[go: up one dir, main page]

JPS63205407A - Pressure container storing type temperature difference driving generator - Google Patents

Pressure container storing type temperature difference driving generator

Info

Publication number
JPS63205407A
JPS63205407A JP3724787A JP3724787A JPS63205407A JP S63205407 A JPS63205407 A JP S63205407A JP 3724787 A JP3724787 A JP 3724787A JP 3724787 A JP3724787 A JP 3724787A JP S63205407 A JPS63205407 A JP S63205407A
Authority
JP
Japan
Prior art keywords
temperature difference
generator
engine
heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3724787A
Other languages
Japanese (ja)
Other versions
JPH05525B2 (en
Inventor
Naoji Isshiki
一色 尚次
Shigeto Okano
重遠 岡野
Shiro Mishima
史朗 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA KOSAN KK
Original Assignee
DAIWA KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA KOSAN KK filed Critical DAIWA KOSAN KK
Priority to JP3724787A priority Critical patent/JPS63205407A/en
Priority to PCT/JP1987/000316 priority patent/WO1987007360A1/en
Priority to US07/144,922 priority patent/US4876856A/en
Priority to AU73962/87A priority patent/AU7396287A/en
Priority to EP19870903411 priority patent/EP0272327A4/en
Publication of JPS63205407A publication Critical patent/JPS63205407A/en
Priority to US07/260,471 priority patent/US4920750A/en
Publication of JPH05525B2 publication Critical patent/JPH05525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make it possible to generate power at a high efficiency by driving a generator utilizing the temperature difference between the positions of placing a radiator and an evaporator, and moreover, increasing the temperature difference with the heat generated by an engine to drive the other generator or the like which is used together with this generator. CONSTITUTION:A radiator 11 exposed in the outdoor cool air, an evaporator 13 to exchange heat with a constant temperature heat source such as a solar heat collector 18 through a regenerative jar 8, and a pressure container 30 accomodating a temperature difference engine 12 are connected in a closed circuit form by a main thermal medium circulation route 14. The temperature difference engine 12 is made into a turbine structure, and, while the thermal medium inlet is opened in the pressure container 30, its injection port is connected to the circulation route 14, and a generator 4 is connected to the output shaft of the temperature difference engine 12. Furthermore, a diesel engine 9 to drive the other generator is furnished as an external heat source unit, and the high temperature cooling water is circulated through a heat exchanger 21, as weel as the exhaust gas is released through a waste gas exchanger 19 and the like, and the water in the regenerator jar 8 is heated by these heat exchangers 19 and 21.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低温熱エネルギを利用して発電を行う温度差駆
動ジェネレータに関し、特に発電機および温度差エンジ
ンを圧力容器内に収納し、ディーゼルエンジン、ガスエ
ンジン等の内燃機関および前記温度差エンジンを組み合
せて熱エネルギの有効利用を図りつつ発電機を駆動する
ようにした圧力容器収納型温度差駆動ジェネレータに関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a temperature difference drive generator that generates electricity using low-temperature thermal energy. The present invention relates to a pressure vessel-housed temperature difference drive generator which combines an internal combustion engine such as a gas engine and the temperature difference engine to drive a generator while effectively utilizing thermal energy.

(従来技術) 従来、ガスタービンやディーゼルエンジン等によって発
電機を回し、ディーゼルエンジン等の排熱を他の加熱装
置等の熱源として利用し、これによって電気と熱を同時
に供給する熱併給発電システムが知られている。この場
合、ディーゼルエンジンを駆動するのに用いた燃料が、
一部は電気エネルギに、他の一部は熱エネルギに変化し
たものであり、直接発電機を回転させるのはあくまでデ
ィーゼルエンジンであり、しかもその排熱を再び発電の
エネルギとして利用することは行われていない。
(Prior art) Conventionally, a combined heat and power generation system uses a gas turbine, diesel engine, etc. to turn a generator, uses the exhaust heat from the diesel engine, etc. as a heat source for other heating devices, etc., and thereby supplies electricity and heat at the same time. Are known. In this case, the fuel used to drive the diesel engine is
Some of it is converted into electrical energy, and the other part is converted into thermal energy, and it is only a diesel engine that directly rotates a generator, and the exhaust heat cannot be used again as energy for power generation. Not known.

