[go: up one dir, main page]

JPS63211633A - Plasma etching device - Google Patents

Plasma etching device

Info

Publication number
JPS63211633A
JPS63211633A JP4365587A JP4365587A JPS63211633A JP S63211633 A JPS63211633 A JP S63211633A JP 4365587 A JP4365587 A JP 4365587A JP 4365587 A JP4365587 A JP 4365587A JP S63211633 A JPS63211633 A JP S63211633A
Authority
JP
Japan
Prior art keywords
etching
luminous intensity
vacuum chamber
time
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4365587A
Other languages
Japanese (ja)
Inventor
Munenori Iwami
宗憲 石見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP4365587A priority Critical patent/JPS63211633A/en
Publication of JPS63211633A publication Critical patent/JPS63211633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To detect the time of the completion of etching of an article to be treated with high precision without being affected by the variation, etc., of luminous intensity by detecting luminous intensity by a detector, measuring the quantity of etching on the basis of the time integral value of the luminous intensity and detecting the time of the completion of etching. CONSTITUTION:A luminous intensity detector 13 detecting an optical wave-length in a vacuum chamber 1 is mounted onto the side surface of the vacuum chamber 1 through a filter 14, and an arithmetic circuit 15 conducting integral arithmetic operation on the basis of detected luminous intensity is connected to the detector 13. Accordingly, since the quantity of etching is measured on the basis of the time integral value of luminous intensity measured by the detector 13 and the arithmetic circuit 15 and the time of the completion of etching is detected, the method is not affected by the variation of luminous intensity as compared to the case when the time of the completion of etching is merely detected by the difference of luminous intensity, thus performing extremely accurate detection.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はプラズマエツチング装置に係り、特にプラズマ
から発する光の発光強度によりエツチング終了点を検出
するプラズマエツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a plasma etching apparatus, and more particularly to a plasma etching apparatus that detects an etching end point based on the intensity of light emitted from plasma.

(従来の技術) 近年、超LSI製造工程において、半導体基板等の被処
理物上に形成された配線材料としての膜をエツチングす
る場合、上記膜上に所定のレジストを施した被処理物を
、真空容器内の電極に固定し、この電極に高周波電力を
供給するとともに、プロセスガスを導入し、真空容器内
でグロー放電を生じさせることにより、上記レジスト部
分以外の膜のエツチングを行なうようにしている。
(Prior Art) In recent years, in the VLSI manufacturing process, when etching a film as a wiring material formed on a workpiece such as a semiconductor substrate, the workpiece with a predetermined resist applied on the film is etched. The resist film is fixed to an electrode in a vacuum container, high-frequency power is supplied to the electrode, and a process gas is introduced to generate glow discharge in the vacuum container, thereby etching the film other than the resist portion. There is.

そして、上記エツチングによりガス化されたエツチング
生成物は、高周波電界中で励起され、そのエネルギに応
じた波長のエネルギの放出を行なうため、この波長を観
測することにより、ガスブラズマ中に存在するエツチン
グ生成物の増減を測定することができる。すなわち、従
来から、真空チャンバ内に発光強度を検出する発光強度
検出装置を設け、この発光強度検出装置により、エツチ
ング中の被エツチング材料からの発光波長と、被エツチ
ング材料が全て処理され下地材料が露出した場合におけ
る上記下地材料からの発光波長との違いを検出してエツ
チング処理終了時を検出するようにしている。
The etching products gasified by the above-mentioned etching are excited in a high-frequency electric field and emit energy with a wavelength corresponding to that energy. It is possible to measure the increase and decrease of things. That is, conventionally, a luminescence intensity detection device for detecting the luminescence intensity has been provided in a vacuum chamber, and this luminescence intensity detection device detects the emission wavelength from the material to be etched during etching and the underlying material after all of the material to be etched has been processed. The end of the etching process is detected by detecting the difference in the wavelength of light emitted from the base material when exposed.

