成される粉末は、直径が
1000λ以下の多結晶が等方向に集合したものである
ため磁気的にも等方性であり、異方性磁石は作成できず
、R−Fe−B系の低コスト・高性能という特徴が生か
せない。
Next, resin bonding according to claim 2 will be explained. It is true that resin-bonded magnets can also be produced using the rapid cooling method described in Reference 2. However, the powder created by the rapid cooling method is magnetically isotropic because it is a collection of polycrystals with a diameter of 1000λ or less in the same direction, and an anisotropic magnet cannot be created. The characteristics of low cost and high performance of the B series cannot be utilized.

また、これまで焼結R−Fe−Il&!を石を粉砕して
樹脂結合型磁石が製造できなかった原因には主として2
つある。まずRt Fct a U相の単磁区臨界半径
がS m Co s等に比して1桁小さく、サプミクC
J/オーダである点に注目する必要がある。この粒度ま
で粉砕することは、通常の機械粉砕では非常に困難であ
り、また粉末があまりに活性化してしまうので酸化がは
げしく発火しゃずくなり粒径の割には保磁力がでない。
Moreover, until now, sintered R-Fe-Il&! There are two main reasons why resin bonded magnets could not be manufactured by crushing stones.
There is one. First, the single domain critical radius of the Rt Fct a U phase is one order of magnitude smaller than that of S m Co s, etc.
It is necessary to pay attention to the fact that it is J/order. Grinding to this particle size is extremely difficult with ordinary mechanical grinding, and the powder becomes too activated, resulting in severe oxidation and ignition, resulting in a lack of coercive force relative to the particle size.

我々は粒径と保磁力の関係を調べたが、保磁力は高々数
K Ocの域を出ず、表面処理によっても保磁力はほと
んど伸びなかった。次に問題となるのは機械加工による
歪である。例えば、焼結吠面で1OKOcの保磁力をイ
rする磁石を機械粉砕すると1粒径20〜30μmの粉
末ではI K Oc以下の保磁力しか有しなくなる。同
様な保磁力機構(nucleation  model
)に従うとされるSmCO5磁石では、この様な保磁力
の激減は起こらず、容易に保磁力を有する粉末を製造で
きる。こういった現象It因としては、粉砕時の加工歪
等の影響がR−Fe−13系の場合、かなり大きいこと
が予想できる。このことはウォッチ用ステップモーター
のロータ磁石のような小物磁石を焼結ブロックから切り
出し加工するときには大きな問題となる。
We investigated the relationship between particle size and coercive force, but found that the coercive force was no more than a few K Oc at most, and the coercive force hardly increased even with surface treatment. The next problem is distortion caused by machining. For example, if a magnet that has a coercive force of 1 OKOc on a sintered surface is mechanically pulverized, a powder with a grain size of 20 to 30 μm will have a coercive force of less than IKOc. A similar coercive force mechanism (nucleation model)
), such a drastic decrease in coercive force does not occur in SmCO5 magnets that comply with the above criteria, and powder having coercive force can be easily produced. As for the cause of this phenomenon, it can be expected that the influence of processing strain during pulverization is considerably large in the case of R-Fe-13 series. This becomes a big problem when cutting out small magnets such as rotor magnets for watch step motors from sintered blocks.

