JPS6320637B2 - - Google Patents
Info
- Publication number
- JPS6320637B2 JPS6320637B2 JP54163250A JP16325079A JPS6320637B2 JP S6320637 B2 JPS6320637 B2 JP S6320637B2 JP 54163250 A JP54163250 A JP 54163250A JP 16325079 A JP16325079 A JP 16325079A JP S6320637 B2 JPS6320637 B2 JP S6320637B2
- Authority
- JP
- Japan
- Prior art keywords
- hole
- laser
- laser beam
- coating layer
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011247 coating layer Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000005553 drilling Methods 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
Description
【発明の詳細な説明】
本発明はレーザによる極細孔の加工方法の改良
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for processing ultra-fine holes using a laser.
従来YAG、ルビー等のレーザにより鉄鋼材料
等の被加工物に微細穴あけを行う場合、第1図に
示す如くパルス状(間欠的に発生する)のレーザ
ビーム1を凸レンズ2等により集束し被加工物3
に照射する。レーザビーム焦点4は被加工物3の
表面に設定され焦点におけるレーザビームパワー
密度は極めて高く(約107W/cm2以上)なること
から被加工物は瞬時のうちに溶融蒸発し穿孔現象
が進行する。 Conventionally, when drilling fine holes in a workpiece such as a steel material using a laser such as YAG or ruby, a pulsed (intermittently generated) laser beam 1 is focused by a convex lens 2, etc., as shown in Figure 1. Thing 3
irradiate. The laser beam focus 4 is set on the surface of the workpiece 3, and the laser beam power density at the focus is extremely high (approximately 10 7 W/cm 2 or more), so the workpiece instantly melts and evaporates, causing the perforation phenomenon. proceed.
なお被加工物3に貫通孔を形成するためには上
記パルス上のレーザビームを1〜数10回照射する
必要がある。 Note that in order to form a through hole in the workpiece 3, it is necessary to irradiate the above-mentioned pulsed laser beam one to several dozen times.
而して従来法においては鉄鋼等の部材に穴あけ
を行う場合、レーザビーム焦点径を0.1mmにする
ことが限度であり、加工穴径は必然的に0.1mm以
上となる。従つて穴径が0.1mm以下の極細穴に加
工することが極めて困難であつた。 In the conventional method, when drilling a hole in a member such as steel, the laser beam focal diameter is limited to 0.1 mm, and the diameter of the machined hole is inevitably 0.1 mm or more. Therefore, it has been extremely difficult to process ultra-fine holes with a hole diameter of 0.1 mm or less.
本発明はかかる穴径において0.1mm以下の極細
径の穴をあける加工方法を見出したものである。
即ち本発明方法はレーザビームによりレーザビー
ム径より小さな細孔を穿孔する加工方法におい
て、被加工物の表面にレーザビームに対し反射率
の高い物質を薄く被覆してレーザビーム反射被覆
層を形成し、ついでこの被覆層に所望径の下穴を
けた後、レーザパルスを当該下穴とほぼ等径の細
孔を穿孔すると共に穴あけ加工初期での穴深さが
浅いときはレーザパルスを低出力にし、穴加工が
進み穴の深さが深くなるに伴いレーザパルスを高
出力にし且上記被覆層を冷却しつつ行うことを特
徴とするものである。 The present invention has discovered a processing method for making a hole with an extremely small diameter of 0.1 mm or less.
That is, the method of the present invention is a processing method in which a pore smaller than the laser beam diameter is bored by a laser beam, and the surface of the workpiece is thinly coated with a substance that has a high reflectance to the laser beam to form a laser beam reflective coating layer. Then, after drilling a pilot hole of the desired diameter in this coating layer, a laser pulse is applied to drill a small hole with approximately the same diameter as the pilot hole, and when the hole depth is shallow at the beginning of the drilling process, the laser pulse is lowered in output. This method is characterized in that as hole processing progresses and the depth of the hole becomes deeper, the output of the laser pulse is increased and the coating layer is cooled.
本発明を第2図により詳細に説明する。 The present invention will be explained in detail with reference to FIG.
第2図Aに示す如く被加工物3の表面にレーザ
ビーム反射率の高い物質例えばアルミニウム、銅
等の0.05〜0.1mm程度の薄い被覆層5例えばメツ
キ、蒸着、箔を施す。この層に下穴6をあける。
なお下穴の穴径は所望の加工穴径(0.1mm以下)
と同寸法とする。 As shown in FIG. 2A, a thin coating layer 5 of about 0.05 to 0.1 mm, such as plating, vapor deposition, or foiling, is applied to the surface of the workpiece 3 using a material having a high laser beam reflectance, such as aluminum or copper. Drill a pilot hole 6 in this layer.