(発明が解決しようとする問題点) 上述した従来から知られている熱併給発電システムは、
電気と熱を同時に取り出すシステムであり、燃料等の一
次エネルギ源の利用効率を高めるものであるが、発電に
限ってみればディーゼルエンジンの能力で発電がなされ
るために、発電効率はディーゼルエンジンの効率を超え
ることはできず、排熱を利用することなく捨てていた従
来の単独の発電システムと変らない。
(Problems to be solved by the invention) The conventionally known cogeneration system described above is
It is a system that extracts electricity and heat at the same time, and increases the efficiency of using primary energy sources such as fuel.However, when it comes to power generation, it is generated using the capacity of a diesel engine, so the power generation efficiency is lower than that of a diesel engine. It is no different from conventional independent power generation systems, which cannot exceed efficiency and discard waste heat without utilizing it.

本発明は低温の熱エネルギ、ディーゼルエンジンの回転
駆動エネルギ、ディーゼルエンジンの発生熱エネルギ、
その他任意の熱源装置で得られる熱エネルギを発電のエ
ネルギとして利用し、高効率の発電を行い得るようにし
、しかも前記温度差エンジンを特別に耐圧構造とする必
要がなく、その潤滑も効率より得、全体としてコンパク
トに構成し得る高効率の温度差駆動ジェネレータを提供
することを目的とする。
The present invention provides low-temperature thermal energy, rotational drive energy of diesel engines, thermal energy generated by diesel engines,
Thermal energy obtained from any other heat source device can be used as energy for power generation to enable highly efficient power generation, and there is no need for the temperature difference engine to have a special pressure-resistant structure, and its lubrication is also more efficient. The present invention aims to provide a highly efficient temperature difference drive generator that can be constructed compactly as a whole.

(問題点を解決するための手段) 本発明に係る温度差駆動ジェネレータは、放熱器と蒸発
器を結ぶ主熱媒体循環路に温度差エンジンを設け、前記
温度差エンジンの出力軸に発電機を取り付け、前記温度
差エンジン、前記発電機、および該温度差エンジンの潤
滑油ポンプを1つの圧力容器内に収納し、前記温度差エ
ンジンの熱媒体導入口を前記圧力容器内に開口せしめる
とともにその吐出口を前記熱媒体循環路に連結し、前記
温度差エンジンに導入される熱媒体を前記主熱媒体循環
路から前記圧力容器内に充満させ、内燃機関の運転によ
る生成熱およびその他の外部熱源装置の集熱を副熱媒体
循環路を介して前記蒸発器へ供給し、前記発電機からの
出力電流を前記圧力容器に取り付けた電源プラグを介し
て取り出すようにしたものである。
(Means for Solving the Problems) A temperature difference drive generator according to the present invention includes a temperature difference engine provided in the main heat medium circulation path connecting a radiator and an evaporator, and a generator attached to the output shaft of the temperature difference engine. The temperature difference engine, the generator, and the lubricating oil pump of the temperature difference engine are housed in one pressure vessel, and the heat medium inlet of the temperature difference engine is opened in the pressure vessel, and its discharge is An outlet is connected to the heat medium circulation path, and the heat medium introduced into the temperature difference engine is filled into the pressure vessel from the main heat medium circulation path, and the heat generated by the operation of the internal combustion engine and other external heat source devices are The collected heat is supplied to the evaporator via a sub-heat medium circulation path, and the output current from the generator is taken out via a power plug attached to the pressure vessel.

(実施例) 次に、本発明を、図面を参照して実施例につき説明する
(Example) Next, the present invention will be described with reference to the drawings.

