JPS63205049A - Lithium battery - Google Patents
Lithium batteryInfo
- Publication number
- JPS63205049A JPS63205049A JP62037361A JP3736187A JPS63205049A JP S63205049 A JPS63205049 A JP S63205049A JP 62037361 A JP62037361 A JP 62037361A JP 3736187 A JP3736187 A JP 3736187A JP S63205049 A JPS63205049 A JP S63205049A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- cell
- temperature
- lithium
- assembled battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電解液に非水溶媒を用いたリチウム電池の安全
性の向上に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the safety of lithium batteries using non-aqueous solvents as electrolytes.
従来の技術
電解液に非水溶媒を用いたリチウム電池はエネルギ密度
が高く、貯蔵性能に優れ、かつ作動温度範囲か広いとい
う特徴を有しているので多くの分野で使用されている。BACKGROUND OF THE INVENTION Lithium batteries using a non-aqueous solvent as an electrolyte have high energy density, excellent storage performance, and a wide operating temperature range, and are therefore used in many fields.
これらの電池のうちで塩化チオニールを陽極活物質とし
た所謂リチウム−塩化チオニル電池は特にエネルギ密度
か大きいために注目されている。Among these batteries, a so-called lithium-thionyl chloride battery using thionyl chloride as an anode active material is attracting attention because of its high energy density.
ところで、この種電池は、単電池1個で使用する場合と
、単電池を複数個直列あるいは並列に接続して必要な電
圧と容量を有する組電池にして使用する場合とがある。By the way, this type of battery may be used as a single cell, or a plurality of cells may be connected in series or in parallel to form an assembled battery having the required voltage and capacity.
組電池に組込まれた単電池の容量に大きなバラツキかな
ければ、組電池の容量は最も容量の少ない単電池に支配
されるか、極端に過放電状態になる単電池はまずないの
が普通である。しかし、このような−次電池は前もって
容量を知ることができないので、稀には容量の極端に小
さい電池が組電池にまぎれこむこともある。組電池中の
直列に接続された単電池の個数、あるいは組電池を組込
んだ装置か電池に対して要求する最低電圧即ち、終止電
圧にもよるが、容量か極端に小さい単電池かまぎれこん
だ組電池を放電すると、この単電池が過放電される場合
か多い。Unless there is a large variation in the capacity of the cells built into an assembled battery, the capacity of the assembled battery is usually dominated by the cell with the lowest capacity, or there are very few cells that are extremely over-discharged. be. However, since the capacity of such secondary batteries cannot be known in advance, batteries with extremely small capacities may occasionally get mixed up in assembled batteries. Depending on the number of cells connected in series in the assembled battery, or the device incorporating the assembled battery or the minimum voltage required for the battery, that is, the final voltage, the capacity may be extremely small or the cells may be mixed together. When discharging an assembled battery, the single cell is often over-discharged.
リチウム−塩化チオニル電池を放電すると放電末期に電
池温度か急上昇することが知られている。電池内温度か
リチウムの融点である186“C以上になると、リチウ
ムか塩化チオニルと直接反応して電池は爆発する。この
様な爆発を防止するために従来は第4図に示すように、
ダイオードlを各単電池2に1個宛単電池2に並列に接
続し、もし極端に容量の小さい電池がまぎれこんでいて
、これか過放電されてダイオードlのツーエナ電圧であ
る約−0,8v以下になると。It is known that when a lithium-thionyl chloride battery is discharged, the battery temperature rises rapidly at the end of discharge. If the internal temperature of the battery exceeds 186"C, which is the melting point of lithium, the battery will react directly with lithium or thionyl chloride and explode. In order to prevent such explosions, conventional methods have been used to prevent such explosions, as shown in Figure 4.
Connect one diode L to each cell 2 in parallel, and if an extremely small capacity battery is mixed in, it will be over-discharged and the two-ener voltage of diode L will be about -0.8V. When it comes to below.
この電池に流れていた電流の一部がダイオードlを流れ
るようにして、この電流に流れる電流ヤ
を少なくする方法と、第囁図に示すように単電池2と直
列に抵抗3を接続し、もし容量の小さな単電池2が過放
電しても爆発しない程度の電流しかとりだセないように
する方法、あるいは両者を組合わせた方法等を採用して
いた。A method of reducing the amount of current flowing through this current by causing part of the current flowing through the battery to flow through the diode L, and connecting a resistor 3 in series with the cell 2 as shown in Figure 1. A method has been adopted in which only enough current is drawn out to prevent an explosion even if the single cell 2 with a small capacity is over-discharged, or a method in which the two are combined.
