JPS632131A - Optical information recording member - Google Patents
Optical information recording memberInfo
- Publication number
- JPS632131A JPS632131A JP61145187A JP14518786A JPS632131A JP S632131 A JPS632131 A JP S632131A JP 61145187 A JP61145187 A JP 61145187A JP 14518786 A JP14518786 A JP 14518786A JP S632131 A JPS632131 A JP S632131A
- Authority
- JP
- Japan
- Prior art keywords
- optically active
- zns
- active layer
- resistant protective
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 30
- 239000011241 protective layer Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 24
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract 5
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000005083 Zinc sulfide Substances 0.000 claims abstract 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract 2
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims 2
- 229910007709 ZnTe Inorganic materials 0.000 abstract description 24
- 239000010409 thin film Substances 0.000 abstract description 11
- 239000007787 solid Substances 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 abstract 3
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 abstract 1
- 239000007792 gaseous phase Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 description 1
- 229960005265 selenium sulfide Drugs 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は光学的手段を用いて高速かつ高密度に情報を記
録・再生・消去する光学式情報記録部材に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member that records, reproduces, and erases information at high speed and high density using optical means.
従来の技術
消去可能で繰返し記録再生可能な非破壊型の光学式情報
記録部材、例えば光デイスクメモリーにおいて、基材と
して用いられるプラスチックスがレーザー加熱時に熱損
傷を受けないように、酸化物等の耐熱保護層を基材と光
学活性層との間、もしくは光学活性層の直上に設けるこ
とが提案されている。耐熱保護層として用いられる材料
としては酸化物(5i02 、 GeO2、人1120
5. BeO2)、窒化物(BN 、 5isN41人
7!N)、炭化物(SiC)、カルコゲン化物(ZnS
、 Zn5e ) などが提案されている。−般に、
耐熱保護層に要求される特性の主なものとしては(1)
吏用波長領域で透明であること、(2)融点が動作時に
上昇する温度より高いこと、(3)機械的強度が大きい
こと、(4)化学的に安定なことなどである。Conventional technology In erasable, non-destructive optical information recording members that can be repeatedly recorded and reproduced, such as optical disk memories, oxides and other materials are used to prevent the plastics used as the base material from being thermally damaged during laser heating. It has been proposed to provide a heat-resistant protective layer between the substrate and the optically active layer or directly above the optically active layer. Materials used as the heat-resistant protective layer include oxides (5i02, GeO2, 1120
5. BeO2), nitride (BN, 5isN417!N), carbide (SiC), chalcogenide (ZnS
, Zn5e), etc. have been proposed. -Generally,
The main characteristics required for a heat-resistant protective layer are (1)
(2) it has a melting point higher than the temperature at which it rises during operation; (3) it has high mechanical strength; and (4) it is chemically stable.
発明が解決しようとする問題点
前記の諸物質はこの条件をほぼ満しているが、まだ完全
に光学式情報記録部材の特性を満足させるものではない
。Problems to be Solved by the Invention Although the above-mentioned materials almost satisfy these conditions, they still do not completely satisfy the characteristics of an optical information recording member.
特に書換え可能な光メモリーの場合、レーザー照射加熱
・冷却の繰返しによって耐熱保護層が変質すると、記録
・消去の繰返し信頼性が得られない。前記の諸材料は記
録・消去の繰返し寿命の観点からは改良されるべき余地
が残っている。Particularly in the case of a rewritable optical memory, if the heat-resistant protective layer is altered by repeated laser irradiation heating and cooling, repeated recording and erasing reliability cannot be obtained. There remains room for improvement in the above-mentioned materials from the viewpoint of repeated recording/erasing life.
すなわち本発明が解決しようとする問題点は光学式情報
記録部材の記録・消去繰返し寿命を決定している原因の
ひとつである耐熱保護層の劣化である。That is, the problem to be solved by the present invention is the deterioration of the heat-resistant protective layer, which is one of the causes that determines the repeated recording/erasing life of optical information recording members.
問題点を解決するだめの手段
本発明では耐熱保護層の材料のうち、特性が比較的良好
で、かつ製造上の問題も少ない硫化アニン(ZnS )
に硫化セレン、もしくは硫化テルルを添加する。Means to Solve the Problems The present invention uses anine sulfide (ZnS), which has relatively good properties and fewer manufacturing problems among the materials for the heat-resistant protective layer.