第1図は本発明の実施例に係る温度差駆動ジェネレータ
の概略図である。例えば屋外の冷気にさらされる放熱器
11と、蓄熱槽8を介して例えば太陽熱集熱装置9等の
定温度熱源との間で熱交換を行う蒸発器13と、温度差
エンジン12を収容した圧力容器30とが主熱媒体循環
路14によって閉回路状に結ばれ、この主熱媒体循環路
14内に、例えばフロン等の容易に気液変化する主熱媒
体が封入される。主熱媒体循環路14には必要に応じて
ポンプ16が設けられる。前記温度差エンジン12はそ
の熱媒体導入口が圧力容器30内に開口しており、また
その吐出口は主熱媒体循環路14に連結されている。こ
の温度差エンジンは、タービン形式の回転動力機で構成
され、その回転出力軸15は同じ圧力容器30内に収納
された発電機4の駆動軸に連結される。この実施例では
上記発電機とは別の他の発電機あるいは他の熱交換装置
のヒートポンプ等を駆動するためのディーゼルエンジン
9が設置されている。また圧力容器内には後述する如く
温度差エンジン12の潤滑油ポンプが収納されている。
FIG. 1 is a schematic diagram of a temperature difference driven generator according to an embodiment of the present invention. For example, a radiator 11 exposed to outdoor cold air, an evaporator 13 that performs heat exchange between a constant temperature heat source such as a solar heat collector 9 via a heat storage tank 8, and a pressure difference engine 12 are accommodated. The container 30 is connected in a closed circuit by a main heat medium circulation path 14, and a main heat medium that easily changes into gas and liquid, such as fluorocarbon, is sealed in the main heat medium circulation path 14. A pump 16 is provided in the main heat medium circulation path 14 as necessary. The temperature difference engine 12 has a heat medium inlet opening into the pressure vessel 30 and a discharge port connected to the main heat medium circulation path 14 . This temperature difference engine is composed of a turbine-type rotary power machine, and its rotary output shaft 15 is connected to the drive shaft of a generator 4 housed within the same pressure vessel 30. In this embodiment, a diesel engine 9 is installed to drive a generator other than the above generator or a heat pump or the like of another heat exchange device. Further, a lubricating oil pump for the temperature difference engine 12 is housed in the pressure vessel, as will be described later.

10はディーゼルエンジン9に燃料を供給する燃料タン
クである。なお、主熱媒体循環路14を通る熱媒体は圧
力容器30の部分で該容器内に気体状態で充満される。
10 is a fuel tank that supplies fuel to the diesel engine 9. Note that the heat medium passing through the main heat medium circulation path 14 is filled in the pressure vessel 30 in a gaseous state.

第2図は本発明の実施例に係る圧力容器30の内部構造
を示した図である。圧力容器30内に収納された温度差
エンジン12の熱媒体導入口12aは該容器内に開口し
ており、またその熱媒体吐出口12bは該容器の吐出口
30bに吐出管38を介して連結されている。前記主熱
媒体循環路14はこの圧力容器30の熱媒体導入口30
aに連通され、これによって該容器内に熱媒体(気体)
が充満され、温度差エンジンの導入口12aに導入され
て該温度差エンジン12を駆動し、エンジン吐出口12
b1吐出管38、容器吐出口30bを経て主熱媒体循環
路14から放熱器11(第1図)へ送られる。
FIG. 2 is a diagram showing the internal structure of the pressure vessel 30 according to the embodiment of the present invention. A heat medium inlet 12a of the temperature difference engine 12 housed in a pressure vessel 30 opens into the vessel, and a heat medium discharge port 12b thereof is connected to a discharge port 30b of the vessel via a discharge pipe 38. has been done. The main heat medium circulation path 14 is connected to the heat medium inlet 30 of this pressure vessel 30.
a, thereby introducing a heat medium (gas) into the container.
is filled and introduced into the inlet 12a of the temperature difference engine to drive the temperature difference engine 12.
It is sent from the main heat medium circulation path 14 to the radiator 11 (FIG. 1) via the b1 discharge pipe 38 and the container discharge port 30b.

圧力容器30に収容された発電機4からの出力電力線3
2は、圧力容器30に気密にねじ込みで固着されたプラ
グ33から容器外へ引き出される。
Output power line 3 from generator 4 housed in pressure vessel 30
2 is pulled out of the pressure vessel 30 from a plug 33 that is screwed into the pressure vessel 30 in an airtight manner.