以上2つの理由、すなわち臨界半径の小さいこと、加工
歪の影1Nの大きいことがね因で、通常粉砕では、樹I
ItI結合型磁石ができなかったわけである。保磁力を
イ1する粉末を得るためには、参考文献2のように粒内
にl<*Fa、aB粒子を、多数イ「する粉末を作れば
よい。しかし参考文献2の急冷法は生産性に問題がある
。また焼結後の粉砕によりこの様な粉末を作ることは事
実上不可能である。何故なら、焼結中にも粒はある程度
成長して大きくなるので、焼結前の粒度はその分を兄込
んでさらに小さくしておかなければならない。しかしそ
ういったf合皮では粉末の酸素0度が著しく高くなり期
待するような性能は得られない。そのため現伏では焼結
上がりのR*Fc+aB相の粒度を10μm F’a度
とするのが限界である。この程度の粒度では、粉砕後は
ほとんど保磁力を打しなくなる。そこで我々は、熱間加
工による粒の微細化を利用することに行目した。鋳造上
がりでRsFQ+a13相の粒径を焼結R−F e −
8磁石並みにすることは比較的容易にできる。そしてこ
のような粒度のR1Pc、a lj相を有する鋳造ブロ
ックを熱間加工して、粒を微細化・配向させた後に粉砕
するのである。この方法によれば樹脂結合磁石!5)末
の粒度は20〜30μmであるから、粉末中に多数のR
,Pa、a n粒子を含ませることができ、保磁力を有
する粉末が製造できる。さらにこの粉末は参考文献2の
急冷法のように等方性ではな(、磁場配向が可能な粉末
であるため異方性磁石とすることができる。もちろんこ
のとき粉砕に水素粉砕を適用すれば、保磁力はよりよく
維持される。
Due to the above two reasons, namely, the small critical radius and the large influence of processing strain 1N, in normal crushing, the tree I
This means that it was not possible to create an ItI-coupled magnet. In order to obtain a powder with a coercive force of 1, it is sufficient to make a powder with a large number of l<*Fa, aB particles within the grains, as in Reference 2. However, the rapid cooling method of Reference 2 Also, it is virtually impossible to create such a powder by crushing after sintering.This is because the grains grow to some extent and become larger during sintering, so The particle size must be made even smaller by taking into account that amount.However, with such F synthetic leather, the oxygen content of the powder becomes extremely high and the expected performance cannot be obtained. The limit is to set the particle size of the R*Fc+aB phase to 10 μm F'a degree.With this particle size, there is almost no coercive force after pulverization.Therefore, we tried to refine the particles by hot working. After casting, the grain size of the RsFQ+a13 phase was sintered to R-F e −
It is relatively easy to make it comparable to 8 magnets. Then, the cast block having the R1Pc, alj phase with such a grain size is hot worked to refine and orient the grains, and then pulverized. According to this method, resin bonded magnet! 5) Since the particle size of the powder is 20 to 30 μm, there are many R in the powder.
, Pa, and a n particles, and a powder having a coercive force can be produced. Furthermore, this powder is not isotropic as in the quenching method of Reference 2 (but since it is a powder that can be oriented in a magnetic field, it can be made into an anisotropic magnet. Of course, if hydrogen pulverization is applied to the pulverization at this time, , the coercive force is better maintained.

以下、本発明による永久磁石の組成形限定理由を説明す
る。希土類としては、Y、La%Ce。
The reasons for limiting the composition of the permanent magnet according to the present invention will be explained below. Rare earths include Y and La%Ce.

!’ rX Nd%Sm、Eu1Gdt Tbs DF
% Mo −、E u 、、T m % Y b X 
Luが候補として挙げられ、このうちの1!IIあるい
は1種以上を組み合わせて用いられる。最も高い磁気性
能はI’rで得られる。従って実用的にはP rXNd
、Pr−Nd合金、Cc−Pr−Nd合金等が用いられ
る。また少量の重希土元素Dy1Tb等は保磁力の向上
に有効である。R−F6−B系磁石の主相はR1Fe1
allである。従ってRが8原子%未填では、もはや上
記化合物を形成せずa−鉄と同一構造の立方晶組織とな
るため高磁気特性は得られない。一方!セが30原子%
を越えると非磁性のRr i c h相が多(なり磁気
特性は著しく低下する。よって1セの範囲は8〜30原
子%が適当である。しかし鋳造磁石とするため、好まし
くはR8〜25原子%が適当である。
! ' rX Nd%Sm, Eu1Gdt Tbs DF
% Mo −, Eu,, T m % Y b X
Lu was mentioned as a candidate, and one of them! II or a combination of one or more types. The highest magnetic performance is obtained with I'r. Therefore, practically P rXNd
, Pr-Nd alloy, Cc-Pr-Nd alloy, etc. are used. Further, a small amount of heavy rare earth element Dy1Tb etc. is effective in improving the coercive force. The main phase of R-F6-B magnet is R1Fe1
All. Therefore, if R is less than 8 atomic percent, the above compound is no longer formed and a cubic crystal structure having the same structure as a-iron is formed, so that high magnetic properties cannot be obtained. on the other hand! SE is 30 atomic%
If it exceeds the Rr ich phase, there will be a large amount of non-magnetic Rr ich phase (and the magnetic properties will deteriorate significantly. Therefore, the appropriate range for 1 C is 8 to 30 at%. However, since it is a cast magnet, it is preferably R8 to 25 Atomic % is appropriate.