発明か解決しようとする問題点
上記のうち、各単電池2にダイオードlを並列に接続す
る方法を用いても、例えば捲回タイプのD形すチウム−
塩化チオニル電池を0.30Aの電流で放!、させると
放電末期に電池温度か急速に上昇し、ダイオードlのツ
番す電圧である一〇、8Vに達する前に120°Cとい
う温度になる。一方−0,8v以下になるとこの温度は
低下する。120°Cは電池の表面温度であるから内部
の温度はそれ以上になっているはずで、従って、爆発の
可能性も高く、安全性に問題が残る。Problems to be Solved by the Invention Among the above problems, even if the method of connecting a diode l in parallel to each cell 2 is used, for example, a wound type D-type lithium
Discharge a thionyl chloride battery with a current of 0.30A! , the battery temperature rises rapidly at the end of discharge and reaches 120°C before reaching 10.8V, which is the voltage across diode 1. On the other hand, this temperature decreases below -0.8V. Since 120°C is the surface temperature of the battery, the internal temperature must be higher than that, so there is a high possibility of explosion, and safety remains a problem.
一方単電池2と直列に抵抗3を接続し、敷電可能な電流
を小さくすることにより、組電池中に極端に容量の小さ
な電池が含まれていても、爆発しないことは我々の実験
でも確認できたか、前記捲回タイプのD形すチウム−塩
化チオニル電池を4個直列に接続した組電池の場合、5
Ωがこの抵抗の最小値で、この値より小さくなると外部
負荷の抵抗にもよるが、この抵抗が小さい場合には爆発
の可能性か高くなる。5Ωの抵抗を接続したこの組電池
の実用的な最大負荷電流は約0.5Aで、これより大き
な電流を必要とする用途には使用できない欠点を有する
。On the other hand, by connecting a resistor 3 in series with the cell 2 and reducing the current that can be applied, our experiments have confirmed that even if the assembled battery contains a battery with an extremely small capacity, it will not explode. In the case of a battery assembly consisting of four of the above-mentioned wound type D-type lithium-thionyl chloride batteries connected in series, 5.
Ω is the minimum value of this resistance, and if it becomes smaller than this value, the possibility of explosion increases if this resistance is small, although it depends on the resistance of the external load. The practical maximum load current of this assembled battery connected to a 5Ω resistor is about 0.5A, and it has the disadvantage that it cannot be used for applications requiring a larger current.
問題点を解決するための手段
本発明は上記の如き欠点を除去するもので、複数個直列
に接続したリチウム単電池の各々に湿度スイッチを直列
に接続し、これを素電池とし、一方この素電池と並列に
ダイオードを接続するものである。Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by connecting a humidity switch in series to each of a plurality of lithium cells connected in series to form a unit cell. A diode is connected in parallel with the battery.
作用
本発明の回路を有する組電池中に容量の極端に小さい単
電池が存在しても、この電池の放電末期に上昇する温度
を温度スイッチか感知して。Function: Even if a cell with an extremely small capacity is present in the assembled battery having the circuit of the present invention, the temperature that rises at the end of discharge of this cell can be detected by a temperature switch.
この部分か電気的に切断されると同時に、これまでこの
容量の小さい電池に流れていた電流かすべてこの電池と
並列に接続しているダイオードを流れるため、この電池
の過放電が防止され爆発のような最悪な事態になるよう
なことがなくなる。At the same time as this part is electrically disconnected, all of the current that previously flowed through this small capacity battery flows through the diode connected in parallel with this battery, preventing over-discharge of this battery and preventing an explosion. This will prevent such worst-case situations from happening.
実施例
捲回タイプのD形すチウム−塩化チオニル電池8個を直
列に接続した24ViM池において、8個中の1個は故
意に8坦を少なくした7Ahの電池、残り7個は正常の
容量を有するl0Ahの電池を用い、個々の電池と、こ
れに密着した100°Cの温度ヒユーズを直列に接続し
、さらにこれとダイオードlを並列に接続して組電池を
試作した。これを組電池Aとする。この試作電池で7A
hの電池は容量か特に小さいものに相当する。Example: In a 24ViM cell in which eight wound-type D-type lithium-thionyl chloride batteries are connected in series, one of the eight batteries has a 7Ah capacity with the number of batteries intentionally reduced, and the remaining seven batteries have normal capacity. Using 10Ah batteries having 10Ah, each individual battery was connected in series with a 100°C temperature fuse in close contact with the battery, and a diode 1 was further connected in parallel to make a prototype battery. This is called assembled battery A. 7A with this prototype battery
The battery h corresponds to a particularly small capacity battery.