圧力容器30内にはさらに、温度差エンジン12および
その出力軸15(容器内で発電機に連結)を潤滑するた
めの潤滑油ポンプ34、潤滑油配管35および油溜め3
6が設けられ、さらに必要に応じて熱媒体(フロン)、
潤滑油の回収口37が設けられる。温度差エンジン12
に導入される熱媒体は高圧の気体となっているが、温度
差エンジン12は圧力容器(例えば20kg/c♂)内
に収容される関係から特別に耐圧構造に構成する必要は
なく、例えば汎用のターボエンジン等を採用することが
できる。温度差エンジン各部の潤滑も、容器内の発電機
4の電力で直接駆動される潤滑油ポンプ34により該容
器内で行われるので、効率のよい良好な潤滑が可能とな
る。
The pressure vessel 30 further includes a lubricant pump 34, a lubricant pipe 35, and an oil reservoir 3 for lubricating the temperature difference engine 12 and its output shaft 15 (connected to the generator within the vessel).
6 is provided, and if necessary, a heat medium (fluorocarbon),
A lubricating oil recovery port 37 is provided. Temperature difference engine 12
The heat medium introduced into the engine is a high-pressure gas, but since the temperature difference engine 12 is housed in a pressure vessel (for example, 20 kg/c♂), it is not necessary to have a special pressure-resistant structure; for example, a general-purpose It is possible to adopt a turbo engine, etc. The various parts of the temperature difference engine are also lubricated within the container by the lubricating oil pump 34 that is directly driven by the electric power of the generator 4 inside the container, so that efficient and good lubrication is possible.

他の発電機あるいは他のヒートポンプを駆動するのに使
われるディーゼルエンジン9の運転による排ガスは、後
述の排熱交換器19および消音器20を経て排出される
。またディーゼルエンジン9の冷却水はエンジン稼働に
より加熱されるが、この加熱冷却水も配管23により後
述の水−水熱交換器21を通って循環する。蓄熱槽8に
は冷水が供給されるが、この冷水はその一部が配管22
によって該蓄熱槽8と前記排熱交換器19との間を循環
し、また一部は前記水−水熱交換器21を通って循環す
る。さらに屋外設置の太陽熱集熱器18と蓄熱槽8との
間も配管24.24’を介して連結され、ポンプ25に
よりこの間を水が循環するように構成されている。これ
らの排熱交換器19、水−水熱交換器21および太陽熱
集熱器18により加熱された蓄熱槽8内の水は、一部は
給油ポンプ26によって取り出され、給油として利用さ
れてもよいが、その大部分は副熱媒体循環路27および
ポンプ29を介して前述の蒸発器13を、前記主熱媒体
循環路14とは別系統で循環するようになっている。
Exhaust gas from the operation of the diesel engine 9 used to drive another generator or another heat pump is discharged through an exhaust heat exchanger 19 and a muffler 20, which will be described later. Further, the cooling water of the diesel engine 9 is heated by engine operation, and this heated cooling water is also circulated through a water-water heat exchanger 21 to be described later through a pipe 23. Cold water is supplied to the heat storage tank 8, and a part of this cold water is connected to the pipe 22.
The water is circulated between the heat storage tank 8 and the waste heat exchanger 19, and a portion thereof is circulated through the water-water heat exchanger 21. Further, the solar heat collector 18 installed outdoors and the heat storage tank 8 are also connected via piping 24, 24', and water is circulated between them by a pump 25. A part of the water in the heat storage tank 8 heated by the waste heat exchanger 19, the water-water heat exchanger 21, and the solar heat collector 18 may be taken out by the oil supply pump 26 and used as oil supply. However, most of the heat medium is circulated through the evaporator 13 through the auxiliary heat medium circulation path 27 and the pump 29 in a separate system from the main heat medium circulation path 14 .