Bは、Rt Fe+ a B相を形成するための必須元
素であり、2唖子%未填では菱面体のR−Fc系になる
ため高保磁力は望めない。また28汁子%を越えるとU
に富む非磁性相が多くなり、残留磁束密度は著しく低ド
してくる。しかしvI造磁石としてはIt 8 F、;
’j子子息以下ふく、それ以上では特殊な玲却を施さな
いかぎり、微細なRtFet41]相を得ることができ
ず、保磁力は小さい。
B is an essential element for forming the RtFe+ a B phase, and if it is unfilled by 2%, it becomes a rhombohedral R-Fc system, so a high coercive force cannot be expected. Also, if it exceeds 28%
The amount of non-magnetic phase rich in ions increases, and the residual magnetic flux density decreases significantly. However, as a vI magnet, It 8 F;
If the magnetic field is lower than or equal to 'j' or higher, it is not possible to obtain a fine RtFet41 phase unless special ablation is performed, and the coercive force is small.

Coは水系磁石のキュリ一点を増加させるのに有効な元
素であり、基本的にFcのサイトを置換しR*Co+a
llを形成するのだが、この化合物は結晶異方性磁界が
小さく、その量が増ずにつれて磁石全tドとしての保磁
力は小さくなる。そのため永久磁石として考えられるI
KOe以上の保磁力を与えるには50片子%以内がよい
Co is an effective element for increasing the Curie point of water-based magnets, and basically replaces the Fc site to create R*Co+a
However, this compound has a small crystal anisotropy magnetic field, and as the amount increases, the coercive force as a total magnet becomes smaller. Therefore, I can be considered as a permanent magnet.
In order to provide a coercive force of KOe or more, it is preferable that the single element ratio is within 50%.

A1は参考文献4  Z b a n gM a o 
c a i他P r o c c e d i n B
  s o r t It e  8 t hI n 
t e n a t i o n a l  W o 
r k S It OI)on  Rare−Ear 
111  Magne Ls、1085.P541に示
されるよう保磁力の増大効果をイrしている。同文献は
焼結磁石に対する効果を示したものであるが、その効果
は鋳造磁石でも同様に存在する。しかしAIは非磁性元
素であるため、その添加量を増すと残留磁束密度が低下
し、15片子%を越えるとハードフェライト以下の残留
磁束密度になってしまうので、希土類磁石としての目的
を果し得ない。よってAIの添加量は15片子%以下が
よい。
A1 is reference 4 Z b a n g M a o
C ai et al. P r o c c e d i n B
so r t it e 8 t hI n
t e n a t i o n a l W o
r k S It OI) on Rare-Ear
111 Magne Ls, 1085. As shown in P541, the effect of increasing coercive force is achieved. This document shows the effect on sintered magnets, but the same effect also exists on cast magnets. However, since AI is a non-magnetic element, increasing the amount added will reduce the residual magnetic flux density, and if it exceeds 15%, the residual magnetic flux density will be lower than hard ferrite, so it will not fulfill its purpose as a rare earth magnet. I don't get it. Therefore, the amount of AI added is preferably 15% or less.

添加元素M (Mg1Ca1S r、Ba 18 Qの
うちから1種あるいは2種以上)は、保磁力の増大効果
を持つ。また、これらの添加元素は鋳造組織に対して結
晶粒微細化の効果を6つので、熱間加工における加工性
及び配能性を向上させる。そしてこれらの添加元素は、
希土類金属中に不純物として含まれている場合かあるの
だが、上記の様な効果があるので、不純物としての添加
物Mのfitの多い低グレードな希土類金属の使用が可
能となり、低ニノスト化の効果をも産みたす。しかしな
がら、添加元素Mは残留磁束密度を大きく減少させるの
で、その添加■が8原子%を越えるとハードフェライト
以ドの残留磁束密度となってしまう。
The additive element M (one or more of Mg1Ca1S r and Ba 18 Q) has the effect of increasing coercive force. In addition, these additional elements have the effect of refining grains on the cast structure, thereby improving workability and dispersion in hot working. And these additional elements are
Rare earth metals are sometimes contained as impurities, but because of the effects described above, it is possible to use low-grade rare earth metals that have a high fit for additive M as an impurity, which can help reduce nynost. It also produces effects. However, since the additive element M greatly reduces the residual magnetic flux density, if the additive element M exceeds 8 atomic %, the residual magnetic flux density becomes lower than that of hard ferrite.

