JPS63209917A - Injection molding support expert method - Google Patents
Injection molding support expert methodInfo
- Publication number
- JPS63209917A JPS63209917A JP4295287A JP4295287A JPS63209917A JP S63209917 A JPS63209917 A JP S63209917A JP 4295287 A JP4295287 A JP 4295287A JP 4295287 A JP4295287 A JP 4295287A JP S63209917 A JPS63209917 A JP S63209917A
- Authority
- JP
- Japan
- Prior art keywords
- degree
- injection molding
- event
- defective
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001746 injection moulding Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title abstract description 4
- 238000003745 diagnosis Methods 0.000 claims abstract description 32
- 230000002950 deficient Effects 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 16
- 229920003023 plastic Polymers 0.000 claims description 15
- 239000004033 plastic Substances 0.000 claims description 15
- 238000002347 injection Methods 0.000 abstract description 8
- 239000007924 injection Substances 0.000 abstract description 8
- 230000002452 interceptive effect Effects 0.000 abstract description 3
- 230000007547 defect Effects 0.000 description 24
- 238000000465 moulding Methods 0.000 description 15
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 229920001601 polyetherimide Polymers 0.000 description 9
- 239000004697 Polyetherimide Substances 0.000 description 8
- 230000001364 causal effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/766—Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/33—Director till display
- G05B2219/33303—Expert system for diagnostic, monitoring use of tree and probability
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45244—Injection molding
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、射出成形機の成形条件の適正化を図るための
射出成形支援エキスパートシステムに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an injection molding support expert system for optimizing molding conditions of an injection molding machine.
(従来の技術)
射出成形機には種々の形式のものがあるが第6図に示す
スクリュ一式射出成形機を例に取って説明すると、この
射出成形機は一端にノズル1が設けられるとともに他端
にスクリュー2の挿入口3が形成されたシリンダ4が備
えられている。スクリュー2は油圧モータ5によプて回
転するとともに射出シリンダ6によってシリンダ4の内
部を前進の矢印(イ)方向及び後退の矢印(ロ)方向に
移動されるようになっている。又、シリンダ4にはホッ
パー7が設けられ、このホッパー7から各種プラスチッ
ク材料8が投入され、かっヒータ9が設けられてシリン
ダ4を所定の高温に加熱するようになっている。一方、
ノズル1には金型□10が取付けられるようになってい
る。(Prior Art) There are various types of injection molding machines, but this injection molding machine has a screw set injection molding machine shown in FIG. 6 as an example. A cylinder 4 is provided with an insertion opening 3 for a screw 2 formed at its end. The screw 2 is rotated by a hydraulic motor 5 and is moved inside the cylinder 4 by an injection cylinder 6 in the forward arrow (a) direction and the backward arrow (b) direction. Further, the cylinder 4 is provided with a hopper 7, from which various plastic materials 8 are charged, and a heater 9 is provided to heat the cylinder 4 to a predetermined high temperature. on the other hand,
A mold □10 is attached to the nozzle 1.
このような射出成形機であれば、先ず金型1゜が型締め
されてノズル1に取付けられる。一方、スクリュー2が
回転しかつヒータ9によって加熱が行われている状態に
ホッパー7からプラスチック材料8が投入されると、こ
のプラスチック材料8は流動化8aされる。この状態に
射出シリンダ6によってスクリュー2を前進させること
によってプラスチック材料8aを金型10内に注入する
。In such an injection molding machine, the mold 1° is first clamped and attached to the nozzle 1. On the other hand, when the plastic material 8 is introduced from the hopper 7 while the screw 2 is rotating and being heated by the heater 9, the plastic material 8 is fluidized 8a. In this state, the plastic material 8a is injected into the mold 10 by advancing the screw 2 with the injection cylinder 6.
この後、さらにスクリュー2によって金型1o内に圧力
を加えてプラスチック8aが注入されるようにする。そ
うして、冷却工程に入って成形品11が十分に固化する
と金型10が取り外されて次の成形に移る。After this, pressure is further applied into the mold 1o by the screw 2 so that the plastic 8a is injected. Then, when the molded product 11 is sufficiently solidified in the cooling process, the mold 10 is removed and the next molding is started.
ところで、以上のような工程で成形品11を成形しても
不良が出てしまい、その不良としては充填不足、パリ、
ヒケ、そり、曲がり、ねじれ、割れ、クラック、クレー
ジング、銀条等の多くのものがある。これら不良の発生
する原因は、例えば充填不足ではプラスチック材料の温
度、射出圧力の低(過ぎ等によるプラスチック材料の流
動性不足や金型10内での空気の逃げ場の無いとき等に
発生する。By the way, even if the molded product 11 is molded in the above process, defects will occur, and these defects include insufficient filling, cracking,
There are many things such as sink marks, warpage, bends, twists, breaks, cracks, crazing, silver streaks, etc. The causes of these defects are, for example, insufficient fluidity of the plastic material due to insufficient filling, low injection pressure, etc., or when there is no place for air to escape within the mold 10.
