[go: up one dir, main page]

JPS63210840A - Negative type resist material and formation of negative type resist pattern - Google Patents

Negative type resist material and formation of negative type resist pattern

Info

Publication number
JPS63210840A
JPS63210840A JP62043110A JP4311087A JPS63210840A JP S63210840 A JPS63210840 A JP S63210840A JP 62043110 A JP62043110 A JP 62043110A JP 4311087 A JP4311087 A JP 4311087A JP S63210840 A JPS63210840 A JP S63210840A
Authority
JP
Japan
Prior art keywords
item
pattern
resist
forming
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62043110A
Other languages
Japanese (ja)
Inventor
Toshio Ito
伊東 敏雄
Yoshikazu Sakata
坂田 美和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62043110A priority Critical patent/JPS63210840A/en
Publication of JPS63210840A publication Critical patent/JPS63210840A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain the titled material suitable for forming a fine pattern having high aspect ratio with the simple process by cohydrolyzing allyltrichlorosilane, chloromethyltrichlorosilane and aralkyl or aryl trichlorosilane. CONSTITUTION:The silicone which is shown by formula I and is produced by cohydrolyzing allyltrichlorosilane, chloromethyltrichlorosilane and aralkyl or aryltrichlorosilane, is used for the titled material. In the formula, R is benzyl or phenethyl group, etc., X, Y and Z are each shown a percentage. The photoresist film 12 is formed on a silicon substrate 10 having SiO gradient 11, thereby leveled the gradient 11 and formed the resist material layer 13 to obtain the pattern 14. The exposed part of the lower layer of the pattern 14 is etched with O2-RIE. Thus, the process at the time of forming the pattern is remarkably simplified, and the workability in the manufacture of the semiconductor device, etc., is rationalized. ANd, the titled method contributes to the improvement of the production yield.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微細レジストパターン形成用のレジスト材
料、及び特に電子線、X線を用いドライエツチング耐性
に優れたネガ型レジストパターンの形成方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resist material for forming a fine resist pattern, and particularly to a method for forming a negative resist pattern with excellent dry etching resistance using electron beams and X-rays. It is something.

(従来の技術) 半導体素子の製造工程に際しての基板加工は、−aに被
加工基板上にレジストパターンを形成し、これをマスク
としてイオンの打ち込み及びエツチング作業等が行われ
る。
(Prior Art) In substrate processing during the manufacturing process of semiconductor devices, a resist pattern is formed on the substrate to be processed, and ion implantation and etching operations are performed using this as a mask.

近年、半導体素子の高1m積化が著しくサブミクロンレ
ベルでの基板の微細加工の要求が高い。そのため上記エ
ツチング工程には、加工精度に優れた反応性ガスを用い
たドライエツチングが広く採用されている。しかし反面
かかる手段は被加工基板とレジスト間でのエツチング速
度の選択性が充分でないことから該レジスト膜を厚くす
るようにしている。
In recent years, as the height of semiconductor devices has increased significantly by 1 m, there has been a strong demand for microfabrication of substrates at the submicron level. Therefore, dry etching using a reactive gas, which has excellent processing accuracy, is widely used in the etching process. On the other hand, however, such means do not provide sufficient selectivity in etching rate between the substrate to be processed and the resist, so the resist film must be made thick.

一般に配線の多層化に伴う所謂段差基板上では、ドライ
エツチングに耐え得る膜厚を確保すること、及び該段差
上での寸法変動を少なくするレジストパターン形成のた
めに基板を平坦化することの必要性から、例えば2μm
厚に及ぶようなレジストパターンでもこれらを1μmJ
J、下の寸法で形成する必要もある。そして微細化のた
めにはレジスト層の厚さを薄くすることが有利であって
、これら相反する要求を満足させる方法として、例えば
3層レジスト法が提案されている(ジャーナルバキュー
ム ソサイテイ テクノロジー、 J、Vac、Sci
In general, on so-called step substrates associated with multilayer wiring, it is necessary to ensure a film thickness that can withstand dry etching, and to flatten the substrate in order to form a resist pattern that reduces dimensional fluctuations on the steps. For example, 2 μm
Even if the resist pattern is thick, it is necessary to
J, it is also necessary to form it with the dimensions below. For miniaturization, it is advantageous to reduce the thickness of the resist layer, and a three-layer resist method, for example, has been proposed as a method to satisfy these conflicting demands (Journal Vacuum Society Technology, J. Vac, Sci.
.