このような構成で、主熱媒体循環系において、放熱器1
1が対面している屋外の冷気と蒸発器13の熱源との間
に成る温度差があると、前記熱源により蒸発器13で気
化した主熱媒体の気体は主熱媒体循環路14から圧力容
器30に導入され、温度差エンジン12を駆動した後、
放熱器11で      !外冷気により液化し、再び
蒸発器13で気化して系内を循環する。温度差エンジン
12の内部は、放熱器11における主熱媒体の気体から
液体への相変化に伴なう体積の収縮による吸引によって
負圧状態になっており、圧力容器30内に充満した気体
状の熱媒体によりタービンのロータを回転せしめ、出力
軸15に回転動力を与える。屋外の冷気が温度低下すれ
ばする程、放熱器11と蒸発器13との間で温度が大き
くなり、循環路14から圧力容器30への気体噴出力は
強く、大きな動力が出力される。この温度差エンジン1
2の動力に  、より発電機4が駆動され、電力が得ら
れる。
With such a configuration, in the main heat medium circulation system, the radiator 1
When there is a temperature difference between the outdoor cold air that 1 faces and the heat source of the evaporator 13, the main heat medium gas vaporized in the evaporator 13 by the heat source is transferred from the main heat medium circulation path 14 to the pressure vessel. 30 and after driving the temperature difference engine 12,
With radiator 11! It is liquefied by outside cold air, vaporized again in the evaporator 13, and circulated within the system. The inside of the temperature difference engine 12 is in a negative pressure state due to the suction caused by the volume contraction accompanying the phase change of the main heat medium from gas to liquid in the radiator 11. The rotor of the turbine is rotated by the heat medium, and rotational power is applied to the output shaft 15. As the temperature of the outdoor cold air decreases, the temperature between the radiator 11 and the evaporator 13 increases, and the gas jetting force from the circulation path 14 to the pressure vessel 30 is strong, and a large amount of power is output. This temperature difference engine 1
The power from 2 drives the generator 4 to obtain electric power.

一方、ディーゼルエンジン9の運転による排熱およびエ
ンジン冷却水の熱は前述の如く熱交換器19.21を介
して蓄熱槽8内の側熱媒体に蓄えられ、副熱媒体循環路
27を介して蒸発器13の熱源となる。ディーゼルエン
ジン9の回転数が上る程、該エンジン9の排熱およびエ
ンジン冷却水の温度が上昇し、結局、放熱器11と蒸発
器13間の温度差が大きくなり、温度差エンジン12の
発電機駆動動力が増大する。
On the other hand, the exhaust heat from the operation of the diesel engine 9 and the heat of the engine cooling water are stored in the side heat medium in the heat storage tank 8 through the heat exchangers 19 and 21 as described above, and are transferred through the auxiliary heat medium circulation path 27. It becomes a heat source for the evaporator 13. As the rotation speed of the diesel engine 9 increases, the exhaust heat of the engine 9 and the temperature of the engine cooling water increase, and eventually the temperature difference between the radiator 11 and the evaporator 13 increases, and the temperature difference between the generator of the engine 12 increases. Drive power increases.

上述の実施例で、建屋内と屋外との間に成る温−8一 度差がある場合には屋外の冷気にさらされる放熱器11
と建屋内に設置される蒸発器13とにより、側熱媒体循
環系がなくても、主熱媒体循環路14内の熱媒体(フロ
ン)は気液変化して循環し、これによって温度差エンジ
ン12が作動し、発電機4により発電がなされる。発電
機4による発電能力が不足するときは、ディーゼルエン
ジン駆動による他の発電機による電力を併せて用いるこ
とができる。ディーゼルエンジンとしては発電機内蔵形
あるいはヒートポンプ内蔵形のものが有効に使用される
In the above embodiment, if there is a temperature difference of -8 degrees between the inside of the building and the outside, the radiator 11 is exposed to the cold air outside.
With the evaporator 13 installed in the building, the heat medium (fluorocarbon) in the main heat medium circulation path 14 changes into gas and liquid and circulates, even without a side heat medium circulation system, and as a result, the temperature difference engine 12 is activated, and the generator 4 generates electricity. When the power generation capacity of the generator 4 is insufficient, electric power from another generator driven by a diesel engine can be used in conjunction. As a diesel engine, one with a built-in generator or a built-in heat pump is effectively used.