このように不良が発生した場合は射出成形機の成形条件
を設定変更・修正しなくてはならない。If a defect occurs in this way, the molding conditions of the injection molding machine must be changed or corrected.
そこで、この設定変更・修正は、この射出成形機の成形
芸能等に熟練したエキスパートが不良の種類及びその度
合い等を見て長年の経験的試行錯誤からその不良原因を
判断して行なっている。従って、射出成形機を操作等す
るにはそのエキスパートでなければ困難となっている。Therefore, this setting change/correction is carried out by an expert who is skilled in the art of molding this injection molding machine, by looking at the type and degree of the defect, and determining the cause of the defect through years of empirical trial and error. Therefore, it is difficult to operate an injection molding machine unless you are an expert.
ところが、現実にエキスパートを育成するには長期間に
亙って経験を積んで射出成形機及び各種プラスチック別
の成形作用等を熟知しなければならず容易にエキスパー
トの人材が得られない。さらに、新規な射出成形機が導
入されると、エキスパートを育成するために講習や他工
場等へ人材を派遣しなければならない。又、特に開発が
進んでいるエンジニアリングプラスチック材料を使用し
ての成形はその成形条件の最適化が難しく、エキスパー
トの育成に困難が生じている。However, in order to actually train experts, it is necessary to accumulate experience over a long period of time and become familiar with injection molding machines and the molding operations of various plastics, making it difficult to obtain experts. Furthermore, when a new injection molding machine is introduced, it is necessary to provide training courses or dispatch personnel to other factories to train experts. In addition, it is difficult to optimize the molding conditions when molding using engineering plastic materials, which are particularly well developed, and it is difficult to train experts.
(発明が解決しようとする問題点)
以上のように射出成形機の成形条件を最適化するには射
出成形機を熟知したエキスパートが不可欠であり、初心
者では全く困難である。(Problems to be Solved by the Invention) As described above, in order to optimize the molding conditions of an injection molding machine, an expert who is familiar with the injection molding machine is essential, and it is completely difficult for a beginner to do so.
そこで本発明は、成形条件の最適化を経験が少なくても
確実かつ容易にできる射出成形支援エキスパートシステ
ムを提供することを目的とする。Therefore, an object of the present invention is to provide an injection molding support expert system that can reliably and easily optimize molding conditions even with little experience.
[発明の構成]
(問題点を解決するための手段)
本発明は、射出成形機を支援する射出成形支援エキスパ
ートシステムにおいて、射出成形機で成形された成形品
の不良事象及びこの不良事象の度合いを入力する入力手
段と、少なくとも射出成形用の各種プラスチック材料別
に不良事象データと原因事象データとこの不良事象デー
タ及びこの不良事象データの組合わせ別の診断ルー・ル
データとが蓄積されるとともにこれら診断ルールデータ
で得られる診断結果に対する確実度が蓄積された知識ベ
ースと、入力手段によって入力された不良事象及びその
度合いを受けて知識ベースの診断ルールデータに従って
不良11J象に対する原因事象の診断結果及びこの診断
結果の影W度を推論する推論部とを備えて上記目的を達
成しようとする射出成形支援エキスパートシステムであ
る。[Structure of the Invention] (Means for Solving the Problems) The present invention provides an injection molding support expert system that supports an injection molding machine, in which a defective event of a molded product molded by an injection molding machine and the degree of the defective event are detected. At least, defective event data, cause event data, and diagnosis rule data for each combination of defective event data and combinations of the defective event data are accumulated for each type of plastic material for injection molding. Based on the knowledge base in which the degree of certainty for the diagnosis result obtained from the rule data is accumulated, and the failure event and its degree inputted by the input means, the diagnosis result of the cause event for the defective 11J event and this result is prepared according to the diagnosis rule data of the knowledge base. This is an injection molding support expert system that attempts to achieve the above object by including an inference section that infers the degree of influence of the diagnosis result.
(作用)
このような手段を備えたことにより、成形品の不良事象
及びその度合いが入力手段から入力されると、推論部は
知識ベースに蓄積されている診断ルールデータに従って
不良事象データ又は不良事象の組合せから不良原因デー
タを推論して診断結果を出し、かつ診断ルールデータで
得られる診断結果に対する確実度と不良事象の度合いと
から診断結果の影響度を推論する−0
(実施例)
以下、本発明の一実施例について図面を参照して説明す
る。なお、第5図と同一部分には同一符号を付してその
詳しい説明は省略する。(Function) By providing such a means, when a defective event of a molded product and its degree are input from the input means, the inference section calculates the defective event data or defective event according to the diagnostic rule data stored in the knowledge base. A diagnosis result is obtained by inferring failure cause data from the combination of , and the degree of influence of the diagnosis result is inferred from the degree of certainty for the diagnosis result obtained from the diagnosis rule data and the degree of the failure event -0 (Example) Below, An embodiment of the present invention will be described with reference to the drawings. Note that the same parts as in FIG. 5 are given the same reference numerals, and detailed explanation thereof will be omitted.
