[go: up one dir, main page]

JPS63210776A - Selective determination of amino acid - Google Patents

Selective determination of amino acid

Info

Publication number
JPS63210776A
JPS63210776A JP4495987A JP4495987A JPS63210776A JP S63210776 A JPS63210776 A JP S63210776A JP 4495987 A JP4495987 A JP 4495987A JP 4495987 A JP4495987 A JP 4495987A JP S63210776 A JPS63210776 A JP S63210776A
Authority
JP
Japan
Prior art keywords
liquid
org
solvent
added
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4495987A
Other languages
Japanese (ja)
Inventor
Kyuichi Matsubayashi
松林 久一
Chieko Kojima
小島 千枝子
Haruo Tatezawa
立澤 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Pharmaceutical Co Ltd
Original Assignee
Daiichi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co Ltd filed Critical Daiichi Pharmaceutical Co Ltd
Priority to JP4495987A priority Critical patent/JPS63210776A/en
Publication of JPS63210776A publication Critical patent/JPS63210776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To realize a method for determination of amino acids except alpha-amino acid having the sensitivity and accuracy equiv. to the sensitivity and accuracy of the conventional method for determination by adding an isothiocyanic aryl to a sample soln. and extracting away the product of reaction with the alpha-amino acid. CONSTITUTION:Ethanol, etc., are first added to a vital sample and protein is removed by centrifugal sepn. A basic buffer soln. is added to the supernatant thereof, then the isothiocyanic aryl is added thereto and the liquid is stirred to effect reaction. A proper amt. of water is added to the liquid after the reaction and the extraction is executed with a weakly alkaline and water insoluble org. solvent so that the excess reagent, etc., are migrated to the org. solvent layer. The water layer is then converted to acidity by a mineral acid and is heated to effect reaction. This reaction liquid is concd. and dried under a reduced pressure and is converted to weak alkalinity by a boric acid buffer soln., etc. the liquid is then subjected to an extraction operation by the org. solvent to migrate the thiohydantoin deriv. of the alpha-amino acid to the org. solvent. The liquid is thereafter converted to acidity by hydrochloric acid, etc., and is then extracted by the org. solvent. The org. solvent is removed from this extraction liquid and a proper volume thereof is subjected as the soln. of the eluate of liquid chromatography to high-performance liquid chromatography, by which the determination of the amino acids with high accuracy is permitted.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は生体試料中のα−アミノ酸以外のアミノ酸の分
別定量法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for fractionating and quantifying amino acids other than α-amino acids in biological samples.

〈従来技術〉 従来、各種アミノ酸が食品および医薬品として生体に投
与されており、これ等外部より投与されたアミノ酸の分
別定量法は重要な問題となっている。
<Prior Art> Conventionally, various amino acids have been administered to living bodies as foods and medicines, and the method of fractionating and quantifying these externally administered amino acids has become an important problem.

特に医薬品として使用されるアミノ酸においては、α−
アミノ酸以外のアミノ酸が数多く使用され、生体中にお
いては食品又は生体成分の大部分を構成するα−アミノ
酸との共存状態となるが、かかる状態において医薬品等
の生体内における挙動を把掴するために、生体各臓器に
おけるα−アミノ酸以外のアミノ酸の定量法が種々検討
されている。
Especially for amino acids used as medicines, α-
Many amino acids other than amino acids are used, and in living organisms they coexist with α-amino acids, which constitute most of food and biological components. Various methods for quantifying amino acids other than α-amino acids in various organs of living organisms have been studied.