Add selenium sulfide or tellurium sulfide to.
作用
本発明の作用は耐熱保護層の材料であるZnSにZn5
eもしくはzn’raを添加することにより、耐熱保護
層の安定性を高め、信頼性を向上させることである。Function The function of the present invention is to add Zn5 to ZnS, which is the material of the heat-resistant protective layer.
By adding e or zn'ra, the stability and reliability of the heat-resistant protective layer can be improved.
実施例
以下、本発明の実施例について添付図面に基づき説明す
る。第1図は本発明において基本となる光学式情報記録
部材の断面の慨略であり、1が基材、2と4が耐熱保護
層、3が光学活性層で6の保護基材を5の接着剤で貼合
せている。Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. FIG. 1 is a schematic cross-sectional view of the optical information recording member that is the basis of the present invention, where 1 is a base material, 2 and 4 are heat-resistant protective layers, 3 is an optically active layer, and 6 is a protective base material. It is attached with adhesive.
ZnSの性質は第1表に示すとおりである。またZn5
e 、 ZnTeについても同表に示しである。屈折率
はZnS 、 znSe、 zn’raの順に大きくな
る傾向がある。耐熱保護層の屈折率は重要である。薄膜
の場合光学的な干渉効果のため、膜厚によって透過率1
反射率が変化するからである。理想的に第1表、ZnS
、 Zn5a 、 ZnTe (7)性質第2表 Z
nS 、 Zn5e 、 ZnTeの相互固溶性は入射
した光エネルギーが全て光学活性層で吸収されると効率
が良い。その条件に近づけるためには反射率を低くする
ことが必要である。無反射条件は基材と光学活性層の間
に位置する薄膜の膜厚をd1屈折率をn波長をλとした
時、近似的に】
で表わされる。屈折率nが大きい方がdが小さくなり、
製造上の具合が良いが、光学活性層と耐熱保護層の屈折
率の差が小さくなると無反射条件が得られにくくなる。The properties of ZnS are shown in Table 1. Also Zn5
e, ZnTe is also shown in the same table. The refractive index tends to increase in the order of ZnS, znSe, and zn'ra. The refractive index of the heat-resistant protective layer is important. In the case of thin films, the transmittance is 1 depending on the film thickness due to optical interference effects.
This is because the reflectance changes. Ideally Table 1, ZnS
, Zn5a, ZnTe (7) Properties Table 2 Z
The mutual solid solubility of nS, Zn5e, and ZnTe is efficient when all of the incident light energy is absorbed by the optically active layer. In order to approach this condition, it is necessary to lower the reflectance. The non-reflection condition is approximately expressed as follows, where the thickness of the thin film located between the base material and the optically active layer is d1, the refractive index is n, and the wavelength is λ. The larger the refractive index n, the smaller d becomes.
Although it is convenient for manufacturing, if the difference in refractive index between the optically active layer and the heat-resistant protective layer becomes small, it becomes difficult to obtain a non-reflection condition.
Teを主成分とした光学活性層の場合n ) 4である
ので、耐熱保護層の屈折率は3未満で2.5前後が良い
。ZnSの場合n = 2.3であるのでその条件に合
っている。In the case of an optically active layer containing Te as a main component, n) is 4, so the refractive index of the heat-resistant protective layer is preferably less than 3 and around 2.5. In the case of ZnS, n = 2.3, so this condition is met.
第2表にZnS 、 Zn5a 、 ZnTeの相互の
溶解性を示す。ZnS −Zn5a系は全体固溶で、Z
nS −ZnTa系は各基成分側でのみ固溶し、Zn5
a−ZnTe系も全体固溶である。従ってZnSにZn
5eもしくはZnTeを混合する時には、固溶性を考慮
する必要がある。Table 2 shows the mutual solubility of ZnS, Zn5a, and ZnTe. The ZnS-Zn5a system is entirely solid solution, and Z
The nS-ZnTa system forms a solid solution only on the side of each base component, and Zn5
The a-ZnTe system is also entirely solid solution. Therefore, ZnS
When mixing 5e or ZnTe, it is necessary to consider solid solubility.