第1図は射出成形支援エキスパートシステムの全体構成
図である。キーボード20からは成形品11の不良事象
例えば充填不良やパリおよびその度合いがキー人力され
、これらデータが入出力部21を通して主制御部22の
指令によって一時メモリ23に記憶されるようになって
いる。なお、この主制御部22は推論システム24の推
論実行を指示し、かつ他システムとのデータ授受の制御
を実行している。さて、推論システム24は入力された
不良事象及びその度合いを受けて不良事象の原因事象を
診断するとともにこの診断結果の影響度つまり不良原因
の不良事象に対する影響度合いをも推論する機能を有す
るものである。具体的には知識ベース25と推論部26
とから構成されている。知識ベース25には各種プラス
チック材料別に不良事象、原因事象、診断ルールの各デ
ータが蓄積されるとともにこれら診断ルールで得られる
診断結果に対する確実型のデータが蓄積されている。具
体的にこれらデータの内容゛を説明すると、第2図に示
すようにアドレスA、B・・・Z別に各種プラスチック
材料例えばポリカーボネイト(PC)、ポリエーテルイ
ミド(PE I ’) 、ポリエーテルエーテルケトン
(PEEK)、ABS樹脂、ポリフェニレンサルファイ
ド(PPS)等の多数の材料別に診断知IS1.S2・
・・Sa及び材料データDI、D2・・・Dqが蓄積さ
れている。診断知11s1.s2・・・SQはそれぞれ
前記不良事象。FIG. 1 is an overall configuration diagram of the injection molding support expert system. Defect events of the molded product 11, such as defective filling, failure, and the degree thereof, are manually entered from the keyboard 20, and these data are stored in a temporary memory 23 through the input/output section 21 according to commands from the main control section 22. . The main control unit 22 instructs the inference system 24 to perform inference, and also controls data exchange with other systems. Now, the inference system 24 has a function of diagnosing the cause event of the defective event based on the inputted defective event and its degree, and also inferring the degree of influence of this diagnosis result, that is, the degree of influence of the defective cause on the defective event. be. Specifically, the knowledge base 25 and the reasoning unit 26
It is composed of. The knowledge base 25 stores data on defective events, causal events, and diagnostic rules for each type of plastic material, as well as reliable data on diagnostic results obtained using these diagnostic rules. To specifically explain the contents of these data, as shown in Figure 2, various plastic materials such as polycarbonate (PC), polyetherimide (PE I'), polyether ether ketone, etc. (PEEK), ABS resin, polyphenylene sulfide (PPS) etc. S2・
...Sa and material data DI, D2...Dq are stored. Diagnostic knowledge 11s1. s2...SQ are the aforementioned defective events.
原因事象1診断ルール及び確実型の各データを含んだも
ので、不良事象としては第3図に示すように充填不良(
al)、パリ(a2)、ウェルド(a3)。This includes causal event 1 diagnosis rules and reliable type data, and defective events include filling defects (as shown in Figure 3).
al), Paris (a2), Weld (a3).
割れ(a4) 、異物(an−1)、9条(an)やぎ
らに11脂焼け、変色、変形、ひけ、気泡等が各アドレ
ス1〜−〇別に蓄積されている。なお、(al)〜(a
n)はこれら不良事象を蓄積する際の符号例を示してお
り、これら不良事象は図示しないがそれぞれ不良の有無
として判断されるようになっており、有りと判断された
場合にその符号(al)〜(an)が読み出されるもの
となっている。次に原因事象は第4図に示すように樹脂
温度低い(dl) 。Cracks (a4), foreign matter (an-1), 9 threads (an), greasy burns, discoloration, deformation, sink marks, air bubbles, etc. are accumulated for each address 1 to -0. In addition, (al) to (a
n) shows an example of a code when accumulating these defective events, and although these defective events are not shown, they are judged as the presence or absence of a defect, and when it is determined that there is a defect, the code (al ) to (an) are to be read. Next, the cause event is low resin temperature (dl) as shown in FIG.