医薬品として著名なトラネキサム酸(ω−アミノ酸)を
例としてその定量法を挙げれば、バイオアッセイ法(l
ysis of clot法)、化学的分析法、電気泳
動法、ペーパークロマトグラフ法、イオン交換カラムク
ロマトグツラフ法、ガスクロマトグラフ法、ガスクログ
ラフ−質量分析計法、アミノ酸分析計法、フルオレスカ
ミン誘導体又はオルトフタルアルデヒド誘導体の蛍光検
出による液体クロマトグラフ法等が開発されている。
Taking tranexamic acid (ω-amino acid), which is well-known as a pharmaceutical, as an example, the bioassay method (l
ysis of clot method), chemical analysis method, electrophoresis method, paper chromatography method, ion exchange column chromatograph method, gas chromatography method, gas chromatography-mass spectrometer method, amino acid analyzer method, fluorescamine derivative or ortho Liquid chromatography methods using fluorescence detection of phthalaldehyde derivatives have been developed.

しかしながら、バイオアッセイ法は熟練した技術を要す
ること及び感度が不十分であること等の欠点があり、近
年発表された前記ガスクロマトグラフ法、ガスクロマト
グラフ−質量分析計法、アミノ酸分析計法及び蛍光検出
による液体クロマトグラフ法は装置の維持及び操作に困
難性があること、経済的に不利であること等から、必ず
しも一般的に精度よく利用可能な方法とはいえない。
However, bioassay methods have drawbacks such as requiring skilled techniques and insufficient sensitivity, and the recently announced gas chromatography method, gas chromatograph-mass spectrometer method, amino acid analyzer method, and fluorescence detection method The liquid chromatography method is not necessarily a method that can be generally used with high accuracy because it is difficult to maintain and operate the device and is economically disadvantageous.

〈発明が解決した問題点〉 本発明者等は医薬品等として投与されたα−アミノ酸以
外のアミノ酸の生体試料中の含量の簡便な分析法につき
鋭意検討した結果、近年普及度の高いかつ維持、操作の
簡便なUV検出器付液体クロマトグラフを利用すること
が出来る定量法を見い出し本発明を完成した。
<Problems Solved by the Invention> As a result of intensive study by the present inventors on a simple method for analyzing the content of amino acids other than α-amino acids administered as pharmaceuticals in biological samples, we found that We have discovered a quantitative method that can utilize a liquid chromatograph equipped with a UV detector, which is easy to operate, and completed the present invention.