(発明が解決しようとする問題点) しかし、上記従来のエツチング処理終了時の検出手段で
は、発光強度が例えば、l?合金のエツチングを行なう
場合、その深さ方向の膜質変化やノイズの発生等が原因
で変動するおそれがあり、エツチング検出に誤動作が生
じ終了点を決定することが困難であった。しかも、上記
誤動作を防ぐため、ノイズフィルタ、測定アンプ等の入
念な調整が必要であり、多大な労力を要していた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional detection means at the end of the etching process, the emission intensity is, for example, l? When etching an alloy, there is a risk of fluctuations due to changes in film quality in the depth direction, generation of noise, etc., and etching detection errors occur, making it difficult to determine the end point. Moreover, in order to prevent the above-mentioned malfunction, careful adjustment of noise filters, measurement amplifiers, etc. is required, which requires a great deal of effort.

また、シリコントレンチエツチング等のように、単一材
料のエツチングを行ない他の材料のガスプラズマが発生
しない場合には、測定波長の発光強度に変化がないため
、エツチング終了時の検出を行なうことができないとい
う問題を有している。
Furthermore, when a single material is etched and gas plasma of other materials is not generated, such as in silicon trench etching, there is no change in the emission intensity at the measurement wavelength, so it is not possible to detect the end of etching. The problem is that it cannot be done.

本発明は上記した点に鑑みてなされたもので、発光強度
の変動等に影響されず高精度で被処理物のエツチング終
了時を検出することのできるプラズマエツチング装置を
提供することを目的とするものである。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a plasma etching apparatus that can detect the end of etching of a workpiece with high accuracy without being affected by fluctuations in luminescence intensity, etc. It is something.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するため本発明に係るプラズマエツチン
グ装置は、真空チャンバ内に配設された電極に被処理物
を固定し、上記電極に高周波電力を印加するとともに、
真空チャンバ内にプロセスガスを導入しながらプラズマ
放電を発生させて、上記被処理物のエツチングを行なう
プラズマエツチング装置において、上記真空チャンバに
上記ガスプラズマから発生する波長の発光強度を検出す
る発光強度検出装置を配設し、上記発光強度検出装置か
ら検出される発光強度を時間により積分しその積分値に
より被処理物のエツチング量を測定する演算回路を設け
て構成されている。
(Means for Solving the Problems) In order to achieve the above object, a plasma etching apparatus according to the present invention fixes a workpiece to an electrode disposed in a vacuum chamber, and applies high frequency power to the electrode. With,
In a plasma etching apparatus that etches the object to be processed by generating plasma discharge while introducing a process gas into the vacuum chamber, a light emission intensity detection method detects the light emission intensity of a wavelength generated from the gas plasma in the vacuum chamber. The device is provided with an arithmetic circuit that integrates the luminescence intensity detected by the luminescence intensity detection device over time and measures the amount of etching of the object to be processed based on the integrated value.

(作 用) 本発明によれば、上記検出装置により発光強度を検出し
、この発光強度の時間積分値に基づいてエツチング量を
測定し、エツチングの終了時を検出するようにしている
ので、単に発光強度の差によりエツチング終了時を検出
する場合に比べて、発光強度の変動による影響を受けず
、極めて正確な検出を行なうことができるものである。
(Function) According to the present invention, the light emission intensity is detected by the detection device, and the amount of etching is measured based on the time-integrated value of this light emission intensity, and the end of etching is detected. Compared to the case where the end of etching is detected based on the difference in the luminescence intensity, this method is not affected by fluctuations in the luminescence intensity and can perform extremely accurate detection.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するためのプラズマエツチング装
置の一実施例を示したもので、真空チャンバ1の下面に
は、電極2が絶縁体3を介して配設されており、この電
極2の上面には、静電チャック用電極4が貼着されてい
る。この電極2の内部には、冷却水通路5が設けられ、
この冷却水通路5には、冷却水の導入管6および排出管
7がそれぞれ接続されている。また、上記真空チャンバ
1の」1方の上記電極2に対向する位置には、プロセス
ガスの噴出孔8が多数配設され、このガス噴出孔8には
、プロセスガスの導入管9が接続されている。上記電極
2には、マツチング回路10を介して高周波電源11が
接続され、上記静電チャック用電極4には、直流型[1
2が接続されており、上記真空チャンバ1は、アースさ
れている。
FIG. 1 shows an embodiment of a plasma etching apparatus for carrying out the present invention, in which an electrode 2 is disposed on the bottom surface of a vacuum chamber 1 with an insulator 3 interposed therebetween. An electrostatic chuck electrode 4 is adhered to the upper surface of the electrostatic chuck. A cooling water passage 5 is provided inside this electrode 2,
A cooling water introduction pipe 6 and a cooling water discharge pipe 7 are connected to the cooling water passage 5, respectively. Further, a large number of process gas ejection holes 8 are provided at a position facing the electrode 2 on one side of the vacuum chamber 1, and a process gas introduction pipe 9 is connected to the gas ejection holes 8. ing. A high frequency power source 11 is connected to the electrode 2 via a matching circuit 10, and a DC type [1
2 is connected, and the vacuum chamber 1 is grounded.

