[go: up one dir, main page]

JPS63212804A - Film thickness measurement method - Google Patents

Film thickness measurement method

Info

Publication number
JPS63212804A
JPS63212804A JP4591787A JP4591787A JPS63212804A JP S63212804 A JPS63212804 A JP S63212804A JP 4591787 A JP4591787 A JP 4591787A JP 4591787 A JP4591787 A JP 4591787A JP S63212804 A JPS63212804 A JP S63212804A
Authority
JP
Japan
Prior art keywords
film thickness
film
thickness
coating
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4591787A
Other languages
Japanese (ja)
Inventor
Takahide Sakamoto
隆秀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4591787A priority Critical patent/JPS63212804A/en
Publication of JPS63212804A publication Critical patent/JPS63212804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 利用産業分野 この発明は、渦流式膜厚測定法に係り、例えば、鋼板上
に導体金属膜と絶縁塗膜を積層した場合でも、金属膜と
絶縁塗膜の各膜厚を高精度で測定できる膜厚測定方法に
関する。
[Detailed Description of the Invention] Field of Application The present invention relates to an eddy current film thickness measurement method. This invention relates to a film thickness measurement method that can measure thickness with high accuracy.

背景技術 近年、鋼板に耐食性向上の目的で、Zn等のめっきを被
着成膜し、さらに、その上に絶縁塗膜を積層成膜した、
所謂各種めっき鋼板が多用されている。
BACKGROUND TECHNOLOGY In recent years, for the purpose of improving corrosion resistance, steel plates have been coated with Zn or other plating, and then an insulating coating has been layered on top of it.
So-called various plated steel sheets are often used.

かかる鋼板の複層構造膜製造に際して、要求される種々
の耐食性の観点から、Zn膜等のめっき膜、絶縁塗膜の
それぞれの膜厚を、所要膜厚に管理することは製造上、
極めて重要とされている。
When manufacturing such a multilayer structure film for steel sheets, it is important to control the thickness of each plating film such as Zn film and insulating coating film to the required thickness from the viewpoint of various corrosion resistance requirements.
considered extremely important.

一般に、鋼板に被着した各種膜の膜厚測定法として、電
磁気的な手法を用いた磁気法と渦流法の2つに大別され
、それぞれの原理に基づく膜厚測定装置が実用化されて
いる。
In general, methods for measuring the thickness of various films deposited on steel plates are roughly divided into two methods: the magnetic method using electromagnetic methods and the eddy current method, and film thickness measuring devices based on each principle have been put into practical use. There is.

前者の磁気法では、第5図a図に示す如く、磁化コイル
(3)と継鉄(4)で構成される電磁石(5)を交流磁
化して、鋼板(1)と電磁石(5)で形成される磁気回
路を通る磁束を検出コイル(5)で検出することにより
、磁気的には非磁性である塗膜(2)の厚みを測定する
In the former magnetic method, as shown in Figure 5a, an electromagnet (5) consisting of a magnetizing coil (3) and a yoke (4) is magnetized with alternating current, and the steel plate (1) and electromagnet (5) By detecting the magnetic flux passing through the formed magnetic circuit with a detection coil (5), the thickness of the coating film (2), which is magnetically non-magnetic, is measured.

すなわち、磁束量が塗膜(2)等の非磁性層の厚みに依
存することを利用して、塗膜(2)の厚みを計測する。
That is, the thickness of the coating film (2) is measured by utilizing the fact that the amount of magnetic flux depends on the thickness of the non-magnetic layer such as the coating film (2).

しかし、磁気法では、前述のZnめっき鋼板の場合、Z
n膜及び絶縁塗膜とも非磁性体のため、膜厚指示は(塗
膜+Zn膜)として計測され、それぞれの膜を独立に計
測できない問題がある。
However, in the magnetic method, in the case of the Zn-plated steel sheet mentioned above, Z
Since both the n film and the insulating coating film are non-magnetic materials, the film thickness indication is measured as (coating film + Zn film), and there is a problem that each film cannot be measured independently.

後者の渦流法では、b図に示す如く、コイル(6)に高
周波電流を印加した際、鋼板(1)中に誘起される渦電
流が塗膜(2)等の絶縁体層の厚みに依存して変化する
のを、コイル(6)のインピーダンス変化より検出して
塗膜(2)厚を計測する方法である。
In the latter eddy current method, as shown in Figure b, when a high frequency current is applied to the coil (6), the eddy current induced in the steel plate (1) depends on the thickness of the insulator layer such as the coating film (2). In this method, the thickness of the coating film (2) is measured by detecting the change in impedance of the coil (6).