樹脂温度高い(d2)、射出圧力低い(da) 、射出
圧力高い(d4) 、原料異常(do−1)−、射出速
度速い(da)やさらに金型温度低い、射出時間の長短
、冷却vIIJの長短等が各アドレスに1〜kb別に蓄
積されている。なお、(al)〜(an)はこれら原因
事象を蓄積する際の符号例を示しており、これら原因事
象は図示しないがそれぞれ不良状1g(樹脂温度が低い
とか高い)及び正常で判断され、不良状態として判断さ
れた場合にその符号(dl)〜(dn)が読み出される
ものとなっている。次に診断ルールは入力された不良事
象から原因事象を推論しかつ診断結果の影響度を算出す
るためのもので、各アドレス21〜I2p別にそれぞれ
診断ルールr1〜rpが蓄積されている。例えばルール
番号「1にはウェルド不良の場合の診断結果つまり樹脂
温度低いが記憶されるとともにこの診断結果に対する確
実型0.8が記憶され、ルール番号「3には充填不良と
ウェルド不良とが入力された場合樹脂温度低いとする診
断結果が記憶されるとともにその確実型0.9が記憶さ
れている。つまり、各不良事象とその組合せに対する診
断結果およびその確実型が記憶されている。ところで、
以上示した知識データは実際の事故例を追いながらエキ
スパートの経験的試行錯誤に基づいて獲得される。High resin temperature (d2), low injection pressure (da), high injection pressure (d4), abnormal raw material (do-1)-, high injection speed (da), low mold temperature, long or short injection time, cooling vIIJ The length, length, etc. of 1 to 1 kb are stored in each address. Note that (al) to (an) indicate code examples when accumulating these causal events, and although these causal events are not shown, they are judged as defective 1g (resin temperature is low or high) and normal, respectively. When a defective state is determined, the codes (dl) to (dn) are read out. Next, the diagnostic rules are for inferring the cause event from the input defective event and calculating the degree of influence of the diagnosis result, and diagnostic rules r1 to rp are stored for each address 21 to I2p, respectively. For example, the rule number ``1'' stores the diagnosis result for a weld defect, that is, the resin temperature is low, and the sure type 0.8 for this diagnosis result is stored, and the rule number ``3'' stores the filling defect and weld defect. The diagnosis result that the resin temperature is low when the failure occurs is stored, as well as its certainty type 0.9.In other words, the diagnosis result and its certainty type for each defective event and its combination are stored.By the way,
The knowledge data presented above is acquired based on empirical trial and error by experts while following actual accident cases.
推論部26は入力された不良事象から診断ルールに従っ
て原因事象を推論してそれを診断結果として出力すると
ともに入力された不良事象の度合いと各診断ルール別の
確実型とから診断結果に対する影響度を算出する機能を
有している。なお、推論部26は予め入力された推論し
きい値と診断結果への影響度を比較し、しきい値以下の
診断結果は省く機能を有している。又、知識ベース25
には知識ベース25へのデータ書き込み及び削除を行な
う制御機能付きのCRTディスプレイ27が接続されて
知識ベース25内の各データが変更・修正及び追加され
るようになっている。28はCRTディスプレイである
。The inference unit 26 infers the causal event from the inputted defective event according to the diagnostic rule and outputs it as a diagnosis result, and also calculates the degree of influence on the diagnosis result from the degree of the inputted bad event and the certainty type of each diagnostic rule. It has a calculation function. Note that the inference unit 26 has a function of comparing the degree of influence on the diagnosis result with an inference threshold value inputted in advance, and omitting diagnosis results below the threshold value. Also, knowledge base 25
A CRT display 27 with a control function for writing and deleting data in the knowledge base 25 is connected to the knowledge base 25, so that each data in the knowledge base 25 can be changed, corrected, and added to. 28 is a CRT display.
次に上記の如く構成されたシステムの作用について説明
する。射出成形機の作用によって流動化されたプラスチ
ック材料8aが金型1o内に注入され、冷却の後、金型
10が外4−mて成形品11として取り出されると、こ
の成形品11に対する不良の判定がオペレータによって
灯われる。この判定によって例えばウェルド不良があれ
ば、使用されたプラスチック材料の種類例えばポリエー
テルイミド(PEI)がキー人力されるとともにウェル
ド不良及びこのウェルド不良の度合い例えば0.6及び
推論のしきい値0.3がキーボード20からキー人力さ
れる。主制抑部22はこれらポリエーテルイミド(PE
I)、ウェルド不良及びその度合いのデータを一時メモ
リ23に記憶して推論部26に渡す。さて、この推論部
26は先ずポリエーテルイミド(PEI)を使用してウ
ェルド不良となった場合の不良事摩度合いの所定値と比
較してこの所定値以上であれば、次にポリエーテルイミ
ド(PEI)から知識ベース25におけるアドレス領域
Bを検索し、このf!4域Bに蓄積されている診断ルー
ルに従って推論を実行する。そこで、推論部26はウェ
ルド不良を含む全ての診断ルールを検索し、この検索の
結果第5図に示すようにルール番@r1. r3を捜し
出す。そして、診断ルール「3により対話形式で充填不
良事象の有無をオペレータに問い、その事象が無ければ
診断ルールr3は却下されて診断ルールr1が選択され
る。従って、0推論部26はこの診断ルールr1によっ
てウェルド不良のみに対応する原因事象つまりa4脂温
度低いを検索するとともにその確実度0.8を読み出す
。Next, the operation of the system configured as described above will be explained. The plastic material 8a fluidized by the action of the injection molding machine is injected into the mold 1o, and after cooling, the mold 10 is removed from the mold 10 as a molded product 11. A judgment is made by the operator. As a result of this determination, for example, if there is a weld defect, the type of plastic material used, for example polyetherimide (PEI), is determined, as well as the weld defect and the degree of this weld defect, for example 0.6, and the inference threshold 0. 3 is pressed manually from the keyboard 20. The main restraining portion 22 is made of these polyetherimides (PE
I) Data on weld defects and their degree are stored in the temporary memory 23 and passed to the inference section 26. Now, this inference section 26 first compares it with a predetermined value of the failure degree in the case where polyetherimide (PEI) is used and a weld failure occurs, and if it is greater than this predetermined value, then polyetherimide (PEI) is used. PEI) to address area B in the knowledge base 25, and this f! 4. Execute inference according to the diagnostic rules stored in area B. Therefore, the inference unit 26 searches for all diagnostic rules including weld defects, and as a result of this search, as shown in FIG. 5, rule number @r1. Find r3. Diagnostic rule "3" then asks the operator in an interactive manner whether there is a filling defect event, and if there is no such event, diagnostic rule r3 is rejected and diagnostic rule r1 is selected. Using r1, a cause event corresponding only to a weld defect, that is, a4 low fat temperature is searched for, and its certainty level of 0.8 is read out.