ZnSにZnTeを添加する場合、ZnTeの固溶限が
問題である。第2表に示すように8モル%が固溶限であ
るが、気相から急冷して薄膜を作成する場合には平衡状
態の固溶限よりも大きくなるので15モル%程度までは
強制固溶が可能である。When adding ZnTe to ZnS, the solid solubility limit of ZnTe is a problem. As shown in Table 2, the solid solubility limit is 8 mol%, but when forming a thin film by rapid cooling from the gas phase, the solid solubility limit is higher than the equilibrium solid solubility limit, so it is forced to solidify up to about 15 mol%. Possible to melt.
ZnSにznseを添加する場合は、全体固溶するので
ZnTeの様な問題はないが、znSe の分体が大き
くなると屈折率nも大きくなるので、前記の無反射条件
が得られにくくなるので、Zn5eの添加量は最大限5
0モル%である。ZnTe添加の場合には添加量が少な
いので、ZnTeの屈折率が3.6であっても変化は小
さい。When adding znse to ZnS, there is no problem like that of ZnTe because the whole is in solid solution, but as the fraction of znSe becomes larger, the refractive index n also becomes larger, making it difficult to obtain the above-mentioned non-reflection condition. The maximum amount of Zn5e added is 5
It is 0 mol%. In the case of adding ZnTe, the amount added is small, so even if the refractive index of ZnTe is 3.6, the change is small.
実施例1
ポリメタメチルアクリレート(PMMA)基板上に耐熱
保護膜としてZn5eを添加したZnSを作成し、次に
光学活性層としてTeGe5nO系の薄膜を作成し、更
に同組成の前記耐熱保護層を作成し、保護基材と接着し
て試料とした。Example 1 ZnS added with Zn5e was created as a heat-resistant protective film on a polymethmethylacrylate (PMMA) substrate, then a TeGe5nO-based thin film was created as an optically active layer, and then the heat-resistant protective layer with the same composition was created. A sample was prepared by adhering it to a protective substrate.
基材側の耐熱保護層の膜厚dは無反射条件となるように
設定した例えばZnSの場合n = 2.3であるので
、光の波長λ=8301mとしてd=90nmである。The film thickness d of the heat-resistant protective layer on the base material side is set so as to provide a non-reflection condition. For example, in the case of ZnS, n = 2.3, so d = 90 nm assuming the wavelength of light λ = 8301 m.
Zn5eを添加した場はnが変化するので、それに合せ
てdも変化させた。光学活性層の膜厚は一律1100n
である。Since n changes in the field where Zn5e is added, d was also changed accordingly. The thickness of the optically active layer is uniformly 1100n.
It is.
光学活性層直上の上部耐熱保護層は検討の結果λ/2n
の時最も特性が良いことがわかったので、その値に統一
している。ZnSの場合は1800nmである。The upper heat-resistant protective layer directly above the optically active layer is λ/2n as a result of study.
It was found that the characteristics were best when In the case of ZnS, it is 1800 nm.
Zn5eの添加量の効果を調べるために、Zn5eの割
合依存性を調べた。ZnSとZn5eの混晶は第2図に
示す2元の薄膜蒸着装置で作成した。基板7を支持治具
8に取りつけ回転軸9を回転させる。In order to investigate the effect of the amount of Zn5e added, the dependence on the Zn5e ratio was investigated. A mixed crystal of ZnS and Zn5e was produced using a binary thin film deposition apparatus shown in FIG. The substrate 7 is attached to the support jig 8, and the rotating shaft 9 is rotated.
ZnSおよびZn5aは蒸発源(1)1oおよび蒸発源
印11よシそれぞれ蒸発させ、蒸発レートを制御して組
成を変化させた。蒸発源の加熱法は本実施例では電子ビ
ーム加熱であるが、他の通常の加熱法で代えてもよい。ZnS and Zn5a were evaporated from evaporation source (1) 1o and evaporation source mark 11, respectively, and the composition was changed by controlling the evaporation rate. Although the heating method for the evaporation source is electron beam heating in this embodiment, it may be replaced by other conventional heating methods.
組成分析はxaIマイクロ分析でS/Ss 比を求める
ことにより決定した。Compositional analysis was determined by determining the S/Ss ratio using xaI microanalysis.
得られた試料についてレーザー光を同一点に照射して記
録・消去を行う静的特性評価を繰返して寿命を測定した
。静的評価の例を第3図に示す。The lifetime of the obtained sample was measured by repeatedly performing a static characteristic evaluation in which recording and erasing was performed by irradiating the same point with a laser beam. An example of static evaluation is shown in Figure 3.