また、前述のZnめっき鋼板に渦流法を適用した場合、
Zn膜は導体のためにZn膜中にも渦電流が発生し、か
つ数十pmの薄膜であるため、渦電流はZn膜の下地の
鋼板中にも誘起され、渦電流は塗膜厚以外にもZn膜莫
の函数となり、塗膜厚とZn膜のそれぞれを識別して厚
み測定することができない。
Furthermore, when applying the eddy current method to the aforementioned Zn-plated steel sheet,
Since the Zn film is a conductor, eddy currents are generated in the Zn film, and since it is a thin film of several tens of pm, eddy currents are also induced in the steel plate underlying the Zn film, and eddy currents occur in areas other than the coating thickness. It is also a function of the Zn film thickness, and it is not possible to distinguish between the coating film thickness and the Zn film thickness and measure the thickness.

さらに、渦流法を詳述すると、 浸透深さδは δ=fi7 (m)・・・・・・(1)となる。Furthermore, to explain the eddy current method in detail, The penetration depth δ is δ=fi7 (m) (1).

但し、ω= 2nf、 f:周波数(Hz)、P=lJoX段 p、=4nxlO” (H/ml真空中の透磁率llr
:比透磁率、P:比抵抗(Ωmm)である。
However, ω = 2nf, f: frequency (Hz), P = lJoX stage p, = 4nxlO” (H/ml magnetic permeability in vacuum llr
: relative magnetic permeability, P: specific resistance (Ωmm).

塗膜部は絶縁体であるため渦電流の発生はないが、Zn
膜は導体のため渦電流が発生する。Zn膜中での浸透深
さδは(1)式より δ=43X10−6(m)=4鋤m ここでf=8MHz、 p=5.9xlO−8(Ωm)
とした。
Since the coating part is an insulator, no eddy current occurs, but Zn
Since the membrane is a conductor, eddy currents occur. The penetration depth δ in the Zn film is calculated from equation (1) as follows: δ = 43 x 10-6 (m) = 4 m, where f = 8 MHz, p = 5.9 x lO-8 (Ωm)
And so.

よって、8MHz程度の高周波でも、数十pm程度以下
のZn膜であれば、Zn膜を磁束が透過し、Zn膜下の
鋼板の影響を受けると予想される。
Therefore, even at a high frequency of about 8 MHz, if the Zn film has a thickness of several tens of pm or less, it is expected that the magnetic flux will pass through the Zn film and be affected by the steel plate under the Zn film.

第7図に示すように、Zn膜厚(Tzn)が7.9pm
の場合(第7図中ロ印)、TzH= 24.8pm 、
 14.6pmの場合と比較すると、渦流式の指示値が
高めに出て、計測誤差の大きいことがわかる。
As shown in Figure 7, the Zn film thickness (Tzn) is 7.9 pm.
In the case of (marked with square in Figure 7), TzH = 24.8pm,
Compared to the case of 14.6 pm, the indicated value of the eddy current method appears higher, indicating a large measurement error.

周波数(0が8BIHzの場合、%H= 7.9pm〜
24.811mの範囲の計測誤差は±5.6pmとなる
Frequency (if 0 is 8BIHz, %H = 7.9pm ~
The measurement error in the range of 24.811 m is ±5.6 pm.

以上、要約すれば、 ■磁気法では、金属膜が非磁性体の場合にはく塗膜厚生
金属膜厚)を計測することになり、各層を独立して計測
できない。    ゛■渦流法では、金属膜厚が薄いと
きには、下地(鋼板)の影響も受けるため、金属膜厚が
厚いときに比して塗膜厚計測の誤差が増大する。
To summarize the above, (1) With the magnetic method, when the metal film is a non-magnetic material, the thickness of the coating (coating thickness) is measured, and each layer cannot be measured independently.゛■ In the eddy current method, when the metal film is thin, it is also affected by the base (steel plate), so the error in coating film thickness measurement increases compared to when the metal film is thick.