Tachno I、 16(6)、 1620〜162
4 (1979) )。
Tachno I, 16(6), 1620-162
4 (1979)).

第2図によりこの方法を説明する。基板1上に段差平坦
化用の2〜3μm厚のフォトレジスト層2を形成し、そ
の上に0.1μm厚の5IO2中間層3、及びパターニ
ング用レジスト下層4をこれらの順に設ける。次に光、
電子線又は軟Xsなどのエネルギー線によって所望のパ
ターン5を形成し、更に中間層3をCHF3ガスプラズ
マでエツチングした後、同様に下層2を02ガスプラズ
マでエツチングし、アスペクト比の高いレジストパター
ンを形成するものである。この方法においては、上層レ
ジスト4を薄くすることによって解像性を向上させサブ
ミクロンのパターンが形状よく形成されるのである。
This method will be explained with reference to FIG. A photoresist layer 2 with a thickness of 2 to 3 .mu.m for flattening steps is formed on a substrate 1, and a 0.1 .mu.m thick 5IO2 intermediate layer 3 and a resist lower layer 4 for patterning are provided in this order. Next, the light
After forming a desired pattern 5 with an energy beam such as an electron beam or soft Xs, and etching the intermediate layer 3 with CHF3 gas plasma, the lower layer 2 is similarly etched with 02 gas plasma to form a resist pattern with a high aspect ratio. It is something that forms. In this method, by making the upper resist layer 4 thinner, resolution is improved and submicron patterns can be formed with good shape.

(発明が解決しようとする問題点) しかしながら、かかる3層レジスト法は、該レジストの
層数増加に伴いそれらの形成工程が煩雑になる等の問題
があり、又エツチング作業工程も増加しそれらの簡略化
が強く望まれていた。
(Problems to be Solved by the Invention) However, this three-layer resist method has problems such as the formation process becoming complicated as the number of resist layers increases, and the etching process also increases. Simplification was strongly desired.

この発明は、以上の述べた工程の増加、作業上の問題を
除去し、簡略なプロセスでアスペクト比の高い微細パタ
ーンを形成するのに好適なレジスト材料及びパターン形
成方法を提供することを目的とする。
It is an object of the present invention to provide a resist material and a pattern forming method suitable for eliminating the above-mentioned increase in the number of steps and operational problems and forming a fine pattern with a high aspect ratio in a simple process. do.

(問題点を解決するための手段) 上記問題を解決するために、本発明者らは架橋反応性の
基を有する所謂ラダー型シリコーン樹脂が電子線レジス
トとして好適であると考え検討を行った。
(Means for Solving the Problems) In order to solve the above problems, the present inventors considered that a so-called ladder type silicone resin having a cross-linking reactive group was suitable as an electron beam resist, and conducted studies.

一般にラダー型シリコーン樹脂はその構造上の特徴から
、ケイ素、酸素の含有量が高く従って02−RIEWI
4性が高い。
In general, ladder-type silicone resins have a high content of silicon and oxygen due to their structural characteristics, so 02-RIEWI
Highly 4-sexual.

又、架橋反応性の基としては、アリル基のような連鎖反
応性の高い基で比較的容易に高感度が達成されるが、同
時にレジストコントラストが低下するのが避けられない
。そこで、上記連鎖反応性の基と同時にクロロメチル基
のような逐次反応型の基、芳香族環のようなガラス転位
点を上昇させるような基を導入することが、上述の解像
性、現像時の膨潤によるパターン劣化を防ぐのに有効で
ある。しかし上記芳香族環の導入も電子線エネルギーが
芳香族環の共鳴安定化に一部消費され感度の低下を招き
限界がある。
Further, as the crosslinking reactive group, high sensitivity can be achieved relatively easily by using a group having high chain reactivity such as an allyl group, but at the same time, resist contrast is inevitably lowered. Therefore, it is recommended to introduce a sequential reaction type group such as a chloromethyl group or a group that increases the glass transition point such as an aromatic ring at the same time as the above-mentioned chain-reactive group. This is effective in preventing pattern deterioration due to swelling over time. However, the introduction of the above-mentioned aromatic ring has a limit as the electron beam energy is partially consumed in stabilizing the resonance of the aromatic ring, resulting in a decrease in sensitivity.