(発明の効果) 以上説明したように本発明によれば、放熱器と蒸発器の
設置される場所の温度差を利用して発電機を駆動すると
ともに、併用する他の発電機駆動用あるいはヒートポン
プ駆動用ディーゼルエンジンの発生熱(排ガス、エンジ
ン冷却水)を用いて前記放熱器と蒸発器間の温度差を増
大させるようにしたので、全体として高効率の、エネル
ギの無駄のない発電を行うことができる。温度差エンジ
ンおよび発電機はともに圧力容器内に収納されているの
で設置関係が簡潔となり、また温度差エンジンの全体を
耐圧構造とする必要がなく、しかもこのエンジンの潤滑
も圧力容器内部の潤滑油ポンプで行うために外部から潤
滑油を圧送する必要がなく、効率のよい確実な潤滑をな
し得る等の効果がある。
(Effects of the Invention) As explained above, according to the present invention, a generator is driven by utilizing the temperature difference between the radiator and the evaporator, and a heat pump or other generator for driving a generator or a heat pump is used. Since the temperature difference between the radiator and the evaporator is increased using the heat generated by the driving diesel engine (exhaust gas, engine cooling water), the overall power generation is highly efficient and there is no waste of energy. Can be done. Since both the temperature difference engine and the generator are housed inside the pressure vessel, the installation relationship is simple, and there is no need for the entire temperature difference engine to have a pressure-resistant structure.Moreover, the engine is lubricated by the lubricating oil inside the pressure vessel. Since the method is performed using a pump, there is no need to force-feed lubricating oil from the outside, and there are advantages such as efficient and reliable lubrication.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る温度差駆動ジェネレータ
の概略図、第2図は本発明における圧力容器の内部を示
す断面図である。 4・・・発電機、8・・・蓄熱槽、 9・・・ディーゼルエンジン、11・・・放熱器、12
・・・温度差エンジン、13・・・蒸発器、14・・・
主熱媒体循環路、12a・・・熱媒体導入口、12+)
・・・吐出口、15・・・出力軸、18・・・太陽熱集
熱器、19・・・排熱交換器、21・・・水−水熱交換
器、27・・・副熱媒体循環路、30・・・圧力容器、
30a・・・熱媒体導入口、= 11− 30b・・・吐出口、32・・・出力電力線、33・・
・プラグ、34・・・謀滑油ポンプ、36・・・油溜め
FIG. 1 is a schematic diagram of a temperature difference drive generator according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the inside of a pressure vessel in the present invention. 4... Generator, 8... Heat storage tank, 9... Diesel engine, 11... Heat radiator, 12
...temperature difference engine, 13...evaporator, 14...
Main heat medium circulation path, 12a...heat medium inlet, 12+)
...Discharge port, 15...Output shaft, 18...Solar heat collector, 19...Exhaust heat exchanger, 21...Water-water heat exchanger, 27...Sub-heat medium circulation Road, 30...pressure vessel,
30a... Heat medium inlet, = 11- 30b... Discharge port, 32... Output power line, 33...
- Plug, 34... oil pump, 36... oil sump.

Claims (1)