〈発明の構成) 本発明を実施するには、先ず生体試料(例えばヒト血清
、血しよう又は尿)にエタノール、メタノール等の低級
アルコール、アセトン又はアセトニトリル、好ましくは
エタノールを加え遠心分離により蛋白を除去する。試料
の使用量は通常0.5ml程度でよい、上清にホウ酸緩
衝液等の塩基性緩衝液又はピリジン等の塩基性有機溶媒
を加えpHを7〜11程度に保ち、次いでイソチオシア
ン酸フェニル、イソチオシアン酸ナフチル、イソチオシ
アン酸ダンシル、イソチオシアン酸ダブシル、フロエラ
センイソチオシアネート等のイソチオシアン酸アリール
、好ましくはイソチオシアン酸フェニル(以下PITC
と称す)を加え室温乃至100℃で数分〜数日間攪拌反
応させる。イソチオシアン酸アリールの使用量は通常2
0mg程度でよい0反応後退量の水を加え弱アルカリ性
でキシレン、ベンゼン、トルエン、イソプロピルエーテ
ル、クロロホルム、酢酸エチル等の水不溶性の有機溶媒
、好ましくはキシレンにて抽出し、有機溶媒層に過剰の
試薬及びその分解物並びに生体試料中の紫外線吸収を有
する物質を移行させる。次いで水層を鉱酸、例えばトリ
フロロ酢酸、酢酸、塩酸等で酸性とし室温〜100℃で
数分〜数時間加温し反応させる。反応液を減圧で濃縮乾
固し、0.IN水酸化ナトリウム水溶液、ホウ酸緩衝液
等で弱アルカリ性とし、ベンゼン、トルエン等の有機溶
媒で抽出操作を行いα−アミノ酸のチオヒダントイン誘
導体を有機溶媒に移行させる。その後、水層を塩酸等で
酸性とし、次いでベンゼン、クロロホルム、酢酸エチル
等の有機溶媒で抽出する。抽出液から有機溶媒を留去し
、これを適量の液体クロマトグラフィーの溶離液の溶液
として高速液体クロマトに付せばクロマトグラム上検体
及び内部標準物質(以下、 1.S、と称す)の保持時
間に相当する部分には、妨害ピークはほとんど存在せず
、極めて高精度で定量することができる。
(Structure of the Invention) To carry out the present invention, first, ethanol, a lower alcohol such as methanol, acetone, or acetonitrile, preferably ethanol, is added to a biological sample (e.g., human serum, blood plasma, or urine), and proteins are removed by centrifugation. do. The amount of sample used is usually about 0.5 ml. Add a basic buffer such as borate buffer or a basic organic solvent such as pyridine to the supernatant to maintain the pH at about 7 to 11, and then add phenyl isothiocyanate, Aryl isothiocyanates such as naphthyl isothiocyanate, dansyl isothiocyanate, dabcyl isothiocyanate, fluoreracene isothiocyanate, preferably phenyl isothiocyanate (hereinafter referred to as PITC)
(referred to as ) is added thereto, and the mixture is stirred and reacted at room temperature to 100°C for several minutes to several days. The amount of aryl isothiocyanate used is usually 2
Add 0 reaction regression amount of water, which may be about 0 mg, and extract with a water-insoluble organic solvent such as xylene, benzene, toluene, isopropyl ether, chloroform, ethyl acetate, preferably xylene under weak alkalinity, and remove excess water from the organic solvent layer. Transfers reagents and their decomposition products as well as substances with ultraviolet absorption in biological samples. Next, the aqueous layer is acidified with a mineral acid such as trifluoroacetic acid, acetic acid, hydrochloric acid, etc., and heated at room temperature to 100° C. for several minutes to several hours to react. The reaction solution was concentrated to dryness under reduced pressure. The mixture is made weakly alkaline with an IN aqueous sodium hydroxide solution, a boric acid buffer, etc., and extracted with an organic solvent such as benzene or toluene to transfer the α-amino acid thiohydantoin derivative to the organic solvent. Thereafter, the aqueous layer is acidified with hydrochloric acid or the like, and then extracted with an organic solvent such as benzene, chloroform, or ethyl acetate. By distilling off the organic solvent from the extract and applying it to high performance liquid chromatography as a solution of an appropriate amount of liquid chromatography eluent, the analyte and internal standard substance (hereinafter referred to as 1.S) can be retained on the chromatogram. There are almost no interfering peaks in the portion corresponding to time, and quantification can be performed with extremely high precision.

本液体クロマトグラフィーの溶離液、充填剤は分析対象
となるアミノ酸の種類によって異なり、例えばトラネキ
サム酸の場合にはリン酸wi街液とエタノールの混液(
90:10)を溶離液とし0ctyl系のcosmos
il 、C,(牛丼化学社製)を充填剤として使用する
ことができる。
The eluent and packing material for this liquid chromatography vary depending on the type of amino acid to be analyzed. For example, in the case of tranexamic acid, a mixture of phosphoric acid solution and ethanol (
90:10) as eluent and 0ctyl-based cosmos.
il, C, (manufactured by Gyudon Kagaku Co., Ltd.) can be used as a filler.

定量法は使用するイソチオシアン酸エステルの種類によ
って異なり、例えばPITCを用いた場合には254 
n++の波長における吸光度を、イソチオシアン酸ナフ
チルを使用した場合には295 nm前後の波長におけ
る吸光度を、イソチオシア酸ダンシルを用いた場合には
300 nm程度の波長における吸光度を測定すればよ
い。
The quantitative method varies depending on the type of isothiocyanate ester used; for example, when using PITC, 254
The absorbance at a wavelength of n++, when naphthyl isothiocyanate is used, the absorbance at a wavelength of around 295 nm, and when dansyl isothiocyanate is used, the absorbance at a wavelength of around 300 nm may be measured.