一方、組電池Aに使用した電池と同一の電池8個を温度
ヒユーズを使用せずに個々の電池と並列にダイオード1
を接続した従来の組電池を比較のために試作した。これ
を組電池Bとする。On the other hand, 8 batteries identical to those used in battery pack A were connected in parallel with each battery without using a temperature fuse, and a diode 1 was connected.
For comparison, we made a prototype of a conventional assembled battery connected to This is called assembled battery B.
いずれの組電池にも単電池表面の温度か測定できるよう
に熱雷対をとりつけた。A thermal lightning pair was attached to each assembled battery so that the temperature of the cell surface could be measured.
組電池Aと組電池Bとを50の負荷で放電させたときの
代表的な結果を第2図および第3図に示す。第2図と第
3図におけるAはそれぞ″れ組電池の電圧、またBは容
量の少ない単電池の温度である。第3図は後述する爆発
した組電池の結果である。Typical results when battery pack A and battery pack B were discharged under a load of 50% are shown in FIGS. 2 and 3. In FIGS. 2 and 3, A is the voltage of the assembled battery, and B is the temperature of a single battery with a small capacity. FIG. 3 shows the results of an exploded battery, which will be described later.
いずれの組電池も放電初期4.5Aの雪原が流れ、放電
後1時間30分経過時から急激に電圧が低下し、1時間
50分経過時には2.5V以上低下した。これは容量の
少ない単電池の放電か完了したことを示唆している。組
電池Aはこの時点で急激な電圧低下が認められなくなっ
たのに対し、組電池Bはその後も徐々に電圧か低下し、
10個細巾個が放電開始後2時間10分経過時に爆発し
た。In all of the battery packs, a snow field of 4.5 A flowed at the beginning of discharge, and the voltage suddenly decreased from 1 hour and 30 minutes after discharge, and decreased by 2.5 V or more at 1 hour and 50 minutes. This suggests that the discharge of a cell with low capacity has been completed. Assembled battery A no longer showed a sudden voltage drop at this point, while assembled battery B's voltage gradually decreased after that.
Ten rags exploded 2 hours and 10 minutes after the start of discharge.
電池表面の温度をみると7Ahの電池か電圧の低下と共
に急激に上昇し、1時間50分経過時に100″Cまで
上昇した。組電池Aはその後上昇が止まり徐々ではある
か低下する傾向にあるのに対し、組電池Bはさらに上ゲ
1゛シその内1個が130°C時点で爆発した。爆発し
た時点での電池の表面温度は130°Cであったが、内
部ではリチウムの融点である186°Cになったのでは
ないかと考える。組電池AIO細巾のすべての容量の少
ない単電池の表面の温度か100゛Cになった時点で温
度ヒユーズが切断したので過放電がそれ以上進行しな(
なり爆発か防止されたものと考える。なお4は温度スイ
ッチである。Looking at the temperature on the battery surface, the temperature of the 7Ah battery rose rapidly as the voltage decreased, and rose to 100"C after 1 hour and 50 minutes. After that, the temperature of assembled battery A stopped rising, and the temperature tended to drop gradually. On the other hand, the temperature of assembled battery B was even higher, and one of the batteries exploded at 130°C.The surface temperature of the battery at the time of the explosion was 130°C, but the internal temperature was at the melting point of lithium. I think that it may have reached a certain 186°C.The temperature fuse was cut when the surface temperature of all the small capacity cells in the assembled battery AIO thin cloth reached 100°C, so over-discharging could not be more than that. Proceed (
It is assumed that the explosion was prevented. Note that 4 is a temperature switch.
発明の効果
上述のように本発明によれば、リチウム単電池を複数個
直列に接続した組電池中に極端に容量の少ない単電池が
混入していても、高率放電時の爆発を防止できる等工業
的価値甚だ大なるものである。Effects of the Invention As described above, according to the present invention, even if a cell with an extremely low capacity is mixed in an assembled battery in which a plurality of lithium cells are connected in series, explosion during high rate discharge can be prevented. Its industrial value is enormous.