【特許請求の範囲】[Claims] 放熱器と蒸発器とを結ぶ主熱媒体循環路に温度差エンジ
ンを設け、前記温度差エンジンの出力軸に発電機を取り
付け、前記温度差エンジン、前記発電機、および該温度
差エンジンの潤滑油ポンプを1つの圧力容器内に収納し
、前記温度差エンジンの熱媒体導入口を前記圧力容器内
に開口せしめるとともにその吐出口を前記熱媒体循環路
に連結し、前記温度差エンジンに導入される熱媒体を前
記主熱媒体循環路から前記圧力容器内に充満させ、内燃
機関の運転による生成熱およびその他の外部熱源装置の
集熱を副熱媒体循環路を介して前記蒸発器へ供給し、前
記発電機からの出力電流を前記圧力容器に取り付けた電
源プラグを介して取り出すようにしたことを特徴とする
圧力容器収納型温度差駆動ジェネレータ。
A temperature difference engine is provided in the main heat medium circulation path connecting the radiator and the evaporator, a generator is attached to the output shaft of the temperature difference engine, and a lubricating oil for the temperature difference engine, the generator, and the temperature difference engine is provided. A pump is housed in one pressure vessel, a heat medium inlet of the temperature difference engine is opened into the pressure vessel, and a discharge port thereof is connected to the heat medium circulation path, so that the heat medium is introduced into the temperature difference engine. filling the pressure vessel with a heat medium from the main heat medium circulation path, supplying heat generated by the operation of the internal combustion engine and heat collected from other external heat source devices to the evaporator via the auxiliary heat medium circulation path; A temperature difference drive generator housed in a pressure vessel, characterized in that the output current from the generator is taken out via a power plug attached to the pressure vessel.
JP3724787A 1986-05-19 1987-02-20 Pressure container storing type temperature difference driving generator Granted JPS63205407A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3724787A JPS63205407A (en) 1987-02-20 1987-02-20 Pressure container storing type temperature difference driving generator
PCT/JP1987/000316 WO1987007360A1 (en) 1986-05-19 1987-05-19 Heat exchanging system
US07/144,922 US4876856A (en) 1986-05-19 1987-05-19 Heat exchanging system
AU73962/87A AU7396287A (en) 1986-05-19 1987-05-19 Heat exchanging system
EP19870903411 EP0272327A4 (en) 1986-05-19 1987-05-19 Heat exchanging system
US07/260,471 US4920750A (en) 1986-05-19 1988-10-13 Heat exchanging system for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3724787A JPS63205407A (en) 1987-02-20 1987-02-20 Pressure container storing type temperature difference driving generator

Publications (2)

Publication Number Publication Date
JPS63205407A true JPS63205407A (en) 1988-08-24
JPH05525B2 JPH05525B2 (en) 1993-01-06

Family

ID=12492299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3724787A Granted JPS63205407A (en) 1986-05-19 1987-02-20 Pressure container storing type temperature difference driving generator

Country Status (1)

Country Link
JP (1) JPS63205407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236439A (en) * 2021-06-18 2021-08-10 安庆中船柴油机有限公司 Marine diesel engine waste heat power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236439A (en) * 2021-06-18 2021-08-10 安庆中船柴油机有限公司 Marine diesel engine waste heat power generation system

Also Published As

Publication number Publication date
JPH05525B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
US4876856A (en) Heat exchanging system
EP1016775B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US4264826A (en) Apparatus for generating thermal energy and electrical energy
WO1987003933A1 (en) Co-generation plant module systems
US20030074900A1 (en) Energy conversion method and system with enhanced heat engine
CN108868930A (en) Overcritical/critical-cross carbon dioxide association circulating power generation system that afterheat of IC engine utilizes
JP2010510433A (en) Single circulation heat pump power generator
CA2412160C (en) Method and apparatus for cooling the inlet air of combustion turbines
CN104392750B (en) Low temperature nuclear reactor and the onboard power systems based on low temperature nuclear reactor
AU2001275254A1 (en) Method and apparatus for cooling the inlet air of combustion turbines
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
DE4304688A1 (en) Low temp. heat engine e.g. for vehicle, current generator, refrigerator
EP0775250A1 (en) Low-temperature heat engine
WO1999042706A1 (en) Electricity generation system for use with cryogenic liquid fuels
JPS63205407A (en) Pressure container storing type temperature difference driving generator
RU2079072C1 (en) Alternative turbine-generator set
CN109763870A (en) A low-parameter heat recovery system
CN209925118U (en) Internal combustion engine cooling circulation system
SU1296795A1 (en) Thermal power plant
JPH05240004A (en) Optimal operation method for heat recovery power generation plant
JPS6365115A (en) Generator driven by utilizing temperature difference
JP4265714B2 (en) Waste heat absorption refrigerator
JPH1037845A (en) Thermal differential generating set utilized with solar heat or the like
JPH02301651A (en) Co-generation system
JPH08261016A (en) Power plant