これにより、推論部26は確実度0.8とウェルド不良
の度合い0.6とを乗算して影響度0.48を算出し推
論しきい値以上であることを確めて樹脂温度低いの原因
事象とこの影響度0.48を主制御部22に送出する。As a result, the inference unit 26 multiplies the degree of certainty by 0.8 and the degree of weld failure by 0.6 to calculate the influence degree of 0.48, and confirms that the degree of influence is greater than the inference threshold and determines the cause of the low resin temperature. The event and its influence degree of 0.48 are sent to the main control unit 22.
かくして、主制御部22の指令によって樹脂温度低いの
原因事象と影響度0.48とが入出力部21を通してC
RTディスプレイ28に送られて診断結果として表示さ
れる。オペレータはこの表示されている樹脂温度低い及
び影響度0.48からから成形条件の変更・修正及びそ
の変更・修正の度合いを判断する。この場合、樹脂8度
低いであるから例えば各ヒータ9の加熱温度を高くし、
かつこの加熱温度の上昇度合いを影響度から決めて成形
条件を変更する。In this way, the cause event of low resin temperature and the influence degree of 0.48 are transmitted to C through the input/output section 21 by the command from the main control section 22.
It is sent to the RT display 28 and displayed as a diagnosis result. The operator judges the change/correction of the molding conditions and the degree of the change/correction based on the displayed low resin temperature and influence degree of 0.48. In this case, since the resin temperature is 8 degrees lower, for example, the heating temperature of each heater 9 is increased,
The degree of increase in this heating temperature is determined based on the degree of influence, and the molding conditions are changed.
又、不良事象として充填不足及びその度合い0.7とウ
ェルド不良及びその度合い0.8さらに推諭しきい値0
.8がキー人力されると、推論部26は上記ウェルド不
良のみの場合と同様にして診断ルールrl、 r2.
r3を検索し不良事象として充填不足及びその度合い0
.1とウェルド不良及びその度合い0.8と推論しきい
値0.9がキー人力される。In addition, as defective events, insufficient filling and its degree is 0.7, weld defect and its degree is 0.8, and the recommendation threshold is 0.
.. 8 is entered manually, the inference unit 26 uses the diagnostic rules rl, r2.
Search r3 and find insufficient filling and its degree 0 as a defective event
.. 1, weld defect, its degree 0.8, and inference threshold 0.9 are key human inputs.
そうすると、推論部26は上記ウェルド不良のみの場合
と同様にして診断ルール番号r1. r2. r3を検
索する。そして、コンビネーション−OR関係により診
断ルール
rl : 0,8 x O,8−0,64r2 : 0
.7 x O,8−0,56r3: 0.7 xO,8
xO,9−0,504を用いて
0.64+ 0.56− (0,84x O,56)謬
0.8420.842 +0.504−(0,842x
O,504) −0,922が得られる。かくして、樹
脂温度低いと影響度0.922とが入出力部21を通し
てCRTディスプレイ28に送られて診断結果として表
示され、オペレータはこの表示から成形条件の変更・修
正及びその変更・修正の度合いを判断する。このように
して各不良事象及びその組合せに対応して診断結果が出
力される。Then, the inference unit 26 uses diagnostic rule number r1 in the same manner as in the case of only the weld defect. r2. Search r3. Then, due to the combination-OR relationship, the diagnostic rule rl: 0,8 x O,8-0,64r2: 0
.. 7 x O, 8-0, 56r3: 0.7 x O, 8
Using xO,9-0,504, 0.64+ 0.56- (0,84x O,56) error 0.8420.842 +0.504-(0,842x
O,504) -0,922 is obtained. Thus, if the resin temperature is low, the influence degree is 0.922, which is sent to the CRT display 28 through the input/output unit 21 and displayed as a diagnosis result, and the operator can change or modify the molding conditions and the degree of the change or modification from this display. to decide. In this way, diagnostic results are output corresponding to each defective event and its combination.