縦軸は反射率、横軸は記録・消去の繰返回数である。上
側の図はZnS単体の場合であって寿命は105回であ
るが、下側のZn5ei 20モル%添加したZnSで
は10’回以上でも変化がなかった。繰返し寿命の組成
依存性を第3表に示す。The vertical axis is the reflectance, and the horizontal axis is the number of repetitions of recording and erasing. The upper diagram shows the case of ZnS alone, and the life is 105 times, but the lower diagram shows no change even after 10' cycles of ZnS added with 20 mol% of Zn5ei. Table 3 shows the composition dependence of the repeat life.
第3表 Zn5e 添加量と寿命の関係以上の結果から
れかるようにZnSにznse’el!加すると記録・
消去の繰返し回数を延ばすことができる。Table 3 Relationship between Zn5e addition amount and lifespan As can be seen from the above results, Zn5e is suitable for ZnS! If you add it, it will be recorded.
The number of times erasing can be repeated can be increased.
実施例2
実施例1の場合と同様に第2図に示す装置を用いてZn
SとZnTeの混晶よりなる耐熱保護層を作成した。各
層の膜厚は実施例1と同様に決定した。Example 2 As in Example 1, Zn was produced using the apparatus shown in FIG.
A heat-resistant protective layer made of a mixed crystal of S and ZnTe was created. The thickness of each layer was determined in the same manner as in Example 1.
基板はPMMAである。この場合は固溶限であるので検
討した組成範囲はZnTeが25モル%までである。第
4表に静的特性評価による繰返し寿命を示す。The substrate is PMMA. In this case, since there is a solid solubility limit, the composition range studied is up to 25 mol % of ZnTe. Table 4 shows the repeated life based on static property evaluation.
第4衣 Zn5e添加量と寿命の関係
以上の結果かられかるようにZnSにZnTe f添加
すると、記録・消去の繰返し回数を延ばすことができる
。効果のある添加量の上限は16モル%である。4th Coordination: Relationship between amount of Zn5e added and lifespan As can be seen from the above results, when ZnTef is added to ZnS, the number of times recording and erasing can be repeated can be extended. The upper limit of the effective addition amount is 16 mol%.
実施例3
ポリカーボネイト(pc)よシなる基材上に第4図に示
すスパッタリング薄膜形成装置を用いて、ZnTeを添
加したZnS薄膜を作成した。各層の膜厚条件は実施例
1と同様である。ZnTeの添加量はスパッタ時の隘極
ターゲットを複合構造にしたものを用いた。Example 3 A ZnS thin film doped with ZnTe was formed on a base material such as polycarbonate (PC) using a sputtering thin film forming apparatus shown in FIG. The film thickness conditions for each layer are the same as in Example 1. The amount of ZnTe added was determined by using a composite structure of the polar target during sputtering.
ZnTeの添加量は、大きなZnSターゲット上に置い
た数個のZnTeのペレットの面積を調整することによ
り制御した。得られた試料の特性は実施例2とほぼ同じ
であった。The amount of ZnTe added was controlled by adjusting the area of several ZnTe pellets placed on a large ZnS target. The characteristics of the obtained sample were almost the same as in Example 2.
以上の3例より、ZnS K Zn5eやZnTeのを
添加することの効果は明らかである。効果が現られれる
原因についてはまだよく理解されていないが、恐らく薄
膜が形成される時の成長条件がZnS単体の時と異って
いるためと考えられる。すなわち、ZnSは融点が高い
(150気圧で1800’C,常圧では1180’Cで
昇華)ので、原子間結合エネルギーも大きく、薄膜形成
時に原子の表面マイクレージコンが起りにくい。結果と
して一様な構造を持つ薄膜になりにくく、隙間だらけの
膜構造となる。隙間が多いと加熱時に焼結作用が起こυ
収縮しやすく耐熱保護層が劣化する。従ってZn5eや
ZnTeの添加によって効果があったことの原因として
考えられることは次の様である。From the above three examples, the effect of adding ZnS K Zn5e and ZnTe is clear. The reason for this effect is not yet well understood, but it is probably because the growth conditions when forming the thin film are different from those for ZnS alone. That is, since ZnS has a high melting point (sublimes at 1800'C at 150 atmospheres and 1180'C at normal pressure), the bonding energy between atoms is also large, and surface microresonance of atoms is difficult to occur when forming a thin film. As a result, it is difficult to form a thin film with a uniform structure, and the film structure is full of gaps. If there are many gaps, sintering will occur during heating.