すなわち、現在用いられている磁気法、渦流法とも、前
記Znめっき鋼板の如き複層構造膜において、各々の膜
厚測定には適用できない問題があった。
That is, both the magnetic method and the eddy current method currently used have a problem in that they cannot be applied to the measurement of the thickness of a multilayer structure film such as the above-mentioned Zn-plated steel sheet.

発明の目的 この発明は、かかる現状に鑑み、鋼板上に導体金属膜と
絶縁塗膜を積層した場合でも、金属膜と絶縁塗膜の各膜
厚を高精度で測定できる膜厚測定方法を目的としている
Purpose of the Invention In view of the current situation, the object of the present invention is to provide a film thickness measuring method that can measure the thickness of each of the metal film and insulating coating film with high accuracy even when a conductive metal film and an insulating coating film are laminated on a steel plate. It is said that

発明の構成 この発明は、 鋼板に被着した金属膜上にさらに塗膜を積層した複層膜
上に、コイルを配して交流電流を印加し、コイルインピ
ーダンスの変化より膜厚を計測する渦流式膜厚測定法に
おいて、塗膜厚の増減によって変化するインピーダンス
の変化方向とこれに直交する方向の各々の投影成分値を
求め、二つの成分値に基づいて塗膜厚を求めることを特
徴とする膜厚測定法である。
Structure of the Invention This invention is based on an eddy current method in which a coil is arranged on a multi-layered film, in which a coating film is further laminated on a metal film adhered to a steel plate, and an alternating current is applied to it, and the film thickness is measured from the change in coil impedance. In the formula film thickness measurement method, each projected component value is determined in the direction of change of impedance that changes due to increase or decrease in paint film thickness, and in the direction orthogonal to this, and the film thickness is determined based on the two component values. This is a method for measuring film thickness.

−J−J−J−fiw/r%iPtロnr4.こtit
二tt54−rpkh+、−yJAnet厚変化方向の
インピーダンス成分(Vy)と、vyと直交する成分値
(Vx)を求め、 (a)Vxより金属膜厚を計測し、 (b)vyとVxの演算結果より塗膜厚を計測すること
を要旨としている。
-J-J-J-fiw/r%iPtronnr4. Kotit
2tt54-rpkh+, -yJAnet Obtain the impedance component (Vy) in the direction of thickness change and the component value (Vx) perpendicular to vy. (a) Measure the metal film thickness from Vx. (b) Calculate vy and Vx. The purpose is to measure the coating thickness based on the results.

(b)の演算方法としては、種々あるが、■例えば、塗
膜厚の増減によって変化するインピーダンスの変化方向
と同一周波数の直交する方向の投影成分値より金属膜厚
を求め、前記インピーダンスの変化方向の投影成分値を
、これに直交方向の投影成分値の大小に応じて補正する
か、あるいは2成分値と塗膜厚の多重回帰により補正し
て塗膜厚を求める。
There are various calculation methods for (b), but for example, the metal film thickness is determined from the projected component value in a direction perpendicular to the same frequency as the direction of change in impedance that changes due to increase or decrease in coating thickness, and the change in impedance is The coating thickness is determined by correcting the projection component value in the direction depending on the magnitude of the projection component value in the orthogonal direction, or by correcting it by multiple regression of the two-component value and the coating thickness.

■また、前記の直交2成分値を、異なる周波数で塗膜厚
の増減によって変化するインピーダンスの変化方向とこ
れに直交する方向の各々の投影成分値の複数のパラメー
タとして求める。あるいは、さらに、異周波数の成分値
を相互に組合せて塗膜厚を求める。
(2) Further, the above-mentioned orthogonal two-component values are obtained as a plurality of parameters of the impedance change direction that changes depending on the increase or decrease of the coating film thickness at different frequencies, and the respective projected component values in the direction orthogonal to this. Alternatively, the coating thickness is further determined by mutually combining component values of different frequencies.

等の方法が採用できる。The following methods can be adopted.

また、この発明において、対象とする2層膜の成分は、
導体金属膜上に絶縁体の塗膜が積層され。
In addition, in this invention, the components of the target two-layer film are:
An insulating coating is layered on top of a conductive metal film.

れば、いずれの成分であっても適用可能である。If so, any component can be used.