ところで、不良事象として知識ベース25に既に記憶さ
れてないものが現われた場合は、その不良事象をキーボ
ード20からキー人力することによって推論部26から
この不良事象に対する原因事象及び診断ルールが獲得さ
れていない旨が発せられてCRTディスプレイ28に表
示される。従って、オペレータはこの不良事象とその原
因事象、診断ルールを検討して制御機能付きのCRTデ
ィスプレイ27から知識ベース25に新規な知識として
追加し、知識の充実を図る。By the way, when a defective event that is not already stored in the knowledge base 25 appears, the causal event and diagnostic rule for this defective event are acquired from the inference unit 26 by manually inputting keys on the keyboard 20. A message indicating that there is no such information is issued and displayed on the CRT display 28. Therefore, the operator examines this defective event, its cause event, and the diagnostic rule, and adds new knowledge to the knowledge base 25 from the CRT display 27 with a control function, thereby enriching the knowledge.
このように上記一実施例においては、成形品11の不良
事象及びその度合いから推論部26は知識ベース25に
蓄積されている診断ルールに従って不良事象及び不良事
象の組合せから不良原因を推論して診断結果を出し、か
つ診断ルールで得られる診断結果に対する確実度と不良
事象の度合いとから診断結果の影響度をオペレータとの
対話形式で推論する構成としたので、エキスパートでな
い初心者でも不良事象の種類及びその度合いから不良原
因が分ってこの原因事象に対する対策が取れる。そして
、その診断も各種プラスチック材料別に直ぐにかつ確実
に表示出力できる。従って、射出成形機を熟知せずかつ
成型条件の雌しいエンジニアリングプラスチック等でも
容易に最適な成型条件を射出成型機に設定することがで
き、かつわざわざエキスパートを育成しなくてもすむ。In this way, in the above-mentioned embodiment, the inference unit 26 infers the cause of the defect from the defective event and the combination of the defective events according to the diagnostic rules stored in the knowledge base 25 based on the defective event of the molded product 11 and its degree, and makes a diagnosis. The configuration is such that the influence of the diagnosis result is inferred in an interactive manner with the operator based on the certainty of the diagnosis result obtained by the diagnosis rule and the degree of defective events, so even beginners who are not experts can understand the type of defective event and the degree of influence of the defective event. The cause of the failure can be determined from the degree of occurrence, and countermeasures can be taken to deal with this cause event. The diagnosis can also be immediately and reliably displayed and output for each type of plastic material. Therefore, it is possible to easily set the optimum molding conditions in the injection molding machine even for engineering plastics, etc., which require poor molding conditions and are not familiar with injection molding machines, and there is no need to take the trouble of training experts.
なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。例えば、各
規模のコンピュータやエンジニアリングワークステーシ
ョン(EWS)を使用してCACIシステムやCAεシ
ステムと接続して各成形品の形状データを知識ベースに
蓄積させ、これによってモールドフロー解析システム等
との間でデータ交換を行なうようにしたり、不良事象が
入力された場合に形状データと各種プラスチック材料に
対する材料データとから最適な原因事象を推論するよう
に構成してもよい。Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, computers and engineering workstations (EWS) of various scales can be used to connect with CACI and CAε systems to accumulate shape data for each molded product in a knowledge base, which can be used to communicate with mold flow analysis systems, etc. The configuration may be such that data is exchanged, or when a defective event is input, an optimal causal event is inferred from shape data and material data for various plastic materials.
[発明の効果コ
以上詳記したように本発明によれば、成形条件の最適化
を経験が少なくても確実かつ容易にできる射出成形支援
エキスパートシステムを提供できる。[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide an injection molding support expert system that can reliably and easily optimize molding conditions even with little experience.
第1図は本発明に係わる射出成形支援エキスパートシス
テムの一実施例を示す全体構成図、第2図ないし第5図
は同システムの知識ベースに蓄積された各データ内容を
示す模式図、第6図はスクリュ一式射出成形機の構成図
である。
11・・・成形品、20・・・キーボード、21・・・
入出力部、22・・・主tllJI11部、23・・・
メモリ、24・・・推論システム、25・・・知識ベー
ス、26・・・推論部、28・・・CRTディスプレイ
。
出願人代理人 弁理士 鈴江武彦
第2図
第3図 第4図
第5図FIG. 1 is an overall configuration diagram showing one embodiment of an injection molding support expert system according to the present invention, FIGS. 2 to 5 are schematic diagrams showing the contents of each data accumulated in the knowledge base of the system, and FIG. The figure is a configuration diagram of a complete screw injection molding machine. 11... Molded product, 20... Keyboard, 21...
Input/output section, 22... Main tllJI 11 section, 23...