本発明のネガ型レジスト材料は、アリルトリクロロシラ
ン、クロロメチルトリクロロシラン及びアラルキル又は
アリールトリクロロシランを共加水分解してなり、一般
式、 (CH=CHCH25iO,、) x・(CtCH2S
 i 0,7□) 、−(R8iO,、。〕2 (但し式中、Rはベンジル、フェネチル、フェニル、P
−ブロモフェニル、P−−/ロモフェニル。
The negative resist material of the present invention is formed by cohydrolyzing allyltrichlorosilane, chloromethyltrichlorosilane, and aralkyl or aryltrichlorosilane, and has the general formula: (CH=CHCH25iO,,) x・(CtCH2S
i0,7□) , -(R8iO,,.]2 (wherein, R is benzyl, phenethyl, phenyl, P
-bromophenyl, P--/bromophenyl.

P −トIJルのいづれかであり、x、y、zは百分比
を示す) で表わされる。
(x, y, z indicate percentages).

そして、基板上に2層の有機レジストを具備させ、その
上層レジストとして前記一般式によるレジスト材料を用
いてパターン形成を行うものである。
Then, two layers of organic resist are provided on the substrate, and a resist material according to the above general formula is used as the upper layer resist to form a pattern.

本発明レジスト材料を表わす上記一般式において、その
百分比X、Y、Zの具体的な値は、電子線に対する感度
の点から、又は少なくとも20%以上、Yは少なくとも
20%以上、Zは10〜20%の範囲にあることが望ま
しく、又それらの分子量は5.ooo〜30,000の
間にあることが特に望ましい。モしてRはアラルキル又
はアリール基であす、例えば、ベンジル、フェネチル、
フェニル。
In the above general formula representing the resist material of the present invention, the specific values of the percentages X, Y, and Z are determined from the viewpoint of sensitivity to electron beams, or at least 20%, Y is at least 20%, and Z is 10 to 10%. It is desirable that the molecular weight is in the range of 20%, and the molecular weight thereof is 5. It is particularly desirable that it be between ooo and 30,000. R is an aralkyl or aryl group, such as benzyl, phenethyl,
Phenyl.

P−ブロモフェニル、P−−/ロモフェニル、 P −
トリルの中から選ぶことができる。上記式中、Zの範囲
が10%以下である場合にはその解像度が低下し、又2
0%以上である場合に(よ、感度が低下するので万まし
くない。
P-bromophenyl, P--/romophenyl, P-
You can choose from trills. In the above formula, if the range of Z is 10% or less, the resolution will decrease, and 2
If it is 0% or more, it is not recommended because the sensitivity will decrease.

又段差を有する基板上に本発明レジスト材料によ・る2
層レジストパターンの形成は具体的に例えば第1図のよ
うに行われろ。1.2μm高さを有する Si0段差(
11)のあるシリコツ基板10上にフォトレジスト膜I
2を2μm厚に形成して上記段差11を平坦化する。次
に本発明レジスト材料層(131、更に具体的には後記
実施例に記載のポリマー3を0゜3μm厚に形成し、電
子線で描画を行う。この場合の照射量は6.2μC/d
、パターンにもよるが残膜0.6程度になる照射量が好
適である。これを現像してパターン14を得下層露出部
分を02−RIEでエツチングすることによ170,5
μm幅のパターンとする。
In addition, the resist material of the present invention may be used on a substrate having steps.
The layered resist pattern is specifically formed as shown in FIG. 1, for example. Si0 step with a height of 1.2 μm (
11) A photoresist film I is formed on the silicon substrate 10.
2 is formed to have a thickness of 2 μm to flatten the step 11. Next, a layer of the resist material of the present invention (131, more specifically, a polymer 3 described in Examples below) is formed to a thickness of 0°3 μm, and drawing is performed using an electron beam.The irradiation dose in this case is 6.2 μC/d.
Although it depends on the pattern, it is preferable to use an irradiation amount that results in a residual film of about 0.6. By developing this, a pattern 14 is obtained, and the exposed portion of the lower layer is etched with 02-RIE.
The pattern is μm wide.