It easily shrinks and the heat-resistant protective layer deteriorates. Therefore, the following are possible reasons why the addition of Zn5e and ZnTe was effective.
Zn5aやZnTeは融点がZnSよシも低く、原子間
結合エネルギーも小さくなって、蒸発時のエネルギーが
同じであるならば、それだけ表面マイグレーションが起
りやすい。そこで得られる薄膜の構造はZnSの場合よ
りも一様で、隙間が少ない。この場合には加熱によって
隙間が減る割合も小さいので、耐熱保護層の劣化も少な
くなる。また、隙間が少なくなることは光学活性層の耐
侯性を向上させる効果もある。保存条件下における光学
活性層の劣化の主なものは、光学活性層の酸化である。Zn5a and ZnTe have lower melting points than ZnS and have lower interatomic bonding energy, so if the energy at the time of evaporation is the same, surface migration is more likely to occur. The structure of the resulting thin film is more uniform than that of ZnS and has fewer gaps. In this case, since the rate at which the gap is reduced by heating is small, the deterioration of the heat-resistant protective layer is also reduced. Furthermore, reducing the gap also has the effect of improving the weather resistance of the optically active layer. The main deterioration of the optically active layer under storage conditions is oxidation of the optically active layer.
耐熱保護層に隙間が多いと、酸素や水分が光学活性層の
ところまで透過して劣化が速くなる。If there are many gaps in the heat-resistant protective layer, oxygen and moisture will permeate to the optically active layer, resulting in faster deterioration.
実施例1.2.3で用いた試料を温度40’C。The sample used in Example 1.2.3 was heated to 40'C.
湿度90%の環境下で放置試験を行ったところ、Zn5
eやZnTeを添加したものでは明らかな防湿効果があ
った。When a storage test was conducted in an environment with 90% humidity, Zn5
Those to which E and ZnTe were added had a clear moisture-proofing effect.
例えば、ZnS単体のものでは30日間で光学活性層に
変化が見られたのにくらべて、ZnTeを10モル%添
加した試料では何ら変化は見られなかった。For example, while a change was observed in the optically active layer after 30 days in the case of ZnS alone, no change was observed in the sample to which 10 mol % of ZnTe was added.
耐酸化性改良という観点からは金属を光学活性層とする
光磁気効果を用いる光学記録部材にも本発明は有効であ
る。特に希土類・遷移金属のアモルファス合金を用いる
光磁気メモリーの耐酸化を向上させるのにも効果がある
。From the viewpoint of improving oxidation resistance, the present invention is also effective for optical recording members that use a magneto-optical effect and have a metal as an optically active layer. In particular, it is effective in improving the oxidation resistance of magneto-optical memories that use amorphous alloys of rare earths and transition metals.
発明の効果
本発明の効果は透明基材上に光学活性層を設けてなる光
学式情報記録部材の光学活性層と基材の間、もしくは光
学活性層の直上に設ける耐熱保護の材質をZn5eある
いは、zn’raを添加したZnSとすることによシ、
耐熱保護層の劣化が防止でき、かつ前記保護層自体が緻
密になって、光学活性層の劣化も防止できる。Effects of the Invention The effects of the present invention are such that the heat-resistant protection material provided between the optically active layer and the substrate or directly above the optically active layer of an optical information recording member in which an optically active layer is provided on a transparent substrate is made of Zn5e or , by using ZnS to which zn'ra is added,
Deterioration of the heat-resistant protective layer can be prevented, and since the protective layer itself becomes dense, deterioration of the optically active layer can also be prevented.