この発明の膜厚測定方法により、従来の渦流法による塗
膜厚計測誤差が±9pm9pであるのに対して、塗膜厚
計測誤差を±2pmに高精度化できる利点がある。・ 図面に基づ〈発明の開示 以下にこの発明による膜厚測定方法を図面に基づいて詳
述する。
The coating thickness measuring method of the present invention has the advantage that the coating thickness measurement error can be highly accurate to ±2 pm, compared to the conventional eddy current method, which has a coating thickness measurement error of ±9 pm9p. - Based on the drawings <Disclosure of the invention The film thickness measuring method according to the present invention will be described in detail below based on the drawings.

第1図は渦流式のコイルインピーダンス平面(複素数平
面)図であり、第2図はZn膜厚とVx成分値との関係
を示すグラフであり、第3図は塗膜厚とVy成分値との
関係を示すグラフである。
Figure 1 is an eddy current coil impedance plane (complex plane) diagram, Figure 2 is a graph showing the relationship between Zn film thickness and Vx component value, and Figure 3 is a graph showing the relationship between coating film thickness and Vy component value. It is a graph showing the relationship between.

第1図の複素数平面図は、 TzH=7.9pm、 14.6pm、24.8pm 
、における塗膜厚(T)がOpm、15pm、30pm
の複素インピーダンス計測値を示している。
The complex number plane diagram in Figure 1 is: TzH=7.9pm, 14.6pm, 24.8pm
The coating film thickness (T) in , Opm, 15pm, 30pm
The complex impedance measurement value is shown.

ここで、TzH=14.6pm、 T=Opmを原点と
し、T2n= 14.6pmの場合の塗膜厚変化方向を
、Y軸及びY軸と直交する方向をx軸とし、各測定点の
Y軸への投影値をvy、 x軸への投影値をVxとする
。なお、Vx、Vyは同一周波数の直交二成分値とする
Here, the origin is TzH=14.6pm and T=Opm, and the direction of coating thickness change when T2n=14.6pm is the Y-axis and the direction orthogonal to the Y-axis is the x-axis, and the Y of each measurement point is Let the projected value on the axis be vy, and the projected value on the x-axis be Vx. Note that Vx and Vy are orthogonal two-component values of the same frequency.

vy値が従来の渦流式膜厚計の指示値に相当し、第7図
の縦軸がそれに相当する。
The vy value corresponds to the indicated value of a conventional eddy current film thickness meter, and the vertical axis in FIG. 7 corresponds to it.

さて、VxとZn膜の相関は第2図に示す如く直線関係
にある。このことからVx値によって塗膜厚に依存せず
±lpmの精度でZn膜厚を推定可能なことがわかる。
Now, the correlation between Vx and the Zn film is a linear relationship as shown in FIG. This shows that the Zn film thickness can be estimated by the Vx value with an accuracy of ± lpm without depending on the coating film thickness.

一方、vy値と塗膜厚(T)との相関は、第3図に示す
ように、Zn膜が薄くなると誤差が増大するなめ、以下
に示す手j頃で誤差の補正を行う必要かある。
On the other hand, as shown in Figure 3, the correlation between the vy value and the coating film thickness (T) shows that the error increases as the Zn film becomes thinner, so it is necessary to correct the error at the appropriate level shown below. .

(Vx値算出)・・・・・・Zn膜厚(Tzn)に依存
↓ (vy値算出)・・・・・・塗膜厚(T)とZn膜厚の
両者に依存↓ Vxの値に応じvy値を補正 かかる補正の方法としては、種々の方法が考えられる。
(Vx value calculation)...Depends on Zn film thickness (Tzn)↓ (vy value calculation)...Depends on both coating film thickness (T) and Zn film thickness↓ Vx value Various methods can be considered for correcting the vy value accordingly.

第3図には、Zn膜が7.6pm〜24.8pm、塗膜
が0〜30pmの14種のサンプルを用い、vy値と塗
膜厚の相関を調査した結果を示している。
FIG. 3 shows the results of investigating the correlation between the vy value and the coating thickness using 14 samples with Zn films of 7.6 pm to 24.8 pm and coating films of 0 to 30 pm.

すなちわ、Zn膜の薄いものが指示として高めに出るた
め、誤差が増大している。誤差の抑制法としては、 (A)2m膜の薄いもの(Vx値の小さなもの)のみを
、Vx値の大小で判定しVxの大きさに応じて、 Vx<vxth Vy’ =Vy−CVx・・・・・(2)(C:定数、
Vxth:Vxのしきい値)Vx≧vxth vy’  =Vy として補正する。
That is, since the thinner Zn film appears higher as an indicator, the error increases. As a method of suppressing the error, (A) Only thin 2m films (small Vx values) are determined by the magnitude of the Vx value, and depending on the magnitude of Vx, Vx<vxth Vy' = Vy-CVx・...(2) (C: constant,
Vxth: threshold value of Vx) Correct as Vx≧vxth vy' = Vy.