GLっで、添加量kMの添加量は8原子%以下がよい。In GL, the addition amount kM is preferably 8 atomic % or less.

〔実施例!〕〔Example! ]

本発明による磁石の製造工程を以下に説明する。 The manufacturing process of the magnet according to the present invention will be explained below.

まず所望の組成の合金を誘導炉で18解し、鋳型にυI
造する。次に磁石に異方性を付与するために、各種の熱
間加工を施す。本実施例では、一般的なりI進法ではな
く、特殊鋳造法として急冷にょる結晶粒微細効果の大き
なL i q u i (1(I y namic  
compaction法(参考文献5、T、S、C1x
in他、J、 App 1.Pbys、50 (4)、
15  Fcbruary  1086.1)1297
)を用いた。本実施例では、熱間加工として■押し出し
加工、■圧延加工、■スタンプ加工、■プレス加工のい
ずれかを1000°Cで施した。押し出し加工について
は、等方向に部が加えられるようにグイ側からも力が加
わるよう工夫した。圧延及びスタンプについては、極力
ひずみ速度が小さくなるようにロール・スタンプの速度
を調整した。いずれの方法でも合金の押される方向に平
行になるように結晶の磁化容易軸は配向する。
First, an alloy of the desired composition is melted in an induction furnace, and υI is placed in a mold.
Build. Next, various types of hot working are performed to impart anisotropy to the magnet. In this example, instead of using the general I base method, we used L i q u i (1(I y namic
compaction method (Reference 5, T, S, C1x
in et al., J. App 1. Pbys, 50 (4),
15 Fcbruary 1086.1)1297
) was used. In this example, any one of (1) extrusion, (2) rolling, (2) stamping, and (2) press working was performed at 1000°C as hot working. Regarding the extrusion process, we devised a way to apply force from the goo side so that parts were added in the same direction. Regarding rolling and stamping, the speed of the roll and stamp was adjusted so that the strain rate was as low as possible. In either method, the axis of easy magnetization of the crystal is oriented parallel to the direction in which the alloy is pushed.

第1表の組成の合金を溶解し、上に述べた方法で磁石を
作製した。ただし用いた熱間加工法は表中に併記した。
An alloy having the composition shown in Table 1 was melted and a magnet was produced by the method described above. However, the hot working method used is also listed in the table.

また熱間加工後のアニール処理はずべて1000°(:
X24時間行った。
In addition, the annealing treatment after hot working was performed at 1000° (:
I went for x24 hours.

第1表 次に結果を示す、参考データとして熱間加工を行なわな
い試料の残留磁束密度を示した。
The results are shown in Table 1.Residual magnetic flux densities of samples not subjected to hot working are shown as reference data.

第2表 第2表より、押出し、圧延、スタンプ、プレスのすべて
の熱間加工法で残留磁束密度が増加し磁気的に異方化さ
れたことがわかる。
Table 2 It can be seen from Table 2 that the residual magnetic flux density increased and magnetic anisotropy was achieved by all hot working methods such as extrusion, rolling, stamping, and pressing.

〔実施例2〕 ここでは1通常の鋳造法を用いた実施例を紹介する。ま
ず第3表のような組成を誘導炉で溶解し鉄鋳型に鋳造し
、柱状晶を形成せしめる。加工率約50%以上の熱間加
工(本実施例ではプレス)を行った後、インゴットを磁
気的に硬化させるた161000’ CX24時間のア
ニール処理を施した。このときアニール後の平均粒径は
約15μmであった。鋳造タイプの場合は、熱間加工を
行なわず、所望形状に加工すれば、柱状晶の異方性を利
用した面内異方性磁石となる。
[Example 2] Here, an example using a normal casting method will be introduced. First, the composition shown in Table 3 is melted in an induction furnace and cast into an iron mold to form columnar crystals. After hot working (pressing in this example) at a processing rate of about 50% or more, the ingot was subjected to an annealing treatment at 161000' CX for 24 hours to magnetically harden it. At this time, the average grain size after annealing was about 15 μm. In the case of the casting type, if it is processed into the desired shape without hot working, it will become an in-plane anisotropic magnet that utilizes the anisotropy of columnar crystals.

第3表 次なる第4表に各組成に対して熱間加工をせずにアニー
ル処理したものと熱間加工後、アニール処理したものの
磁気特性を示す。
Table 3 and Table 4 show the magnetic properties of each composition after annealing without hot working and after hot working and then annealing.