The hole diameter of the pilot hole is the desired machining hole diameter (0.1 mm or less)
Same dimensions as.
この極細径(0.1mm以下)の穴あけ方法として
は次の方法に行うものである。 The following method is used to make holes with this extremely small diameter (0.1 mm or less).
(1) フオトレジスト技術により被覆形成工程で下
穴を形成することにより数μm程度の穴をあけ
ることができる。(1) By forming pilot holes in the coating formation process using photoresist technology, holes of several micrometers can be made.
(2) 微小出力の放電加工、電子ビーム加工等によ
り被覆部のみを穿孔する。なおこれらの微細加
工手段は薄膜に対して0.1mm以下の穴径の穴を
あけることは容易である。(2) Only the coating is perforated using micro-power electrical discharge machining, electron beam machining, etc. Note that these microfabrication means can easily make holes with a diameter of 0.1 mm or less in a thin film.
上記におけるフオトレジスト技術を第3図によ
りその工程を説明する。 The steps of the photoresist technology mentioned above will be explained with reference to FIG.
(A) 被加工物3にフオトレジスト8(感光乳剤)
を塗布する。(A) Photoresist 8 (photosensitive emulsion) on workpiece 3
Apply.
(B) 上記フオトレジスト8に対し紫外線等9を照
射する。紫外線9の照射範囲は後に必要な穴径
に合致させる。この光線はフオトレジスト8を
感光させるものとする。(B) The above photoresist 8 is irradiated with ultraviolet light or the like 9. The irradiation range of the ultraviolet rays 9 is adjusted to match the hole diameter required later. It is assumed that this light beam exposes the photoresist 8.
(C) 上記光線の照射範囲内のフオトレジスト8′
は感光変質し現像液に対し不溶性となる
(D) フオトレジスト8′以外のフオトレジスト8
を現像液により除去する。(C) Photoresist 8' within the irradiation range of the above light beam
(D) Photoresist 8 other than Photoresist 8' undergoes photosensitive alteration and becomes insoluble in the developer.
is removed using a developer.
(E) 上記により得られた被加工物3に対し金属等
5をメツキ、蒸着等により付着させる。この金
属はレーザ反射率の高い銅、アルミニウム、金
とする。(E) A metal etc. 5 is attached to the workpiece 3 obtained above by plating, vapor deposition, etc. This metal is copper, aluminum, or gold, which has a high laser reflectance.
(F) 上記により得られた被加工物3をシンナー等
で洗浄すればフオトレジスト8′は洗いおとさ
れ、最終的には被加工物はレーザ反射性の被覆
層5で覆われ、且つレーザ穴あけ加工に必要な
下穴を形成する。(F) If the workpiece 3 obtained above is washed with thinner or the like, the photoresist 8' will be washed away, and finally the workpiece will be covered with a laser-reflective coating layer 5 and will be exposed to the laser beam. Form the pilot hole required for drilling.
次いで上記の下穴6に対し第2図Bに示す如く
レーザパルス1を照射する。 Next, the prepared hole 6 is irradiated with a laser pulse 1 as shown in FIG. 2B.
レーザビーム1の焦点は被加工物表面に設定し
ても現在の装置、技術、光学技術では焦点径は
μ1mm以上とする。 Even if the focus of the laser beam 1 is set on the surface of the workpiece, current equipment, technology, and optical technology require a focal diameter of 1 mm or more.
従つてレーザビーム1の内下穴を通つて被加工
物3に達するものは一部であり、それ以外はレー
ザ反射被覆層5により反射される。又被加工物か
ら見れば下穴を通り抜けたレーザビームのみが熱
源となるのでレーザビームの焦点径を0.1mm以下
にしたのと等価であり、従来のレーザビーム(焦
点径0.1mm)では不可能であつた径0.1mm以下の極
細径の穴加工が可能となる。この場合レーザ反射
被覆層は穴加工が終了するまで溶融等により損傷
をうけてはならない。このことは直接のレーザビ
ーム照射に対しては被覆層は反射率が高いため溶
融のおそれはないが、被加工物母材の穴あけ加工
の際に発生する熱で溶融する可能性がある。この
状態を示すと第4図の如くとなり、斜線部7が被
加工物母材溶融域並にその熱により溶融したレー
ザ反射被覆層である。 Therefore, only a portion of the laser beam 1 reaches the workpiece 3 through the inner pilot hole, and the rest is reflected by the laser reflective coating layer 5. Also, from the perspective of the workpiece, only the laser beam that passes through the pilot hole becomes the heat source, so this is equivalent to reducing the focal diameter of the laser beam to 0.1 mm or less, which is impossible with conventional laser beams (focal diameter of 0.1 mm). It is now possible to drill holes with extremely small diameters of 0.1 mm or less. In this case, the laser reflective coating layer must not be damaged by melting or the like until the drilling is completed. This means that the coating layer has a high reflectance when exposed to direct laser beam irradiation, so there is no risk of melting, but there is a possibility that the coating layer will melt due to the heat generated during drilling of the base material of the workpiece. This state is shown in FIG. 4, where the shaded area 7 is the melted region of the base material of the workpiece and the laser reflective coating layer melted by the heat thereof.