(B)Vx、 Vyの値と塗膜厚(T)の多重回帰より
Tを求める方法があり、例えば、回帰式としては下記に
示すような式が考えられる。
(B) There is a method of determining T by multiple regression of the values of Vx and Vy and the coating thickness (T). For example, the following regression formula can be considered.

T=Co+aVx+bVy+cVx2 +dVy2+e
VxVy・・・・’(3)上述の説明では、Vx、Vy
は同一周波数の直交二成分値としたが、異なる周波数で
塗膜厚に応じて変化する方向を、それぞれ、Vyl、V
y2とし、V3’l、Vy2と直交する成分をVxl、
Vx2として、4個のパラメータ(VXI 、Vy2 
、Vyx 、V3F2 )を用いて塗膜厚を求めること
ができる。
T=Co+aVx+bVy+cVx2 +dVy2+e
VxVy...' (3) In the above explanation, Vx, Vy
are orthogonal two-component values at the same frequency, but the directions that change depending on the coating thickness at different frequencies are Vyl and V, respectively.
y2, V3'l, the component orthogonal to Vy2 is Vxl,
As Vx2, four parameters (VXI, Vy2
, Vyx, V3F2) to determine the coating film thickness.

また(Vxl 、Vy2 )もしくは(Vy2 、Vy
x )によって塗膜厚を求めることも可能である。
Also (Vxl, Vy2) or (Vy2, Vy
It is also possible to determine the coating film thickness by x).

実施例 第6図の積層構成の如く、鋼板(1)に種々厚みのZn
膜(7)を成膜し、さらに顔料等からなる絶縁塗膜(8
)を種々厚みに成膜したZnめっき鋼板を、市販の渦流
式膜厚測定装置を用いて、前記各膜の膜厚を測定した。
Example As shown in the laminated structure shown in Fig. 6, Zn of various thicknesses is applied to the steel plate (1).
A film (7) is formed, and an insulating coating film (8) made of pigment, etc. is formed.
The film thickness of each film was measured using a commercially available eddy current film thickness measuring device.

この発明による測定方法において、Vxの値に応じたV
y値の補正方法には、前述の(A)法及び(B)によっ
た。
In the measuring method according to the present invention, V
The above-mentioned method (A) and method (B) were used to correct the y value.

各膜厚の実測は、塗膜を成膜した鋼板と塗膜を除去した
鋼板との重量差より塗膜の重量を求め、塗布面積と比重
から厚みを求める方法によった。
The actual measurement of each film thickness was carried out by determining the weight of the coating film from the difference in weight between the steel plate on which the coating film was formed and the steel plate from which the coating film was removed, and then determining the thickness from the coated area and specific gravity.

また、従来方法およびこの発明に方法における測定周波
数は、8MHz、 比抵抗値はp=5.9X10−8(Ωm)とした。
Furthermore, the measurement frequency in the conventional method and the method of the present invention was 8 MHz, and the specific resistance value was p=5.9×10 −8 (Ωm).