(作  用) 本発明においては、上記従来の3層レジスト法における
上層及び中間層に代わるものとして、アリルトリクロロ
シラン、クロロメチルトリクロロシラン及びアラルキル
又はアリールトリクロロシランの共加水分解によす得ら
れる一般式で示されるシリコン樹脂が使用され、そして
該樹脂は後記詳述するように電子線に対し高い感度を有
し、しかも酸素ガスを用いた反応性イオンエツチングの
際の膜減りが極めて少ないという特性を有している。従
ってこの層を著しく薄くできることになり徹細な上層パ
ターン形成に適する作用を有する。
(Function) In the present invention, as a substitute for the upper layer and the middle layer in the conventional three-layer resist method, a general-purpose compound obtained by cohydrolysis of allyltrichlorosilane, chloromethyltrichlorosilane, and aralkyl or aryltrichlorosilane is used. A silicone resin represented by the formula is used, and as will be described in detail later, this resin has high sensitivity to electron beams, and has the characteristics of extremely little film loss during reactive ion etching using oxygen gas. have. Therefore, this layer can be made extremely thin, and has an effect suitable for forming a detailed upper layer pattern.

(実 施 例) 以下、この発明を具体的な実施例につき説明する。(Example) This invention will be explained below with reference to specific examples.

プレポリマーの1 プレポリマー1の調製 アリルトリクロロシラン3.2 g (18mo/)。Prepolymer 1 Preparation of prepolymer 1 Allyltrichlorosilane 3.2 g (18 mo/).

クロロメチルトリクロロシラン1.1 g (6wol
)及びブロモフェニルトリクロロシラン1.7g(6I
IIllOI)をメチルイソブチルケトン(以下M[B
Kと称する)28m#及びテトラ七ドロフラン(以下T
HFと称する310mjの混合溶媒中に溶解し、水浴で
0℃に冷却した。次にこの中ヘトリエチルアミン(以下
Et3Nと称する) 3.Og (30woj)を5分
間で滴下し、得られた溶液を5分間攪拌した後、更に水
5gを15分かけて滴下し、そのまま1時間攪拌を継続
した。次に水浴をはずし加熱、還流を4時間を行った。
Chloromethyltrichlorosilane 1.1 g (6wol
) and 1.7 g of bromophenyltrichlorosilane (6I
IIllOI) to methyl isobutyl ketone (hereinafter M[B
K) 28m# and tetraheptadurofuran (hereinafter referred to as T
It was dissolved in a 310 mj mixed solvent called HF and cooled to 0°C in a water bath. Next, in this, hetriethylamine (hereinafter referred to as Et3N) 3. Og (30 woj) was added dropwise over 5 minutes, and the resulting solution was stirred for 5 minutes, then 5 g of water was added dropwise over 15 minutes, and stirring was continued for 1 hour. Next, the water bath was removed, and the mixture was heated and refluxed for 4 hours.

室温まで冷却した後酢酸エチル200 mjを加えて希
釈し水層を除いた後、有機層を中性になるまで水で洗い
、次いで飽和食塩水で洗った。得られた有機層を無水硫
酸マグネシウムで乾燥した後乾燥剤を濾去し、減圧下に
溶媒を留去することにより淡黄色の油状物4.4gを得
た。これをプレポリマー1とする。
After cooling to room temperature, the mixture was diluted with 200 mj of ethyl acetate, and the aqueous layer was removed. The organic layer was washed with water until it became neutral, and then with saturated brine. After drying the obtained organic layer over anhydrous magnesium sulfate, the desiccant was filtered off, and the solvent was distilled off under reduced pressure to obtain 4.4 g of a pale yellow oil. This will be referred to as Prepolymer 1.

プレポリマー2の調製 アリルトリクロロシラン1.4 g (8meoj) 
、クロロメチルトリクロロシラン5.1 g (28f
iImoj)及びP−ブロモフェニルトリクロロシラン
1.2g(4ml )を用いた外は他の試薬の量、反応
条件、後処理を上記調製1と同様に行い、淡黄色の固体
4.2gを得これをプレポリマー2とする。
Preparation of Prepolymer 2 Allyltrichlorosilane 1.4 g (8meoj)
, chloromethyltrichlorosilane 5.1 g (28f
Except that 1.2 g (4 ml) of P-bromophenyltrichlorosilane and 1.2 g (4 ml) of P-bromophenyltrichlorosilane were used, the amounts of other reagents, reaction conditions, and post-treatment were the same as in Preparation 1 above to obtain 4.2 g of a pale yellow solid. is defined as prepolymer 2.