従つて、この被覆層の溶融を防ぐために次の方
法を行うものである。 Therefore, the following method is used to prevent this coating layer from melting.
(1) 穴あけ加工の初期において穴の深さが浅いと
きはレーザパルスの出力を低出力と、穴あけ加
工が進行し穴の深さが深くなればレーザパルス
の出力を高出力とする。(1) At the beginning of drilling, when the depth of the hole is shallow, the output of the laser pulse is set to low, and as the drilling progresses and the depth of the hole becomes deeper, the output of the laser pulse is set to high.
即ち穴深さが深いときは第5図に示す如く被
加工物母材の溶融域7も被加工物深部となり、
被覆層5がこの領域7の影響で溶融するおそれ
はない。そのためレーザパルスを高出力にして
もよい。逆に穴の深さが浅いときに第4図の如
き状態となり、これをさけるためにレーザパル
スを低出力にし母材溶融域7を少量にとどめ被
覆層5が溶融域7の影響で溶融しないようにす
るものである。 That is, when the hole depth is deep, the molten region 7 of the workpiece base material also becomes the deep part of the workpiece, as shown in FIG.
There is no possibility that the covering layer 5 will melt due to the influence of this region 7. Therefore, the laser pulse may be made high in output. On the other hand, when the depth of the hole is shallow, a situation as shown in Fig. 4 will occur, and in order to avoid this, the laser pulse is set to low output and the base metal melting area 7 is kept small to prevent the coating layer 5 from melting due to the influence of the melting area 7. It is intended to do so.
(2) 又被覆層を穴あけ加工中Ar等による空冷又
は水冷等により冷却して、上記における溶融す
るのを防止する。(2) Also, during the drilling process, the coating layer is cooled by air or water using Ar or the like to prevent the above melting.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
実施例
板厚2mmの炭素鋼板の表面に0.05mmの厚さに銅
メツキを施しレーザ反射被覆層を形成する。次い
で該メツキ被覆層の所望位置に前記のフオトレジ
スト技術により0.05mmφの穴を形成する。次いで
この穴部に低出力(0.2J)のYAGのレーザパル
スを3発照射する。この工程により穴の深さは
0.5mm程度に達するので以後高出力(1.0J)のレ
ーザパルスを5発照射し貫通孔をあけた。なお上
記においてレーザ穴あけ加工中は銅メツキ部に冷
却ガスとしてArを吹きつけ銅メツキ部の溶融を
防止した。Example A laser reflective coating layer was formed by applying copper plating to a thickness of 0.05 mm on the surface of a carbon steel plate having a thickness of 2 mm. Next, holes of 0.05 mm diameter are formed at desired positions in the plating coating layer using the photoresist technique described above. Next, this hole is irradiated with three low-power (0.2 J) YAG laser pulses. This process reduces the depth of the hole.
Since it reached approximately 0.5 mm, we irradiated it with five high-power (1.0 J) laser pulses to make a through hole. Note that during the laser drilling process in the above, Ar was blown onto the copper-plated part as a cooling gas to prevent the copper-plated part from melting.
斯くして得られた貫通孔の穴径は穴の上部から
穴の下部まで0.05mm±0.005mmの範囲であり、極
めて微細にして且高精度のものであつた。 The diameter of the through-hole thus obtained was in the range of 0.05 mm±0.005 mm from the top of the hole to the bottom of the hole, and was extremely fine and highly accurate.
以上詳述した如く本発明方法によれば極細穴の
ものを高精度に得ることが出来うるためエンジン
部品、油圧部品の穴あけ加工に適用し極めて有用
なものである。 As detailed above, according to the method of the present invention, extremely fine holes can be obtained with high precision, and therefore it is extremely useful when applied to drilling of engine parts and hydraulic parts.
第1図は従来方法における穴あけ加工法の概略
説明図、第2図は本発明方法による穴あけ加工の
概略説明図、第3図はフオトレジスト技術の工程
説明図、第4図及び第5図は本発明方法による被
覆層の溶融状態説明図である。
1……レーザビーム、2……凸レンズ、3……
被加工物、4……レーザビーム焦点、5……被覆
層、6……下穴、7……溶融物。
Fig. 1 is a schematic explanatory diagram of the conventional method for drilling, Fig. 2 is a schematic explanatory diagram of the drilling process according to the present invention, Fig. 3 is a process explanatory diagram of the photoresist technology, and Figs. 4 and 5 are FIG. 3 is an explanatory diagram of a melted state of a coating layer obtained by the method of the present invention. 1... Laser beam, 2... Convex lens, 3...