従来法による膜厚計測誤差が±9pmに対し、この発明
の測定方法で゛かつ(A)法の補正では±2.4pm、
(B)法の補正では±2pmと誤差が顕著に減少するこ
とがわかる。
The film thickness measurement error with the conventional method was ±9 pm, but with the measurement method of the present invention, the error was ±2.4 pm with the correction method (A).
It can be seen that the error is significantly reduced to ±2 pm with the correction of method (B).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は渦流式のコイルインピーダンス平面(複素数平
面)図であり、第2図はZn膜厚とVx成分値との関係
を示すグラフであり、第3図は塗膜厚とvy成分値との
関係を示すグラフである。第4図は実測値と計測値との
関係を示すグラフである。第5図a図は磁気式膜厚測定
方法を示す装置の概略説明図であり、b図は渦流式膜厚
測定方法を示す装置の概略説明図である。第6図はZn
めっき鋼板の断面説明図である。第7図は従来の渦流式
膜厚測定装置による塗膜厚と装置指示値との関係を示す
グラフである。 1・・・鋼板、2・・・塗膜、3・・・磁化コイル、4
・・・継鉄、5・・・電磁石、6・・・コイル、 7・・・zml先8・・・絶縁塗膜。 特許出願人  住友金属工業株式会社 第1図 第2図 Zn膜厚(TZn:μrR) 第3図 M4図 実 測 イ直(μm) 第5図 第6図 節7図 塗膜厚(μm)
Figure 1 is an eddy current coil impedance plane (complex plane) diagram, Figure 2 is a graph showing the relationship between Zn film thickness and Vx component value, and Figure 3 is a graph showing the relationship between coating film thickness and vy component value. It is a graph showing the relationship between. FIG. 4 is a graph showing the relationship between actual measured values and measured values. FIG. 5A is a schematic explanatory diagram of an apparatus showing a magnetic film thickness measuring method, and FIG. 5B is a schematic explanatory diagram of an apparatus showing an eddy current film thickness measuring method. Figure 6 shows Zn
It is a cross-sectional explanatory view of a plated steel plate. FIG. 7 is a graph showing the relationship between the coating film thickness and the value indicated by the device using a conventional eddy current film thickness measuring device. 1... Steel plate, 2... Paint film, 3... Magnetizing coil, 4
... Yoke, 5... Electromagnet, 6... Coil, 7... Zml tip 8... Insulating coating. Patent applicant: Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Zn film thickness (TZn: μrR) Figure 3 Figure M4 Actual measurement (μm) Figure 5 Figure 6 Section 7 Coating film thickness (μm)

Claims (1)

【特許請求の範囲】 1 鋼板に被着した金属膜上にさらに塗膜を積層した複層膜
上に、コイルを配して交流電流を印加し、コイルインピ
ーダンスの変化より膜厚を計測する渦流式膜厚測定法に
おいて、塗膜厚の増減によって変化するインピーダンス
の変化方向とこれに直交する方向の各々の投影成分値を
求め、二つの成分値に基づいて塗膜厚を求めることを特
徴とする膜厚測定法。 2 塗膜厚の増減によって変化するインピーダンスの変化方
向と同一周波数の直交する方向の投影成分値より金属膜
厚を求め、前記インピーダンスの変化方向の投影成分値
を、これに直交方向の投影成分値にて補正して塗膜厚を
求めることを特徴とする特許請求の範囲第1項記載の膜
厚測定法。 3 直交2成分値が異なる周波数で塗膜厚の増減によって変
化するインピーダンスの変化方向とこれに直交する方向
の各々の投影成分値であることを特徴とする特許請求の
範囲第1項記載の膜厚測定法。
[Scope of Claims] 1 Eddy current in which a coil is arranged on a multi-layered film in which a coating film is further laminated on a metal film adhered to a steel plate, an alternating current is applied, and the film thickness is measured from changes in coil impedance. In the formula film thickness measurement method, each projected component value is determined in the direction of change of impedance that changes due to increase or decrease in paint film thickness, and in the direction orthogonal to this, and the film thickness is determined based on the two component values. Film thickness measurement method. 2 Determine the metal film thickness from the projected component value in the direction orthogonal to the direction of change of impedance that changes due to increase or decrease in the coating film thickness, and calculate the projected component value in the direction of impedance change and the projected component value in the direction orthogonal to this. 2. The film thickness measuring method according to claim 1, wherein the film thickness is determined by correcting the film thickness. 3. The film according to claim 1, wherein the orthogonal two-component values are projection component values in a direction of change in impedance that changes due to increase or decrease in coating film thickness at different frequencies and in a direction orthogonal thereto. Thickness measurement method.
JP4591787A 1987-02-28 1987-02-28 Film thickness measurement method Pending JPS63212804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4591787A JPS63212804A (en) 1987-02-28 1987-02-28 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4591787A JPS63212804A (en) 1987-02-28 1987-02-28 Film thickness measurement method

Publications (1)

Publication Number Publication Date
JPS63212804A true JPS63212804A (en) 1988-09-05