又、r、s、とじては種々検討の結果、定量を目的とす
る検体と構造的に最も近似する化合物が好ましく、例え
ばトラネキサム酸を定量しようとする場合の1.5.と
じては3−アミノシクロヘキサンカルボン酸が最も望ま
しく使用できる。
As a result of various studies, r and s are preferably compounds that are structurally most similar to the analyte to be quantified. For example, 1.5. As the binder, 3-aminocyclohexanecarboxylic acid is most preferably used.

本発明の定量法に付されるα−アミノ酸以外のアミノ酸
としては、先述したトラネキサム酸等のω−アミノ酸、
γ−アミノ酪酸、その他各種のβ−アミノ酸が挙げられ
る。これ等の試料中の含量・ とじては、極く微量の存
在で(例えば、血清中トラネキサム酸であれば0.05
μs/mβ以上)定量が可能であり、非常に実用的な定
量法である。
Amino acids other than α-amino acids to be subjected to the quantitative method of the present invention include ω-amino acids such as the above-mentioned tranexamic acid,
Examples include γ-aminobutyric acid and various other β-amino acids. The content in these samples is extremely small (for example, tranexamic acid in serum is 0.05
μs/mβ or higher), and is a very practical quantitative method.

以上の定量法の信頼性を確認するために、既にアミノ酸
分析計で測定した試料について本分析法で分析した結果
、両分析法における相関係数は0.997以上であり、
本分析法の高精度が確認された。
In order to confirm the reliability of the above quantitative method, samples that had already been measured using an amino acid analyzer were analyzed using this analytical method. As a result, the correlation coefficient between both analytical methods was 0.997 or more.
The high accuracy of this analytical method was confirmed.

〈発明の効果〉 本発明の方法は特に熟練した技術を要することなく、一
般に繁用されている装置を使用し、簡便な操作で従来の
定量法に匹敵する感度及び精度を有し、入手し易い内部
標準物質を使用することができ、生体サンプルについて
も十分適用可能なα−アミノ酸以外のアミノ酸の定量法
を提供できたものである。
<Effects of the Invention> The method of the present invention does not require particularly skilled techniques, uses commonly used equipment, has simple operations, has sensitivity and accuracy comparable to conventional quantitative methods, and is readily available. The present invention has provided a method for quantifying amino acids other than α-amino acids, which allows the use of easy-to-use internal standard substances and is fully applicable to biological samples.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 薬物を服用していない正常ヒト血清80.5ml中にト
ラネキサム酸を0.022μgから 11.26μgま
での8種の異った量を添加し検量線用サンプルとした。
Example 1 Eight different amounts of tranexamic acid, ranging from 0.022 μg to 11.26 μg, were added to 80.5 ml of normal human serum not taking any drugs to prepare samples for a calibration curve.

各濃度のサンプルは3本ずつ作製した。これらのサンプ
ルに内部標準物質として3−アミノシクロヘキサンカル
ボン酸2.92μgを5μlの水溶液として添加し混和
した後、エタノール2mlを加えて振り混ぜた。遠心分
離し、上滑を別の試験管に穆した。上清に0.01Mホ
ウ酸緩衝液(pH9,2)1ml、イソチオシアン酸フ
ェニル13μlを加えて混和し、40℃30分間反応さ
せた0反応液にキシレン3mlを加えて振盪し、遠心分
離した後キシレン層を捨てた。この操作を3回行った。
Three samples of each concentration were prepared. To these samples, 2.92 μg of 3-aminocyclohexanecarboxylic acid as an internal standard substance was added as a 5 μl aqueous solution and mixed, and then 2 ml of ethanol was added and shaken. It was centrifuged and the supernatant was strained into another test tube. Add 1 ml of 0.01 M borate buffer (pH 9,2) and 13 μl of phenyl isothiocyanate to the supernatant, mix, and react at 40°C for 30 minutes. Add 3 ml of xylene to the 0 reaction solution, shake, and centrifuge. The xylene layer was discarded. This operation was performed three times.