Workpiece, 4... Laser beam focus, 5... Covering layer, 6... Prepared hole, 7... Melt material.
Claims (1)
な細孔を穿孔する加工方法において、金属もしく
は合金からなる被加工物の表面にレーザビームに
対して反射率の高いアルミニウム又は銅を薄く被
覆してレーザビーム反射被覆層を形成すると同時
もしくは被覆層を形成した後に該被覆層に所望径
の下穴をあけ、ついでレーザパルスと当該下穴に
複数回照射して前記被加工物に上記下穴とほぼ等
径の細孔を穿孔すると共に穴あけ加工初期での穴
深さが浅いときはレーザパルスを低出力にし、穴
加工が進み穴深さが深くになるに伴いレーザパル
スを高出力にし且上記被覆層を冷却しつつ行なう
ことを特徴とするレーザによる極細孔の加工方
法。1 In a processing method that uses a laser beam to drill a pore smaller than the laser beam diameter, the surface of a workpiece made of metal or alloy is thinly coated with aluminum or copper, which has a high reflectance to the laser beam, to provide a laser beam reflective coating. Simultaneously with forming the layer or after forming the coating layer, a pilot hole of a desired diameter is made in the coating layer, and then the pilot hole is irradiated with a laser pulse multiple times to form a pilot hole with approximately the same diameter as the pilot hole in the workpiece. While drilling a small hole, the output of the laser pulse is lowered when the hole depth is shallow at the beginning of the drilling process, and as the hole depth progresses and the hole depth becomes deeper, the output of the laser pulse is increased and the above-mentioned coating layer is cooled. A method for processing ultra-fine holes using a laser, which is characterized in that the processing is performed while
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16325079A JPS5686693A (en) | 1979-12-15 | 1979-12-15 | Working method for extremely narrow hole by means of laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16325079A JPS5686693A (en) | 1979-12-15 | 1979-12-15 | Working method for extremely narrow hole by means of laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5686693A JPS5686693A (en) | 1981-07-14 |
JPS6320637B2 true JPS6320637B2 (en) | 1988-04-28 |
Family
ID=15770204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16325079A Granted JPS5686693A (en) | 1979-12-15 | 1979-12-15 | Working method for extremely narrow hole by means of laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5686693A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60180687A (en) * | 1984-02-28 | 1985-09-14 | Sony Corp | Working method of printed circuit board |
JPS6174791A (en) * | 1984-09-19 | 1986-04-17 | Hitachi Ltd | How to form through holes in a substrate |
JPS6195792A (en) * | 1984-10-17 | 1986-05-14 | Hitachi Ltd | Printed wiring board manufacturing method |
-
1979
- 1979-12-15 JP JP16325079A patent/JPS5686693A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5686693A (en) | 1981-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6433303B1 (en) | Method and apparatus using laser pulses to make an array of microcavity holes | |
US4522656A (en) | Method of making reference surface markings on semiconductor wafers by laser beam | |
JPH0810970A (en) | Method and equipment of laser beam machining | |
EP0427737B1 (en) | Method of micro-working the surface of a workpiece while using a laser beam | |
JP2004154813A (en) | Laser processing method and apparatus | |
JP2020108904A (en) | Laser processing method for printed circuit board and laser processing machine for printed circuit board | |
JPH11267867A (en) | Laser processing method and apparatus | |
JPS6320637B2 (en) | ||
JP2005021964A (en) | Laser ablation processing method and apparatus | |
JPS60133992A (en) | Piercing device for printed circuit board | |
JPS5913588A (en) | Laser working device | |
JPH07214360A (en) | Laser beam machining | |
JPS5937348Y2 (en) | Laser processing equipment | |
JP2000153384A (en) | Method for machining blind hole by co2 laser | |
JP2618730B2 (en) | Laser processing method and laser processing apparatus | |
JPH0428490A (en) | Laser drilling method for ceramics | |
JP2003236690A (en) | Laser beam machining method | |
JPS62218587A (en) | Selective etching method utilizing laser | |
JP2004098121A (en) | Method and apparatus for laser beam machining | |
JPH11197871A (en) | Visible pulsed laser machining method and device therefor | |
JPS5940552B2 (en) | Laser processing method | |
JP2004202517A (en) | Aberration removing sheet, and laser beam machining method using the same | |
JPH03221286A (en) | Method and device for laser beam machining | |
JPH05237681A (en) | Laser boring device | |
JPS63289990A (en) | Manufacture of printed wiring board |