第1図は本発明による爆発防止回路を有する組電池の回
路図、第2図および第3図は本発明による爆発防止回路
と従来の爆発防止回路を有する組電池の放電試験結果を
示す曲線図、第4図および第5図は従来の爆発防止回路
を有する組電池の回路図である。
lはダイオード、2は単電池、4は温度スイッチFIG. 1 is a circuit diagram of an assembled battery having an explosion prevention circuit according to the present invention, and FIGS. 2 and 3 are curve diagrams showing discharge test results of assembled batteries having an explosion prevention circuit according to the present invention and a conventional explosion prevention circuit. , 4 and 5 are circuit diagrams of an assembled battery having a conventional explosion prevention circuit. l is a diode, 2 is a cell, 4 is a temperature switch
Claims (1)
池を2個以上直列に接続した組電池において、ダイオー
ドを各単電池と並列に接続すると同時に各単電池の外壁
に接して温度スイッチを設け、単電池の外壁温度の上昇
により温度スイッチが切れて単電池に流れる電流のすべ
てがこれと並列に接続しているダイオードを通して流れ
るような回路を有することを特徴とするリチウム電池。 2、温度スイッチが温度ヒューズである特許請求の範囲
第1項記載のリチウム電池。 3、温度スイッチがバイメタル式のサーモスタットであ
る特許請求の範囲第1項記載のリチウム電池。[Claims] 1. In an assembled battery in which two or more cells using lithium as a cathode and a nonaqueous solution as an electrolyte are connected in series, a diode is connected in parallel with each cell, and at the same time the outer wall of each cell is It is characterized by having a circuit in which a temperature switch is provided in contact with the cell, and when the temperature switch is turned off due to an increase in the temperature of the outer wall of the cell, all of the current flowing through the cell flows through a diode connected in parallel with the temperature switch. Lithium battery. 2. The lithium battery according to claim 1, wherein the temperature switch is a temperature fuse. 3. The lithium battery according to claim 1, wherein the temperature switch is a bimetallic thermostat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62037361A JPS63205049A (en) | 1987-02-20 | 1987-02-20 | Lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62037361A JPS63205049A (en) | 1987-02-20 | 1987-02-20 | Lithium battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63205049A true JPS63205049A (en) | 1988-08-24 |
Family
ID=12495400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62037361A Pending JPS63205049A (en) | 1987-02-20 | 1987-02-20 | Lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63205049A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045888A1 (en) * | 1997-04-10 | 1998-10-15 | Duracell Inc. | Current interrupter for electrochemical cells |
JP2016538683A (en) * | 2013-10-11 | 2016-12-08 | イーシー パワー,エルエルシー | All-weather battery and its manufacture and use |
-
1987
- 1987-02-20 JP JP62037361A patent/JPS63205049A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045888A1 (en) * | 1997-04-10 | 1998-10-15 | Duracell Inc. | Current interrupter for electrochemical cells |
JP2016538683A (en) * | 2013-10-11 | 2016-12-08 | イーシー パワー,エルエルシー | All-weather battery and its manufacture and use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6074777A (en) | Additives for overcharge protection in non-aqueous rechargeable lithium batteries | |
JP5372495B2 (en) | Secondary battery protection circuit and secondary battery having the same | |
JP3061756B2 (en) | Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable batteries | |
KR100749567B1 (en) | Stacked-type lithium-ion rechargeable battery | |
KR101121282B1 (en) | Safety element for battery and battery with the same | |
EP1787339B1 (en) | Safety device for preventing overcharge and secondary battery therewith | |
JP2007035622A (en) | Secondary battery with PTC element | |
US20040110061A1 (en) | Rechargeable, galvanic element with at least one lithium-intercalating electrode | |
JP2012074401A (en) | Secondary battery having constant-voltage element | |
RU2332755C1 (en) | Protective device for prevention of secondary batteries overcharge and secondary batteries with such device | |
KR20000038817A (en) | Secondary lithium battery | |
JPS63205049A (en) | Lithium battery | |
JPH05234614A (en) | Cylindrical battery | |
KR100577489B1 (en) | Secondary battery with electrode terminal having PTC characteristics | |
JP3397854B2 (en) | Battery pack | |
KR20070088991A (en) | Safe secondary battery without PC | |
KR100808380B1 (en) | Secondary battery equipped with safety element in battery terminal | |
Eichinger | Safety aspects in primary high-rate lithium cells | |
JPH04351847A (en) | Battery and cable for battery | |
Thomas-Alyea et al. | Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries | |
JPS61285030A (en) | Overdischarge/overcharge preventor for battery |