水層に濃塩酸Litを加え80℃、10分間反応させた
後減圧濃縮乾固した。残漬に0.1Mホウ酸緩衝液(p
)19.2) 1mlを加えて溶解した。ベンゼン2m
lを加えて振盪し遠心分離後ベンゼン層を捨てる操作を
2回行った。水層にN塩酸0.3mlを加え、さらにベ
ンゼン2mlを加えて振盪、遠心分離し、上層を別の試
験管に移した。窒素気流によりベンゼンを留去した後、
残漬を高速液体クロマト(以下、HPLC)溶離液[2
0鳳Mリン酸!!衝液(PH7,08)−エタノール(
90:10)]0055mに溶解してその約lOμlを
HPLCに注入し分析した。
Concentrated hydrochloric acid (Lit) was added to the aqueous layer, and the mixture was reacted at 80° C. for 10 minutes, and then concentrated to dryness under reduced pressure. Add 0.1M borate buffer (p
)19.2) 1 ml was added and dissolved. Benzene 2m
1 was added, shaken, centrifuged, and the benzene layer was discarded twice. 0.3 ml of N-hydrochloric acid was added to the aqueous layer, followed by 2 ml of benzene, followed by shaking and centrifugation, and the upper layer was transferred to another test tube. After distilling off the benzene with a nitrogen stream,
The residue was washed with high performance liquid chromatography (hereinafter referred to as HPLC) eluent [2
0ho M phosphoric acid! ! Solution (PH7,08) - Ethanol (
90:10)]0055m and injected approximately 10 μl into HPLC for analysis.

HPCLは日立655型装置にCosmosilsCa
のカラム(4,8++m i、d、 x 15cm、牛
丼化学■)を付け、前記溶離液をB動相として1.8m
l/分の流速で流した。
HPCL uses CosmosilsCa on Hitachi 655 type equipment.
A column (4,8++ m i, d, x 15 cm, Gyudon Kagaku ■) was attached, and the eluent was used as the B mobile phase.
The flow rate was 1/min.

クロマトグラムの検出は254Qmの吸光度により行っ
た。トラネキサム酸誘導体は保持時間約10分、内部標
準物質の誘導体は保持時間約13分に溶出した。各々の
ピーク高さを測定しその比を以下の計算式に従フて算出
した。
Detection of the chromatogram was performed by absorbance at 254Qm. The tranexamic acid derivative eluted at a retention time of about 10 minutes, and the internal standard derivative eluted at a retention time of about 13 minutes. The height of each peak was measured and the ratio thereof was calculated according to the following formula.

結果を表−1に示した0次いで得られた比より最小二剰
法に従い検量線を求めた。
The results are shown in Table 1. Then, a calibration curve was determined from the obtained ratios according to the least quadratic method.