また、上記真空チャンバ1の側面には、真空チャンバ1
内の光波長を検出する発光強度検出装置13がフィルタ
14を介して取付けられ、この検出装置13には、検出
された発光強度に基づいて積分演算を行なう演算回路1
5が接続されている。
Further, on the side surface of the vacuum chamber 1, a vacuum chamber 1 is provided.
A light emission intensity detection device 13 for detecting the wavelength of light within is attached via a filter 14, and this detection device 13 includes an arithmetic circuit 1 that performs an integral calculation based on the detected light emission intensity.
5 is connected.

さらに、上記真空チャンバ1の側面下方には、図示しな
い真空排気装置に接続される排気口16が形成されてお
り、上記真空チャンバ1の周囲には、加熱ヒータ17お
よび冷却管18がそれぞれ巻設され、真空チャンバ1の
温度を制御できるようにしている。
Furthermore, an exhaust port 16 connected to an evacuation device (not shown) is formed at the lower side of the vacuum chamber 1, and a heater 17 and a cooling pipe 18 are wound around the vacuum chamber 1, respectively. This allows the temperature of the vacuum chamber 1 to be controlled.

本実施例においては、第2図(a)に示すように、Si
基板19上に酸化膜20を形成し、その表面にAl1−
Si21を1μm堆積させ、その上面に所定のフォトレ
ジストパターン22が施された被処理物23を、真空チ
ャンバ1内に搬送し、電極2の上面に載置して静電チャ
ック用電極4に直流電源12から直流電圧を印加するこ
とにより静電的に固定する。この状態で、排気口16か
ら真空チャンバ1内の真空排気を行ない、ガス導入管9
から送られるプロセスガスをガス噴出孔8から真空チャ
ンバ1内に所定圧力導入しながら、高周波電源11から
高周波電力を印加してプラズマ放電を発生させ、被処理
物23のエツチング処理を行なう。上記エツチングは、
第2図(a)に示すように、レジストパターン22が施
されていない部分のAl1−8L21をエツチングする
ことにより行なわれ、第2図(b)に示すように、Aj
l−Si21が全て処理され酸化膜20が露出した時点
でエツチングが終了する。
In this example, as shown in FIG. 2(a), Si
An oxide film 20 is formed on the substrate 19, and Al1- is formed on the surface of the oxide film 20.
A workpiece 23 on which Si21 has been deposited to a thickness of 1 μm and a predetermined photoresist pattern 22 formed on its upper surface is transported into the vacuum chamber 1, placed on the upper surface of the electrode 2, and a DC current is applied to the electrostatic chuck electrode 4. It is fixed electrostatically by applying a DC voltage from the power source 12. In this state, the inside of the vacuum chamber 1 is evacuated from the exhaust port 16, and the gas introduction pipe 9
While introducing the process gas sent from the wafer into the vacuum chamber 1 at a predetermined pressure through the gas ejection hole 8, high frequency power is applied from the high frequency power source 11 to generate plasma discharge, thereby etching the object 23 to be processed. The above etching is
As shown in FIG. 2(a), this is done by etching the portions of Al1-8L21 where the resist pattern 22 is not applied, and as shown in FIG. 2(b), the Aj
The etching ends when all of the l-Si 21 is processed and the oxide film 20 is exposed.