第4表 ここで熱間加工によって(B11)+nax、1llC
とも大幅な増加を示している。これは加工よりtit子
が配向し、1311カーブの角形性が大幅に教書された
ためである。参考文献2の急冷法では、加工によりむし
ろi II cは減る傾向にあり、tllcの大幅増加
は本発明の大きな特徴となっている。
Table 4 Here, by hot working (B11) + nax, 1llC
Both showed a significant increase. This is because the titanium was oriented during processing and the squareness of the 1311 curve was significantly distorted. In the quenching method of Reference 2, i II c tends to decrease due to processing, and the significant increase in tllc is a major feature of the present invention.

〔実施例3〕 ここでは熱間加工後に粉砕して、樹脂結合化した実施例
を紹介する。実施例2の第3表のNo。
[Example 3] Here, we will introduce an example in which the material was pulverized after hot processing and bonded with resin. No. in Table 3 of Example 2.

1.2.3.4.7、l0112.14.10.17の
試料をそれぞれ、スタンプミル・ディスクミルにて粒径
的30μm(フィッシャーサブシープザイザーにて測定
)にまで粉砕した。このとき粒内のRs Fct + 
13またはRs  (Fcce )+4°Bの粒径は2
〜3μfnであった。こうして出来た10種類の粉末の
うち、No、1.3.7.12.19のf5)末はその
ままエポキシ樹脂2重量%と混練後、&!場成形・焼成
した。またN、o、2.4.10.14,17の粉末は
シランノJブプリング剤処理を行った後、休1」1比で
6:4の割合でリ−イロン12と約250” Cで混練
した後、射出形成した。結果を以下の第5表に示す。
Samples No. 1.2.3.4.7 and 10112.14.10.17 were each ground to a particle size of 30 μm (measured using a Fischer subseep sizer) using a stamp mill/disc mill. At this time, Rs Fct + inside the grain
13 or Rs (Fcce) + 4°B grain size is 2
It was ~3 μfn. Of the 10 types of powder thus made, No. 1, 3, 7, 12, 19 f5) powder was kneaded with 2% by weight of epoxy resin as it was, &! On-site molding and firing. In addition, the powders of N, O, 2.4.10.14 and 17 were treated with Silanno J bubbling agent and then kneaded with Li-Iron 12 at a ratio of 6:4 at about 250"C. After that, injection molding was performed.The results are shown in Table 5 below.

第  5  表 〔発明の効果〕 以上述べたように本発明によれば、従来の焼結法のよう
にインゴットを粉砕することなく、熱処理をするだけで
保磁力を得ることができる。また熱間加工も急冷法のよ
うに2段階でなく、一段階でよく、その効果には単なる
異方性化効果だけでなく、保磁力の増大効果もある。こ
のような特徴から、従来の焼結法、急冷法に比し、製造
工程が大きく単純化できる。さらに熱間加工後試料の粉
砕によれば異方性樹脂結合磁石も製造できる。
Table 5 [Effects of the Invention] As described above, according to the present invention, coercive force can be obtained only by heat treatment without pulverizing the ingot as in the conventional sintering method. Further, the hot working can be done in one step rather than in two steps as in the quenching method, and the effect is not only an anisotropy effect but also an increase in coercive force. Due to these characteristics, the manufacturing process can be greatly simplified compared to conventional sintering methods and rapid cooling methods. Furthermore, an anisotropic resin bonded magnet can also be produced by crushing the sample after hot working.