表−1血清中トラネキサム酸の検量線 11.28     22.52   5.11G11
.26     22.52   5.QOoll、2
6     22.52   5.1305.63  
   11.2[i    2.55G5.63   
  11.26   2.5305.63     1
1.2[i    2.5802.82     5.
64   1.2002.82     5.64  
 1.1702.82     5.64   1.2
001.13     2.26   0.4801.
13     2.26   0.4801.13  
   2.26   0.43G0.45     0
.90   0.1700.45     0.90 
  0.170Q、4S      O,900,17
00,110,220,044 0,110,220,041 0,110,220,043 ・0.055     0.11   0.0190.
055     0.11   0.0230.055
     0.11   0.0210.022   
       0.044      0.0090.
022     0.044   0゜0110.02
2     0.044   0.009Y=0.45
31X−0,02596(’r=0.99975)*:
相関係数 上表から明らかなように、本発明の定量法による検量線
は優れた直線性を示した。
Table-1 Serum tranexamic acid calibration curve 11.28 22.52 5.11G11
.. 26 22.52 5. QOoll, 2
6 22.52 5.1305.63
11.2 [i 2.55G5.63
11.26 2.5305.63 1
1.2 [i 2.5802.82 5.
64 1.2002.82 5.64
1.1702.82 5.64 1.2
001.13 2.26 0.4801.
13 2.26 0.4801.13
2.26 0.43G0.45 0
.. 90 0.1700.45 0.90
0.170Q, 4S O,900,17
00,110,220,044 0,110,220,041 0,110,220,043 ・0.055 0.11 0.0190.
055 0.11 0.0230.055
0.11 0.0210.022
0.044 0.0090.
022 0.044 0゜0110.02
2 0.044 0.009Y=0.45
31X-0,02596 ('r=0.99975)*:
As is clear from the correlation coefficient table above, the calibration curve according to the quantitative method of the present invention showed excellent linearity.

実施例2 薬物を服用していない正常ヒト尿各0.5mlに0.5
6μgから 11.28μgまでの4種の異った量を添
加し、0.1Mホウ酸緩衝液1mlの代りに2ml 、
 N塩酸0.3mlの代りに0.6ml使用する以外は
上記実施例1と同様に処理し、ピーク高さ比を求めた。
Example 2 0.5 ml of normal human urine not taking drugs
Add 4 different amounts from 6 μg to 11.28 μg, 2 ml instead of 1 ml of 0.1 M borate buffer,
The same treatment as in Example 1 above was performed except that 0.6 ml of N-hydrochloric acid was used instead of 0.3 ml, and the peak height ratio was determined.

結果を表2に示した0次いで得られた比より最小二剰法
に従かい検量線を求めた。
The results are shown in Table 2. Then, a calibration curve was determined from the obtained ratios according to the least quadratic method.

表−2尿中トラネキサム酸の検量線 0.56G      1.12    0.250Y
=0.5020X +0.0430   (r−0,9
9514)上表から明らかなように、本発明の定量法に
よる検量線は優れた直線性を示した。
Table-2 Calibration curve of urinary tranexamic acid 0.56G 1.12 0.250Y
=0.5020X +0.0430 (r-0,9
9514) As is clear from the above table, the calibration curve obtained by the quantitative method of the present invention showed excellent linearity.

試験例 トラネキサム酸濃度未知の血清サンプルについて上記の
実施例1と同様に処理し、求めたピーク高さ比と表−1
の検量線よりトラネキサム酸の濃度を求めた。
Test Example A serum sample with unknown tranexamic acid concentration was treated in the same manner as in Example 1 above, and the peak height ratio and Table 1
The concentration of tranexamic acid was determined from the calibration curve.

同じサンプルについて従来のアミノ酸分析計により定量
した。二つの方法による結果の相関性を調べ、その結果
を表−3に示した。
The same samples were quantified using a conventional amino acid analyzer. The correlation between the results obtained by the two methods was investigated, and the results are shown in Table 3.

表−3アミノ酸分析計法と本方法の定量値の相関0.4
24              0.3751.10
8       1.055 3.6811       3.4704.876  
            4.9904.474   
    4.633 3.952       4.185 2.176       2.307 1.390       1.144 r = 0.9965 上表から明らかなように本発明の定量法は従来の定量法
と優れた相関性を示した。
Table-3 Correlation between quantitative values of amino acid analyzer method and this method: 0.4
24 0.3751.10
8 1.055 3.6811 3.4704.876
4.9904.474
4.633 3.952 4.185 2.176 2.307 1.390 1.144 r = 0.9965 As is clear from the above table, the quantitative method of the present invention shows excellent correlation with the conventional quantitative method. Ta.