第1図は本発明の実施例にかかる光学式情報記録部材の
断面図、第2図は耐熱保護膜を作成する2元蒸着装置の
断面図、第3図はZnSおよびZn5e添加ZnS膜を
用いた時の記録・消去の繰返しにおける反射の変化を示
す図、第4図は本発明による耐熱保護膜をスパッタリン
グで作成するときの族ゲットの平面図きキス。
1・・・・・・基材、2・・・・・・耐熱保護層、3・
・・・・・光学活性層、4・・・・・・耐熱保護層、5
・・・・・・接着剤、6・・・・・・保護基材、7・・
・・・・基材、8・・・・・・基材支持治具、9・・・
・・・回転軸、10・・・・・・蒸発源(T)、11・
・・・・・蒸発源(II)、12・・・・・・真空容器
、13・・・・・・排気系、14・・・・・・基材、1
5・・・・・・基材支持治具、16・・・・・・陰極タ
ーゲット、17・・・・・・高周波電源。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
7 10’ が 103 10’ 105
ノ0’107碌送L@数(回)Fig. 1 is a cross-sectional view of an optical information recording member according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a binary evaporation apparatus for producing a heat-resistant protective film, and Fig. 3 is a cross-sectional view of an optical information recording member using a ZnS film doped with ZnS and Zn5e. FIG. 4 is a plan view of the target when the heat-resistant protective film of the present invention is created by sputtering. 1...Base material, 2...Heat-resistant protective layer, 3.
...Optically active layer, 4...Heat-resistant protective layer, 5
...Adhesive, 6...Protective base material, 7...
...Base material, 8...Base material support jig, 9...
... Rotating shaft, 10... Evaporation source (T), 11.
... Evaporation source (II), 12 ... Vacuum container, 13 ... Exhaust system, 14 ... Base material, 1
5... Base material support jig, 16... Cathode target, 17... High frequency power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 7 10' is 103 10'105
ノ0'107 碌 Sending L @ number (times)
Claims (3)
上に硫化亜鉛を主成分とし、従成分としてセレン化亜鉛
、あるいはテルル化アエン混合した耐熱保護層を用けた
ことを特徴とする光学式情報記録部材。(1) A heat-resistant protective layer containing zinc sulfide as a main component and zinc selenide or aene telluride as a secondary component is used between the optically active layer and the base material or directly above the optically active layer. Optical information recording member.
あることを特徴とする特許請求の範囲第1項記載の光学
式情報記録部材。(2) The optical information recording member according to claim 1, wherein the fraction of zinc selenide is less than 50 mol percent.
であることを特徴とする特許請求の範囲第1項記載の光
学式情報記録部材。(3) The optical information recording member according to claim 1, wherein the fraction of aene telluride is less than 15 mol percent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145187A JPS632131A (en) | 1986-06-20 | 1986-06-20 | Optical information recording member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145187A JPS632131A (en) | 1986-06-20 | 1986-06-20 | Optical information recording member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS632131A true JPS632131A (en) | 1988-01-07 |
Family
ID=15379437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61145187A Pending JPS632131A (en) | 1986-06-20 | 1986-06-20 | Optical information recording member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS632131A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0376700A2 (en) * | 1988-12-28 | 1990-07-04 | Matsushita Electric Industrial Co., Ltd. | Information recording medium |
-
1986
- 1986-06-20 JP JP61145187A patent/JPS632131A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0376700A2 (en) * | 1988-12-28 | 1990-07-04 | Matsushita Electric Industrial Co., Ltd. | Information recording medium |
US5147701A (en) * | 1988-12-28 | 1992-09-15 | Matsushita Electric Industrial Co., Ltd. | Information recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5194363A (en) | Optical recording medium and production process for the medium | |
JPH0474785B2 (en) | ||
US5147701A (en) | Information recording medium | |
US4860274A (en) | Information storage medium and method of erasing information | |
JP2834131B2 (en) | Thin film for information recording | |
EP0234588B2 (en) | Optical memory | |
JPS632131A (en) | Optical information recording member | |
JPS63259855A (en) | Optical type information recording member | |
EP0362852B1 (en) | Information-recording thin film and method for recording and reproducing information | |
JPS63244422A (en) | Information recording medium | |
JP2506772B2 (en) | Optical information recording member | |
JPH09198712A (en) | Optical information recording medium and its production | |
JPH03125343A (en) | Optical information recording medium | |
KR930004333B1 (en) | Optical information recording material | |
JP2886188B2 (en) | Information recording medium | |
JPS63276724A (en) | Optical information recording member | |
JPS63155437A (en) | Information recording medium | |
JPS63306550A (en) | Optical information recording member | |
JPH11232698A (en) | Medium for optical information recording and manufacture thereof | |
JPH10289478A (en) | Optical information recording medium and its production | |
JP2680388B2 (en) | Information recording medium | |
JP2663438B2 (en) | Optical information recording medium | |
JPH05144084A (en) | Optical recording medium and production thereof | |
JPH0361080A (en) | Information recording medium | |
JP4121231B2 (en) | Initializing method of optical recording medium |