プレポリマー3の調製 アリルトリクロロシラン1.4 g (8wof)、り
oo7チルトリクロロシラ:15.1 g (28mo
j)及びベンジルトリクロロシラン0.9g(4wao
l)を用いた外は上記調製1と同様に行い淡黄色の固体
4.1gを得これをプレポリマー3とする。
Preparation of Prepolymer 3: 1.4 g (8 wof) of allyl trichlorosilane, 15.1 g (28 mo of
j) and benzyltrichlorosilane 0.9g (4wao
The same procedure as in Preparation 1 above was carried out except that 1) was used to obtain 4.1 g of a pale yellow solid, which was designated as Prepolymer 3.

炙エニニ旦男1 ポリマー1の調製 上記プレポリマー1 2.OgをMIBK 2.0g中
に溶解し、攪拌を行い、これにEt3N O,2gを加
えた後室温で2時間攪拌を継続した。次にこの混合物を
0℃に冷却し、攪拌しであるメタノール100m1中に
圧加した。更に15分間攪拌を継続し生成沈澱を濾別し
た。得られた沈澱物を50m1の冷メタノールで1回洗
った後、常温で真空乾燥を行い1.1gの無色ポリマー
1を得た。その重量平均分子量は12,000程度であ
った。
Preparation of Aburi Enini Dandan 1 Polymer 1 The above prepolymer 1 2. Og was dissolved in 2.0 g of MIBK and stirred, and after adding 2 g of Et3N O, stirring was continued at room temperature for 2 hours. The mixture was then cooled to 0° C., stirred and pressed into 100 ml of methanol. Stirring was continued for an additional 15 minutes, and the resulting precipitate was filtered off. The obtained precipitate was washed once with 50 ml of cold methanol, and then vacuum dried at room temperature to obtain 1.1 g of colorless polymer 1. Its weight average molecular weight was about 12,000.

ポリマー2の調製 上記プレポリマー2 2.Ogを上記ポリマー1調製と
全く同一の条件で処理したところ1.3gの無色ポリマ
ー2(重量平均分子量21,000程度)が得られた。
Preparation of Polymer 2 Prepolymer 2 described above 2. When Og was treated under exactly the same conditions as in the preparation of Polymer 1, 1.3 g of colorless Polymer 2 (weight average molecular weight of about 21,000) was obtained.

ポリマー3の調製 上記プレポリマー3 2.0gを上記と同一の条件で処
理したところ1.3gの無色ポリマー3(重量平均分子
量19,500程度)が得られた。
Preparation of Polymer 3 2.0 g of the above Prepolymer 3 was treated under the same conditions as above to obtain 1.3 g of colorless Polymer 3 (weight average molecular weight approximately 19,500).

ポリマー4の調製 上記プレポリマー2 2.0gを重合時間6時間とした
以外は上記と同一の条件で処理したところ1.4gの無
色ポリマー4 (重量平均分子量23,000程度)が
得られた。
Preparation of Polymer 4 2.0 g of Prepolymer 2 was treated under the same conditions as above except that the polymerization time was 6 hours, and 1.4 g of colorless Polymer 4 (weight average molecular weight about 23,000) was obtained.

実施例1〜5 前記のようにして得られたプレポリマー及びポリマーは
、ベンゼン、トルエン、キシレン、クロロベンゼン等の
芳香族系溶NJ 、アセトン、メチルエチルケトン、メ
チルイソブチルケトン、シクロヘキサノンなどのケトン
系溶剤、酢酸エチル、酢酸2−メトキシエチル、酢酸2
−エトキシエチル。
Examples 1 to 5 The prepolymers and polymers obtained as described above were prepared using aromatic solvents such as benzene, toluene, xylene, and chlorobenzene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetic acid. Ethyl, 2-methoxyethyl acetate, 2-acetic acid
-Ethoxyethyl.

酢酸n−ブチル等のエステル類にいづれも溶解するもの
であり、これら溶剤を用いてレジスト液を調製すること
ができる。
All of these solvents are soluble in esters such as n-butyl acetate, and resist solutions can be prepared using these solvents.

ここで上記プレポリマー2.ポリマー4.同5゜同6.
及び同7をそれぞれ樹脂濃度が25wt%。
Here, the above prepolymer 2. Polymer 4. Same 5゜ Same 6.
and 7, each with a resin concentration of 25 wt%.