以  上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種)8原子%〜30%、ボロン(B)2原子%〜
28原子%、Co50原子%以下、Al15原子%以下
、添加元素M(Mg、Ca、Sr、Bu、Beのうちか
ら1種あるいは2種以上)8原子%以下、及び残部が鉄
及びその他の製造上不可避な不純物からなる合金を溶解
および鋳造後、該鋳造インゴットを500°C以上の温
度で熱間加工することにより結晶粒を微細化しまたその
結晶軸を特定の方向に配向せしめて、該鋳造合金を磁気
的に異方性化することを特徴とする希土類−鉄系永久磁
石。
(1) R (R is at least one rare earth element including Y) 8 atomic% to 30%, boron (B) 2 atomic% to
28 atomic% or less, Co 50 atomic% or less, Al 15 atomic% or less, additive element M (one or more of Mg, Ca, Sr, Bu, Be) 8 atomic% or less, and the balance is iron and other manufactured materials. After melting and casting the alloy consisting of unavoidable impurities, the cast ingot is hot worked at a temperature of 500°C or higher to refine the crystal grains and orient the crystal axes in a specific direction. A rare earth-iron permanent magnet characterized by magnetically anisotropic alloy.
(2)R(ただしRはYを含む希土類元素のうち少なく
とも1種)8原子%〜25原子%、ボロン(B)2原子
%〜8原子%、Co50原子%以下、Al15原子%以
下、添加元素M(Mg、Ca、Sr、Ba、Beのうち
から1種あるいは2種以上)8原子%以下、及び残部が
鉄及びその他の製造上不可避な不純物からなり、250
°C以上の温度で熱処理することにより、磁気的に硬化
する鋳造磁石合金を使用することを特徴とする特許請求
の範囲第1項記載の希土類−鉄系永久磁石。
(2) R (where R is at least one rare earth element including Y) 8 at% to 25 at%, boron (B) 2 at% to 8 at%, Co 50 at% or less, Al 15 at% or less, addition Element M (one or more of Mg, Ca, Sr, Ba, Be) 8 atomic% or less, and the balance consists of iron and other impurities unavoidable in manufacturing, 250
The rare earth-iron permanent magnet according to claim 1, characterized in that a cast magnet alloy is used which is magnetically hardened by heat treatment at a temperature of .degree. C. or higher.
(3)熱間加工により粒子が微細化する性質を利用し、
樹脂結合のための粉砕を施した後にも各粉末内に、磁性
相R_2Fe_1_4Bを粒子を複数個、含むような粉
末を作製し、有機バインダーとともに混練、硬化させて
、樹脂結合磁石とすることを特徴とする特許請求の範囲
第1項記載の希土類−鉄系永久磁石。
(3) Utilizing the property that particles become finer through hot processing,
The method is characterized in that even after pulverization for resin bonding, each powder contains a plurality of particles of magnetic phase R_2Fe_1_4B, and is kneaded and hardened with an organic binder to form a resin bonded magnet. A rare earth-iron permanent magnet according to claim 1.
JP62047044A 1987-03-02 1987-03-02 Rare earth-iron permanent magnet Pending JPS63213317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047044A JPS63213317A (en) 1987-03-02 1987-03-02 Rare earth-iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047044A JPS63213317A (en) 1987-03-02 1987-03-02 Rare earth-iron permanent magnet

Publications (1)

Publication Number Publication Date
JPS63213317A true JPS63213317A (en) 1988-09-06

Family

ID=12764169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047044A Pending JPS63213317A (en) 1987-03-02 1987-03-02 Rare earth-iron permanent magnet

Country Status (1)

Country Link
JP (1) JPS63213317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129963A (en) * 1990-05-16 1992-07-14 General Motors Corporation Rare earth magnet alloys with excellent hot workability
JP2016040791A (en) * 2014-08-12 2016-03-24 Tdk株式会社 Permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129963A (en) * 1990-05-16 1992-07-14 General Motors Corporation Rare earth magnet alloys with excellent hot workability
JP2016040791A (en) * 2014-08-12 2016-03-24 Tdk株式会社 Permanent magnet

Similar Documents

Publication Publication Date Title
JPS62276803A (en) Rare earth-iron permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS62203302A (en) Casting rare earth metals - manufacturing method for iron-based permanent magnets
EP0288637B1 (en) Permanent magnet and method of making the same
JPS63213317A (en) Rare earth-iron permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH01175207A (en) Permanent magnet manufacturing method
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPS63286515A (en) Permanent magnet manufacturing method
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPS63213322A (en) Rare earth-iron permanent magnet
JPS63213323A (en) Rare earth-iron permanent magnet
JPH023210A (en) permanent magnet
JPH01171219A (en) Permanent magnet manufacturing method
JPS63286514A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-iron permanent magnet and manufacturing method thereof
JPH023207A (en) Permanent magnet
JPS63286516A (en) Permanent magnet manufacturing method
JPS63213318A (en) Rare earth-iron permanent magnet
JPS63213320A (en) Rare earth-iron permanent magnet
JPS63287005A (en) Permanent magnet and its manufacturing method
JPS63107009A (en) Permanent magnet manufacturing method