第3図は本実施例における発光強度検出装置13により
エツチング量を求める原理を示したもので、Agの1つ
の励起状態からの発光で396nmの波長を測定し、発
光強度を検出する場合を示している。第3図(a)中、
Aは他の波長からのバックグラウンドであり、第3図(
b)中、BはAgの396nmの波長、Cは酸化膜から
のSiの発光強度である。まず、実際のエツチング量(
Rさ)Mlを、第3図(b)において検出した発光強度
の積分値11で割った量、すなわち、単位発光強度積分
値におけるエツチング量ΔMを求める。次いで、未知の
被処理物のエツチング量Mと発光強度IR1時間Tとの
関係を次式で求める。
Figure 3 shows the principle of determining the amount of etching by the emission intensity detection device 13 in this embodiment, and shows the case where the emission intensity is detected by measuring the wavelength of 396 nm with emission from one excited state of Ag. ing. In Figure 3(a),
A is the background from other wavelengths, as shown in Figure 3 (
In b), B is the wavelength of 396 nm of Ag, and C is the intensity of Si emission from the oxide film. First, the actual etching amount (
R) M1 is divided by the integral value 11 of the luminescence intensity detected in FIG. 3(b), that is, the etching amount ΔM for a unit luminescence intensity integral value is determined. Next, the relationship between the etching amount M of the unknown object to be processed and the luminescence intensity IR1 time T is determined using the following equation.

M−ΣIRxΔTR×ΔM 6M−M1/、E I、XΔT1 上式により、被処理物をエツチングする場合、そのエツ
チングmMを演算回路で算出し、このエツチングmMに
基づいてエツチング処理の終了時を検出する。
M-ΣIRxΔTR×ΔM 6M-M1/, E I, XΔT1 According to the above formula, when etching the object to be processed, the etching mm is calculated by an arithmetic circuit, and the end of the etching process is detected based on this etching mm. .

また、トレンチ壬ツチング等で単一材料のエツチングを
行ない、発光強度に変化が生じない場合は、第3図(c
)に示すように、Aflからの発光強度りの面積を演算
により求めることによりエツチング量を検出することが
できる。
In addition, if a single material is etched by trench etching, etc., and there is no change in the emission intensity, see Figure 3 (c).
), the amount of etching can be detected by calculating the area of light emitted from Afl.

第4図はエツチング量と発光強度との対応関係を示した
もので、まず、第4図(a)に示すように、エツチング
開始時には表面酸化物等の影響で発光強度は緩やかに立
上がり定常状態となる。そして、エツチング中は発光強
度はほとんど変化せず(第4図(b)) 、エツチング
が終了時点に近付き下地材料の酸化膜20が露出してく
ると発光強度が減少し、その代りに酸化膜20の発光強
度が上昇する(第4図(C))。完全にAl1−Si2
1が除去されると、酸化膜20の発光強度が定常となる
(第4図(d))。
Figure 4 shows the correspondence between the amount of etching and the luminescence intensity. First, as shown in Figure 4(a), at the start of etching, the luminescence intensity rises slowly due to the influence of surface oxides and reaches a steady state. becomes. During etching, the emission intensity hardly changes (Fig. 4(b)), and as the etching approaches the end and the oxide film 20 of the base material is exposed, the emission intensity decreases, and instead, the oxide film 20 is exposed. The luminescence intensity of 20 increases (FIG. 4(C)). Completely Al1-Si2
1 is removed, the emission intensity of the oxide film 20 becomes steady (FIG. 4(d)).