15wt%、15wt%、15wt%、15wt%とな
るようMIBKに溶解し、0.2μm孔を有するフィル
ターで濾過した。
It was dissolved in MIBK to give a concentration of 15 wt%, 15 wt%, 15 wt%, 15 wt%, and filtered through a filter with 0.2 μm pores.

次にシリコンウェハ上に2μm厚のハードベークしたマ
イクロポジット2400フオトレジストをコーティング
した基板上に、前記各レジスト液を0.4〜0.5μm
膜厚となるようスピンコーティングしホットプレート上
で80℃、1分間ベークを行った。
Next, each of the above resist solutions was applied to a thickness of 0.4 to 0.5 μm onto a silicon wafer coated with 2 μm thick hard-baked Microposit 2400 photoresist.
The film was spin-coated to a desired film thickness and baked on a hot plate at 80° C. for 1 minute.

次にこの基板上に、加速電圧20 KVの電子線ヲ用い
て1μmのラインアンドスペース10組を1つのパター
ンとして照射量を変え複数のパターンを描画した。そし
てこの基板をMIBKを現像液とし浸漬法で1分間現像
を行い2−プロパツールで15秒間リンスを行った。得
られた各パターンの残存膜厚を測定し、これらを最初に
塗布した膜厚で規格化した値を照射量の対数に対してプ
ロットし特性曲線を作成した。これらから求めた感度(
残膜率0.5となる時の照射量)とγ値(曲線上の残膜
率0.5の点における接線が残膜率0及び1の直線と交
差する点を、Q、 D:とじ表1 次に上表1の樹脂の02−RI E #4性の評価を行
った。各レジスト液をシリコンウェハ上にレジスト膜が
0.4〜0.5μm厚になるように形成しホットプレー
ト上で80℃、1分間ベークを行った。
Next, on this substrate, a plurality of patterns were drawn using an electron beam with an accelerating voltage of 20 KV, with 10 sets of 1 μm line and spaces as one pattern, while changing the irradiation dose. Then, this substrate was developed using MIBK as a developer for 1 minute by an immersion method, and rinsed with 2-proper tool for 15 seconds. The residual film thickness of each of the obtained patterns was measured, and the values normalized by the film thickness originally applied were plotted against the logarithm of the irradiation dose to create a characteristic curve. Sensitivity obtained from these (
The irradiation dose when the residual film rate is 0.5) and the γ value (the points where the tangent line at the point of the residual film rate of 0.5 on the curve intersects the straight line with the residual film rate of 0 and 1 are Q, D: Table 1 Next, the 02-RI E #4 properties of the resins shown in Table 1 above were evaluated.Each resist solution was formed on a silicon wafer so that the resist film was 0.4 to 0.5 μm thick, and then heated on a hot plate. Baking was performed at 80° C. for 1 minute.

これらを平行平板型ドライエッチカー用い02ガス圧1
.5 Pa 、電力密度0.08w/c++?、 02
ガス流旦20secIT+でエツチングを行った。それ
らの時間は、同時に設置した2μm厚のマイクロポジッ
ト2400フオトレジスト膜付シリコンウエハが完全に
エツチングされる時間(25分)とした。エッチング後
各レジスト残存膜厚を測定し、エツチングされた量を算
出したところ、実施例2ば、0.08μm。
These were processed using a parallel plate type dry etching car at 02 gas pressure 1
.. 5 Pa, power density 0.08w/c++? , 02
Etching was performed with a gas flow rate of 20 seconds IT+. These times were set as the time (25 minutes) for completely etching a silicon wafer with a 2 μm thick Microposit 2400 photoresist film placed at the same time. After etching, the remaining film thickness of each resist was measured and the etched amount was calculated to be 0.08 μm in Example 2.

実施例1.同3.同4及び同5は殆んど差がなく0.0
7μmであった。
Example 1. Same 3. There is almost no difference between 4 and 5, 0.0
It was 7 μm.