Family

ID=12732597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4591787A Pending JPS63212804A (en) 1987-02-28 1987-02-28 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JPS63212804A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282451A (en) * 1991-03-11 1992-10-07 Railway Technical Res Inst Method for judging corrosive deterioration of two-layer metal wire material
JPH05126799A (en) * 1991-08-06 1993-05-21 Railway Technical Res Inst Deciding method for corrosion deterioration of three-layer metal wire
JPH07167838A (en) * 1993-08-18 1995-07-04 Micro Epsilon Messtechnik Gmbh & Co Kg Arrangement of sensor for examining physical property of surface layer of metal object and method therefor
JP2003534649A (en) * 2000-05-19 2003-11-18 アプライド マテリアルズ インコーポレイテッド Method and apparatus for on-site endpoint detection and process monitoring for chemical mechanical polishing
JP4676080B2 (en) * 2000-03-24 2011-04-27 インモビリーエンゲゼルシャフト・ヘルムート・フィッシャー・ゲーエムベーハー・ウント・コンパニイ・カーゲー Method and apparatus for nondestructive measurement of thin layer thickness
JP2020139745A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Non-magnetic metal wall thickness measuring method and wall thickness measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282451A (en) * 1991-03-11 1992-10-07 Railway Technical Res Inst Method for judging corrosive deterioration of two-layer metal wire material
JPH05126799A (en) * 1991-08-06 1993-05-21 Railway Technical Res Inst Deciding method for corrosion deterioration of three-layer metal wire
JPH07167838A (en) * 1993-08-18 1995-07-04 Micro Epsilon Messtechnik Gmbh & Co Kg Arrangement of sensor for examining physical property of surface layer of metal object and method therefor
JP4676080B2 (en) * 2000-03-24 2011-04-27 インモビリーエンゲゼルシャフト・ヘルムート・フィッシャー・ゲーエムベーハー・ウント・コンパニイ・カーゲー Method and apparatus for nondestructive measurement of thin layer thickness
JP2003534649A (en) * 2000-05-19 2003-11-18 アプライド マテリアルズ インコーポレイテッド Method and apparatus for on-site endpoint detection and process monitoring for chemical mechanical polishing
JP2013058762A (en) * 2000-05-19 2013-03-28 Applied Materials Inc Field endpoint detection for chemical mechanical polishing, and process monitoring method and apparatus
JP2020139745A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Non-magnetic metal wall thickness measuring method and wall thickness measuring device

Similar Documents

Publication Publication Date Title
CN110568263B (en) Conductor multi-parameter detection method and device with metal coating
CN106500581B (en) The measurement method of non-ferromagnetic metal coated layer thickness on a kind of non-ferromagnetic metal
SK141697A3 (en) Method and apparatus for measuring the thickness of a non-ferromagnetic conductive layer on a ferromagnetic conductive substrate
JPS63212804A (en) Film thickness measurement method
EP0627609A1 (en) Method for determining thickness of material deposition on nuclear fuel rods
US20130320969A1 (en) Magnetic field sensor
EP1450382A2 (en) Method for forming permanent magnet targets for position sensors
UA80755C2 (en) Method of noncontact measurement of resistance by eddy-current sensors and a device for the realization of the method
JPH0399257A (en) Magnetic field intensity indicator
JP2001318080A (en) Detection coil and inspecting device using the same
WO2022076093A1 (en) Angular displacement sensor
JPH06341806A (en) Method and device for measuring plating thickness
CN112684206B (en) A permanent magnet surface flow field sensor and sensor array
KR102694070B1 (en) Method and device for measuring the thickness of non-magnetisable layers on a magnetisable base material
US11060925B2 (en) Magnetic force sensor and production thereof
WO2010005168A2 (en) Composite of cobalt-nickel-iron ternary alloy thin film for magnet-inductive nondestructive sensor
US20050116724A1 (en) Method of non-contact measuring electrical conductivity of polymer electrolyte thin films with using combined sensor
CN114994769B (en) A device and method for detecting underground metal pipelines based on permanent magnet magnetization field
Eckersley H-field shielding effectiveness of flame-sprayed and thin solid aluminum and copper sheets
JP2019211887A (en) Position detection sensor
Shukevich et al. An electromagnetic transducer for simultaneous measurements of the thickness of a metal and a nonmagnetic coating
KR100381095B1 (en) Method of measuring thickness of zinc plating by magnetic induction method
JPH02176515A (en) Paint film thickness measuring device
JP2836625B2 (en) Non-magnetic material thickness measurement method on magnetic media
RU2616071C1 (en) Method for measuring magnetic induction thickness of dielectric coating and device for its implementation