したがって、本実施例においては、発光強度を検出し、
この発光強度の時間積分値に基づいてエツチング量を測
定し、エツチングの終了時を検出するようにしているの
で、単に発光強度の差によりエツチング終了時を検出す
る場合に比べて、発光強度の変動による影響を受けず、
極めて正確な検出を行なうことができる。
Therefore, in this example, the luminescence intensity is detected,
Since the amount of etching is measured based on the time-integrated value of the luminescence intensity and the end of etching is detected, fluctuations in the luminescence intensity are detected compared to simply detecting the end of etching based on the difference in luminescence intensity. Not affected by
Extremely accurate detection can be performed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係るプラズマエツチング装置
は、真空チャンバにガスプラズマから発生する波長の発
光強度を検出する発光強度検出装置を配設するとともに
、上記発光強度検出装置から検出される発光強度を時間
により積分しその積分値により被処理物のエツチング量
を測定する演算回路を設けてなり、上記検出装置および
演算回路により測定された発光強度の時間積分値に基づ
いてエツチング量を測定し、エツチングの終了時を検出
するようにしているので、単に発光強度の差によりエツ
チング終了時を検出する場合に比べて、発光強度の変動
による影響を受けず、極めて正確な検出を行なうことが
できるという効果を奏する。
As described above, the plasma etching apparatus according to the present invention is provided with a luminescence intensity detection device for detecting the luminescence intensity of a wavelength generated from gas plasma in a vacuum chamber, and a luminescence intensity detection device that detects the luminescence intensity of the wavelength generated from the gas plasma. is provided with an arithmetic circuit that integrates over time and measures the amount of etching of the object to be processed based on the integrated value, and measures the amount of etching based on the time-integrated value of the luminescence intensity measured by the detection device and the arithmetic circuit; Since the end of etching is detected, compared to simply detecting the end of etching based on the difference in emitted light intensity, it is not affected by fluctuations in emitted light intensity and can perform extremely accurate detection. be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はそれぞれ本発明の一実施例を示した
もので、第1図はプラズマエツチング装置の構成図、第
2図(a)、(b)はそれぞれ工ッチングの説明図、第
3図(a) 、 (b)+  (c)はそれぞれ発光強
度と時間との関係を示す線図、第4図(a)、(b)、
(c)、(d)はそれぞれ被処理物のエツチング状態と
発光強度との関係を示す説明図である。 1・・・真空チャンバ、2・・・電極、4・・・静電チ
ャック用電極、8・・・ガス噴出孔、9・・・ガス導入
管、13・・・発光強度検出装置、15・・・演算回路
、20・・・酸化膜、21・・・Al−5t、22・・
・レジストパターン、23・・・被処理物。 出願人代理人  佐  藤  −雄 時間 8寺 間 8寺 間 逃3図 時間      19′ (b) θ (C)
1 to 4 each show an embodiment of the present invention, in which FIG. 1 is a configuration diagram of a plasma etching apparatus, FIGS. 2(a) and 2(b) are illustrations of etching, and FIG. Figure 3 (a), (b) + (c) are diagrams showing the relationship between luminescence intensity and time, Figure 4 (a), (b),
(c) and (d) are explanatory diagrams showing the relationship between the etching state of the object to be processed and the luminescence intensity, respectively. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Electrode, 4... Electrostatic chuck electrode, 8... Gas injection hole, 9... Gas introduction tube, 13... Emission intensity detection device, 15. ...Arithmetic circuit, 20...Oxide film, 21...Al-5t, 22...
-Resist pattern, 23... object to be processed. Applicant's agent Sato - Yu time 8 temples Ma 8 temples Mae 3 time 19' (b) θ (C)

Claims (1)