次に1.2μmの高さを有する1μm幅のSiOパター
ンを有するシリコン基板上に、平坦化層としてハードベ
ークしたマイクロポジットフォトレジスト2400を2
μm厚に形成し、更に実施例4のレジスト液をスピンコ
ーティングし80℃、1分間ホットプレート上でベーク
し0.3μm厚の上層レジスト膜を形成した。これに2
0 KVのi4子線を用い照射量6.2μc/cdにて
種々のパターンを描画し現像を行って上層パターンを得
た。上述と同一の条件でエツチングを40分間行い得ら
れた2層レジストパターンを走査型電子顕微鏡で観察し
たところ、0.5μm幅のパターンが解像されており、
その高さが約2.2μmであってほぼ最初の膜厚が保た
れ形状も略垂直であった。
Next, a hard-baked microposit photoresist 2400 was applied as a planarization layer on a silicon substrate having a 1 μm wide SiO pattern with a height of 1.2 μm.
The resist solution of Example 4 was further spin-coated and baked on a hot plate at 80° C. for 1 minute to form an upper resist film with a thickness of 0.3 μm. 2 to this
Various patterns were drawn using a 0 KV i4 consonant beam at a dose of 6.2 μc/cd, and development was performed to obtain upper layer patterns. When the two-layer resist pattern obtained by performing etching for 40 minutes under the same conditions as above was observed with a scanning electron microscope, a pattern with a width of 0.5 μm was resolved.
The height was approximately 2.2 μm, the initial thickness was maintained, and the shape was approximately vertical.

(発明の効果) 以上の詳細説明及び実施例の結果から明らかなように、
本発明は上述の従来の3層レジスト法における上層と中
間層とを、前記アリルトリクロロシラン、クロロメチル
トリクロロシラン及びアリール又はアラルキルトリクロ
ロシランから得られる電子線感応性シリコン*N1にI
2き換えた2層構造としたことにより、パターン形成時
のプロセスが大幅に簡略化され半導体装置等の製造にお
ける作業性を著しく合理化させ同時にその歩留りの向上
に寄与し得る。
(Effect of the invention) As is clear from the above detailed explanation and the results of the examples,
The present invention replaces the upper and middle layers in the conventional three-layer resist method with electron beam-sensitive silicon*N1 obtained from the allyltrichlorosilane, chloromethyltrichlorosilane, and aryl or aralkyltrichlorosilane.
By changing the structure to a two-layer structure, the process during pattern formation is greatly simplified, and the workability in manufacturing semiconductor devices and the like can be significantly streamlined, and at the same time, it can contribute to improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の工程説明図、第2図は従来方法の
工程説明図である。 10・・・基板、12・・・レジスト下4.13・・・
レジスト上層。 11図 第2図
FIG. 1 is a process explanatory diagram of the method of the present invention, and FIG. 2 is a process explanatory diagram of the conventional method. 10...Substrate, 12...Resist bottom 4.13...
upper layer of resist. Figure 11 Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)アリルトリクロロシラン、クロロメチルトリクロ
ロシラン及びアラルキル又はアリールトリクロロシラン
を共加水分解してなり、一般式、(CH_2=CHCH
_2SiO_3_/_2)_X・(ClCH_2SiO
_3_/_2)_Y・(RSiO_3_/_2)_Z (但し式中、Rはベンジル、フェネチル、フェニル、p
−クロロフエニル、P−ブロモフェニル、P−トリルの
いづれかであり、X,Y,Zは百分比を示す) で表わされるネガ型レジスト材料。
(1) Allyltrichlorosilane, chloromethyltrichlorosilane, and aralkyl or aryltrichlorosilane are co-hydrolyzed, with the general formula (CH_2=CHCH
_2SiO_3_/_2)_X・(ClCH_2SiO
_3_/_2)_Y・(RSiO_3_/_2)_Z (wherein, R is benzyl, phenethyl, phenyl, p
- Chlorophenyl, P-bromophenyl, or P-tolyl, and X, Y, and Z indicate percentages) A negative resist material.
(2)上記(1)項における一般式で表わされる材料の
分子量が5,000〜30,000である第1項記載の
ネガ型レジスト材料。
(2) The negative resist material according to item 1, wherein the material represented by the general formula in item (1) above has a molecular weight of 5,000 to 30,000.
(3)上記(1)項における一般式中の百分比が、X:
20%以上 Y:20%以上 Z:10〜20% である第1項記載のネガ型レジスト材料。
(3) If the percentage in the general formula in (1) above is X:
2. The negative resist material according to item 1, wherein Y: 20% or more, Z: 10 to 20%.
(4)有機ポリマー層が形成された基板上に、下式一般
式で示される電子線感応性シリコン樹脂溶液を塗布乾燥
してレジスト膜を形成し、これに電子線を選択照射し前
記未照射部分を除去することを特徴とするネガ型レジス
トパターンの形成方法。 (CH_2=CHCH_2SiO_3_/_2)_X・
(ClCH_2SiO_3_/_2)_Y・(RSiO
_3_/_2)_Z (但し式中、Rはベンジル、フェネチル、フェニル、P
−クロロフエニル、P−ブロモフエエル、P−トリルの
いづれかであり、X,Y,Zは百分比を示す)
(4) On the substrate on which the organic polymer layer has been formed, an electron beam-sensitive silicone resin solution represented by the general formula below is applied and dried to form a resist film, and this is selectively irradiated with an electron beam and the non-irradiated A method for forming a negative resist pattern characterized by removing a portion. (CH_2=CHCH_2SiO_3_/_2)_X・
(ClCH_2SiO_3_/_2)_Y・(RSiO
_3_/_2)_Z (However, in the formula, R is benzyl, phenethyl, phenyl, P
- Chlorophenyl, P-bromophyl, or P-tolyl, where X, Y, and Z indicate percentages)
(5)上記(4)項における未照射部分の除去を、常法
のケトン系溶剤による溶解にて行う第4項記載のレジス
トパターンの形成方法。
(5) The method for forming a resist pattern according to item 4, wherein the unirradiated portions in item (4) are removed by dissolving with a ketone solvent in a conventional manner.
(6)上記(4)項における未照射部分の除去を、反応
性ガスプラズマによるエッチングで行う第4項記載のレ
ジストパターンの形成方法。
(6) The method for forming a resist pattern according to item 4, wherein the unirradiated portions in item (4) are removed by etching using reactive gas plasma.
JP62043110A 1987-02-27 1987-02-27 Negative type resist material and formation of negative type resist pattern Pending JPS63210840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043110A JPS63210840A (en) 1987-02-27 1987-02-27 Negative type resist material and formation of negative type resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043110A JPS63210840A (en) 1987-02-27 1987-02-27 Negative type resist material and formation of negative type resist pattern