Memory, 24... Reasoning system, 25... Knowledge base, 26... Reasoning unit, 28... CRT display. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
ムにおいて、前記射出成形機で成形された成形品の不良
事象及びこの不良事象の度合いを入力する入力手段と、
少なくとも射出成形用の各種プラスチック材料別に不良
事象データ、原因事象データ並びにこの不良事象データ
及びこの不良事象データの組合わせ別の診断ルールデー
タとが蓄積されるとともにこれら診断ルールデータで得
られる診断結果に対する確実度が蓄積された知識ベース
と、前記入力手段によつて入力された不良事象及びその
度合いを受けて前記知識ベースの診断ルールデータに従
って前記不良事象に対する前記原因事象の診断結果及び
この診断結果の影響度を推論する推論部とを具備したこ
とを特徴とする射出成形支援エキスパートシステム。In an injection molding support expert system that supports an injection molding machine, an input means for inputting a defective event of a molded product molded by the injection molding machine and the degree of the defective event;
At least, defective event data, cause event data, and diagnostic rule data for each combination of the defective event data and the combinations of the defective event data are accumulated for each type of plastic material for injection molding, and the diagnostic results obtained from these diagnostic rule data are In response to the knowledge base in which the degree of certainty is accumulated, and the defective event and its degree inputted by the input means, the diagnosis result of the cause event for the defective event and the diagnosis result are determined according to the diagnostic rule data of the knowledge base. An injection molding support expert system characterized by comprising an inference section for inferring the degree of influence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4295287A JPS63209917A (en) | 1987-02-27 | 1987-02-27 | Injection molding support expert method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4295287A JPS63209917A (en) | 1987-02-27 | 1987-02-27 | Injection molding support expert method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63209917A true JPS63209917A (en) | 1988-08-31 |
Family
ID=12650357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4295287A Pending JPS63209917A (en) | 1987-02-27 | 1987-02-27 | Injection molding support expert method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63209917A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02128824A (en) * | 1988-11-09 | 1990-05-17 | Toshiba Mach Co Ltd | Optimum molding condition setting machine for injection molding machine |
JPH02143825A (en) * | 1988-11-25 | 1990-06-01 | Fanuc Ltd | On-line ai controlling system of injection molder |
JPH02165928A (en) * | 1988-12-21 | 1990-06-26 | Toshiba Mach Co Ltd | Optimization control system of molding condition in injection molding machine |
US4975865A (en) * | 1989-05-31 | 1990-12-04 | Mitech Corporation | Method and apparatus for real-time control |
WO1991008097A1 (en) * | 1989-11-24 | 1991-06-13 | Fanuc Ltd | Method of correcting defective molding in injection molding machine |
WO1991018730A1 (en) * | 1990-05-31 | 1991-12-12 | Kabushiki Kaisha Komatsu Seisakusho | Method of retrieving conditions for molding using expert system |
JPH0416322A (en) * | 1990-05-10 | 1992-01-21 | Fanuc Ltd | Method for setting molding condition |
WO1992009417A1 (en) * | 1990-11-30 | 1992-06-11 | Fanuc Ltd | Method of determining conditions for injection molding |
JPH04209004A (en) * | 1990-12-03 | 1992-07-30 | Toyo Mach & Metal Co Ltd | Control method for injection molding machine |
JPH07112472A (en) * | 1993-10-20 | 1995-05-02 | Nissei Plastics Ind Co | Method and apparatus for adjusting molding condition of injection molding machine |
CN1851715B (en) | 2005-10-18 | 2010-10-06 | 宁波海太塑料机械有限公司 | Intelligent repair method of injection molding during plastic injection process and injection molding machine |
WO2014076738A1 (en) * | 2012-11-16 | 2014-05-22 | 安井インターテック株式会社 | Injection molding device and control method therefor |
US9239938B2 (en) | 2008-11-05 | 2016-01-19 | Red E Innovations, Llc | Data holder, system and method |
WO2019182145A1 (en) * | 2018-03-23 | 2019-09-26 | 株式会社日本製鋼所 | Injection molding machine system |
JP2023018475A (en) * | 2021-07-27 | 2023-02-08 | 株式会社日本製鋼所 | DATA SET CREATION METHOD, LEARNING MODEL GENERATION METHOD, COMPUTER PROGRAM AND DATA SET CREATION DEVICE |
-
1987
- 1987-02-27 JP JP4295287A patent/JPS63209917A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0368300A3 (en) * | 1988-11-09 | 1991-07-17 | Toshiba Machine Company Limited | Apparatus for setting molding conditions in an injection molding machine |
JPH02128824A (en) * | 1988-11-09 | 1990-05-17 | Toshiba Mach Co Ltd | Optimum molding condition setting machine for injection molding machine |
JPH02143825A (en) * | 1988-11-25 | 1990-06-01 | Fanuc Ltd | On-line ai controlling system of injection molder |
JPH02165928A (en) * | 1988-12-21 | 1990-06-26 | Toshiba Mach Co Ltd | Optimization control system of molding condition in injection molding machine |