Claims (1)

【特許請求の範囲】[Claims] 試料溶液中にイソチオシアン酸アリールを添加し、α−
アミノ酸との反応成績体を抽出除去することを特徴とす
るα−アミノ酸以外のアミノ酸の定量法
Add aryl isothiocyanate to the sample solution and
A method for quantifying amino acids other than α-amino acids, characterized by extracting and removing reaction products with amino acids
JP4495987A 1987-02-27 1987-02-27 Selective determination of amino acid Pending JPS63210776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4495987A JPS63210776A (en) 1987-02-27 1987-02-27 Selective determination of amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4495987A JPS63210776A (en) 1987-02-27 1987-02-27 Selective determination of amino acid

Publications (1)

Publication Number Publication Date
JPS63210776A true JPS63210776A (en) 1988-09-01

Family

ID=12706018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4495987A Pending JPS63210776A (en) 1987-02-27 1987-02-27 Selective determination of amino acid

Country Status (1)

Country Link
JP (1) JPS63210776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448263A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Analytical method and apparatus for catecholamines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448263A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Analytical method and apparatus for catecholamines

Similar Documents

Publication Publication Date Title
Guo et al. Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS
Gunnar et al. Determination of 14 benzodiazepines and hydroxy metabolites, zaleplon and zolpidem as tert-butyldimethylsilyl derivatives compared with other common silylating reagents in whole blood by gas chromatography–mass spectrometry
EP1962097A1 (en) Mass spectrometric quantitative detection of methyl malonic acid and succinic acid using hilic on a zwitterionic stationary phase
Miwa et al. High-performance liquid chromatographic analysis of serum short-chain fatty acids by direct derivatization
Jin et al. Determination of bromadiolone in whole blood by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry
Riggs et al. Determination of metoclopramide and two of its metabolites using a sensitive and selective gas chromatographic—mass spectrometric assay
Matsubayashi et al. Determination of tranexamic acid in human serum by high-performance liquid chromatography using selective pre-column derivatization with phenyl isothiocyanate
JPS63210776A (en) Selective determination of amino acid
Pace-Asciak et al. Gas chromatographic-mass spectrometric profiling with negative-ion chemical ionization detection of prostaglandins and their 15-keto and 15-keto-13, 14-dihydro catabolites in rat blood
Natishan Recent developments of achiral HPLC methods in pharmaceuticals using various detection modes
Webster et al. Gas chromatographic analysis of fosfomycin in plasma for pharmacokinetic analysis
CN113671064A (en) Detection method for quantitatively analyzing blood concentration of amlexanox in plasma
Hajdú et al. Quantitative determination of clobazam in serum and urine by gas chromatography, thin layer chromatography and fluorometry
KR100330860B1 (en) A method of analyzing a concentration of homocysteine in plasma
Felby Morphine: its quantitative determination in nanogram amounts in small samples of whole blood by electron-capture gas chromatography
Bishop-Freudling et al. Determination of 2, 4-diamino-5-benzylpyrimidines in combination with sulphadiazine in biological fluids using high-performance liquid chromatography
US4764601A (en) Composition for assaying cardiac glycosides from serum or plasma
Chou et al. Polymeric benzotriazole reagent for the off-line high-performanceliquid chromatographic derivatization of polyamines and related nucleophiles in biological fluids
Farshchi et al. A sensitive liquid chromatographic method for the analysis of clarithromycin with pre-column derivatization: application to a bioequivalence study
CN118465117B (en) A method and kit for specifically detecting multiple tricyclic antidepressants and its application
De Leenheer et al. Development and evaluation of selected assays for drugs and drug metabolites in biological materials
JPH07159400A (en) Measurement of mevalonic acid
KR100352984B1 (en) Method for the determination of lovastatin acid in plasma
Ukamaka et al. Analytical Techniques in Pharmaceutical Analysis for Samples Separation, Characterization, Determination and its Handling.
KR100377336B1 (en) Method for the preparation of N-formyl-lysine and the analysis of glycation induced-protein crosslinking assay thereby