Publications (1)

Publication Number Publication Date
JPS63210840A true JPS63210840A (en) 1988-09-01

Family

ID=12654692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043110A Pending JPS63210840A (en) 1987-02-27 1987-02-27 Negative type resist material and formation of negative type resist pattern

Country Status (1)

Country Link
JP (1) JPS63210840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299955A (en) * 1988-10-06 1990-04-11 Fujitsu Ltd Photosensitive heat-resistant resin composition and method for manufacturing semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299955A (en) * 1988-10-06 1990-04-11 Fujitsu Ltd Photosensitive heat-resistant resin composition and method for manufacturing semiconductor devices

Similar Documents

Publication Publication Date Title
EP0255303B1 (en) Negative resist material, method for its manufacture and method for using it
EP0130338B1 (en) Resist structure and processes for making and patterning it
EP0185030B1 (en) Bilevel resist
JPS60229026A (en) Manufacture of electronic device
US3987215A (en) Resist mask formation process
JPS6048022B2 (en) electronic sensitive resist
US4564576A (en) Resist material comprising polymer of allylsilyl compound and pattern forming method using the resist material
US4427713A (en) Planarization technique
US5139922A (en) Method of making resist pattern
JPS63210840A (en) Negative type resist material and formation of negative type resist pattern
JPS62235943A (en) Manufacture of electronic device utilizing lithography
JPH0314333B2 (en)
JPS60260946A (en) Pattern forming material and formation of pattern
EP0330209B1 (en) Photoreactive polymers and process for the production of a two-layer resist
US4520097A (en) Negative-type resist sensitive to ionizing radiation
US4892617A (en) Processes involving lithographic materials
JPS6120031A (en) Resist material and its preparation
JPH02156244A (en) Pattern forming method
JPS63141046A (en) Resist
JPS6197651A (en) Pattern forming material and formation of pattern
EP0191774B1 (en) Fabrication of devices involving lithographic procedures
JPS6080851A (en) Pattern forming material and formation of pattern
JPH02500152A (en) Silicon-containing negative resist materials and processing methods for patterning substrates
CN117148668A (en) EUV/EB photoresist, preparation method and application thereof
JPH02158737A (en) Generation of relief pattern and use