US4975865A (en) * | 1989-05-31 | 1990-12-04 | Mitech Corporation | Method and apparatus for real-time control |
US5225122A (en) * | 1989-11-24 | 1993-07-06 | Fanuc Ltd. | Method for taking countermeasures against faulty molding in an injection molding machine |
WO1991008097A1 (en) * | 1989-11-24 | 1991-06-13 | Fanuc Ltd | Method of correcting defective molding in injection molding machine |
JPH0416322A (en) * | 1990-05-10 | 1992-01-21 | Fanuc Ltd | Method for setting molding condition |
WO1991018730A1 (en) * | 1990-05-31 | 1991-12-12 | Kabushiki Kaisha Komatsu Seisakusho | Method of retrieving conditions for molding using expert system |
US5350547A (en) * | 1990-05-31 | 1994-09-27 | Kabushiki Kaisha Komatsu Seisakusho | Method of retrieving conditions for molding using expert system |
WO1992009417A1 (en) * | 1990-11-30 | 1992-06-11 | Fanuc Ltd | Method of determining conditions for injection molding |
US5275768A (en) * | 1990-11-30 | 1994-01-04 | Fanuc Ltd. | Injection molding condition setting method |
JPH04209004A (en) * | 1990-12-03 | 1992-07-30 | Toyo Mach & Metal Co Ltd | Control method for injection molding machine |
JPH07112472A (en) * | 1993-10-20 | 1995-05-02 | Nissei Plastics Ind Co | Method and apparatus for adjusting molding condition of injection molding machine |
CN1851715B (en) | 2005-10-18 | 2010-10-06 | 宁波海太塑料机械有限公司 | Intelligent repair method of injection molding during plastic injection process and injection molding machine |
US9239938B2 (en) | 2008-11-05 | 2016-01-19 | Red E Innovations, Llc | Data holder, system and method |
WO2014076738A1 (en) * | 2012-11-16 | 2014-05-22 | 安井インターテック株式会社 | Injection molding device and control method therefor |
WO2019182145A1 (en) * | 2018-03-23 | 2019-09-26 | 株式会社日本製鋼所 | Injection molding machine system |
JP2019166702A (en) * | 2018-03-23 | 2019-10-03 | 株式会社日本製鋼所 | Injection molding machine system that adjusts molding conditions by machine learning device |
CN111886121A (en) * | 2018-03-23 | 2020-11-03 | 株式会社日本制钢所 | Injection Molding Machine System |
US12175373B2 (en) | 2018-03-23 | 2024-12-24 | The Japan Steel Works, Ltd. | Injection molding machine system |
JP2023018475A (en) * | 2021-07-27 | 2023-02-08 | 株式会社日本製鋼所 | DATA SET CREATION METHOD, LEARNING MODEL GENERATION METHOD, COMPUTER PROGRAM AND DATA SET CREATION DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63209917A (en) | Injection molding support expert method | |
Chen et al. | Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding | |
KR960013063B1 (en) | Optimum molding condition setting system for injection molding machine | |
EP0455820B1 (en) | Method of correcting defective molding in injection molding machine | |
US5135688A (en) | Fuzzy inference thermocontrol method for an injection molding machine with a plurality of means for heating or cooling | |
JP2767320B2 (en) | Injection molding machine molding condition setting method | |
JPH01244819A (en) | Molding condition recording device of injection molding machine | |
US20060224540A1 (en) | Control apparatus for injection molding machine | |
US4823274A (en) | Injection molding machine which allows process monitoring | |
US20200103862A1 (en) | Deterioration determining apparatus and deterioration determining system | |
JPH0549453B2 (en) | ||
US20020019674A1 (en) | Intelligent control method for injection machine | |
JPH02143825A (en) | On-line ai controlling system of injection molder | |
CN110809510A (en) | Screw shape estimation device, screw shape estimation method, and screw shape estimation program | |
CN110248794B (en) | Auxiliary method and device for setting molding conditions | |
CN114846482A (en) | Operation amount determination device, molding device system, molding machine, computer program, operation amount determination method, and state display device | |
CN117140894A (en) | Digital twin-based extrusion and injection integrated process control and product defect avoidance system | |
CN102632598A (en) | Method and system employing flow simulation for improving material delivery in lens manufacturing | |
CN116171216A (en) | Injection molding assist system and method | |
CN117157179A (en) | Injection molding system | |
US5028365A (en) | Positioning method for an electrically-operated injection molding machine | |
CN114714602A (en) | Method for monitoring abnormal pressure of mold cavity of bottle blowing device | |
Kumbakonam et al. | Intelligent Manufacturing Process Tool For Plastic Injection Molding | |
JP7585748B2 (en) | Anomaly detection system, anomaly detection device, anomaly detection method, program, and trained model | |
JPH07205241A (en) | Method for judging quality of molded products by analysis of molten material flow |