【特許請求の範囲】[Claims] 真空チャンバ内に配設された電極に被処理物を固定し、
上記電極に高周波電力を印加するとともに、真空チャン
バ内にプロセスガスを導入しながらプラズマ放電を発生
させて、上記被処理物のエッチングを行なうプラズマエ
ッチング装置において、上記真空チャンバに上記ガスプ
ラズマから発生する波長の発光強度を検出する発光強度
検出装置を配設し、上記発光強度検出装置から検出され
る発光強度を時間により積分しその積分値により被処理
物のエッチング量を測定する演算回路を設けたことを特
徴とするプラズマエッチング装置。
The object to be processed is fixed to an electrode placed in a vacuum chamber,
In a plasma etching apparatus that etches the object to be processed by applying high-frequency power to the electrode and generating plasma discharge while introducing a process gas into the vacuum chamber, the plasma etching device generates plasma from the gas plasma in the vacuum chamber. A light emission intensity detection device for detecting the light emission intensity of a wavelength is provided, and an arithmetic circuit is provided for integrating the light emission intensity detected by the light emission intensity detection device over time and measuring the amount of etching of the object to be processed based on the integrated value. A plasma etching device characterized by:
JP4365587A 1987-02-26 1987-02-26 Plasma etching device Pending JPS63211633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4365587A JPS63211633A (en) 1987-02-26 1987-02-26 Plasma etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4365587A JPS63211633A (en) 1987-02-26 1987-02-26 Plasma etching device

Publications (1)

Publication Number Publication Date
JPS63211633A true JPS63211633A (en) 1988-09-02

Family

ID=12669879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4365587A Pending JPS63211633A (en) 1987-02-26 1987-02-26 Plasma etching device

Country Status (1)

Country Link
JP (1) JPS63211633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163176A (en) * 1996-12-03 1998-06-19 Meidensha Corp Manufacture of semiconductor element
JP2016134530A (en) * 2015-01-20 2016-07-25 株式会社東芝 Processing control apparatus, processing control program, and processing control method
WO2024225043A1 (en) * 2023-04-25 2024-10-31 東京エレクトロン株式会社 Plasma processing device and end point detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163176A (en) * 1996-12-03 1998-06-19 Meidensha Corp Manufacture of semiconductor element
JP2016134530A (en) * 2015-01-20 2016-07-25 株式会社東芝 Processing control apparatus, processing control program, and processing control method
WO2024225043A1 (en) * 2023-04-25 2024-10-31 東京エレクトロン株式会社 Plasma processing device and end point detection method

Similar Documents

Publication Publication Date Title
JP6837886B2 (en) Plasma processing equipment and plasma processing method
TW535234B (en) Plasma processing method and apparatus using dynamic sensing of a plasma environment
JP3766991B2 (en) End point detection method and apparatus for plasma processing, and semiconductor manufacturing method and apparatus using the detection method and apparatus
KR100515548B1 (en) Etching end-point detecting method
JPH0581168B2 (en)
US6447691B1 (en) Method for detecting end point of plasma etching, and plasma etching apparatus
US5284547A (en) Plasma-process system with batch scheme
KR20060100452A (en) Method and apparatus for in situ substrate temperature monitoring
JPS63211633A (en) Plasma etching device
KR100838658B1 (en) Etch depth measurement system for real time monitoring
US7022937B2 (en) Plasma processing method and apparatus for performing uniform plasma processing on a linear portion of an object
US7329549B2 (en) Monitoring method of processing state and processing unit
KR970000694B1 (en) Detecting method of etching stop point in semiconductor fabrication process
US20240203713A1 (en) In-situ diagnosis of plasma system
JPS61145825A (en) Cleaning end detection for plasma chemical vapor deposition apparatus
JPH0343772B2 (en)
JP2002170812A (en) Method and apparatus for detecting end point of plasma etching and plasma etching apparatus
JPH05175165A (en) Plasma device
JP3609241B2 (en) Plasma processing apparatus and plasma processing method
JPH0722401A (en) Plasma etching apparatus
JP2001284323A (en) Etching depth detecting apparatus, etching apparatus, etching depth detecting method, etching method and method of manufacturing semiconductor device
JP2000124198A (en) Plasma etching apparatus and plasma etching method
JPS62282435A (en) Method for detecting end point of etching
JPH0955367A (en) Dry etching apparatus
JP2003151955A (en) Plasma etching method