JPS63201042A - Production of optical device by ion exchange - Google Patents
Production of optical device by ion exchangeInfo
- Publication number
- JPS63201042A JPS63201042A JP62034354A JP3435487A JPS63201042A JP S63201042 A JPS63201042 A JP S63201042A JP 62034354 A JP62034354 A JP 62034354A JP 3435487 A JP3435487 A JP 3435487A JP S63201042 A JPS63201042 A JP S63201042A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- molten salt
- ion exchange
- glass substrate
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005342 ion exchange Methods 0.000 title claims abstract description 37
- 230000003287 optical effect Effects 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 150000003839 salts Chemical class 0.000 claims abstract description 49
- 239000011521 glass Substances 0.000 claims abstract description 32
- 150000002500 ions Chemical class 0.000 claims abstract description 10
- 150000001768 cations Chemical class 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000005485 electric heating Methods 0.000 abstract description 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 9
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical group [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001409 divalent cation oxide Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/134—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
- G02B6/1345—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ガラス基板中にイオン交換で光導波路等の光
学素子を形成する方法に関し、特にイオン交換処理時間
を正確に制御できる方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming optical elements such as optical waveguides in a glass substrate by ion exchange, and particularly to a method that can accurately control the ion exchange treatment time.
ガラス基板中に光導波路、レンズ等の光学素子を一体的
に形成する有力な方法としてイオン交換法が知られてい
る。An ion exchange method is known as an effective method for integrally forming optical elements such as optical waveguides and lenses in a glass substrate.
イオン交換法では、少なくともl@の1価陽イオンを含
むガラスで基板をつくり、この基板面を特定形状の開口
を残してイオン透過防止マスク材で被覆し、この面に高
温の溶融塩を接触させ、上記マスク開口を通して基板ガ
ラス中のイオンと溶融塩中のイオンとを交換させること
により、基板ガラスの屈折率を部分的に変化例えIIス
高屈折率化する。そして上記イオン交換処理に当り、所
定の高温度に保持された溶融塩に常温のガラス基板を直
接接触させると基板の変形、屈折率分布の異常等を招く
ため、一般には溶融塩材料とガラス基板とを共に徐々に
昇温して行き、所定のイオン交換処理温度に達した後一
定時間保持し、その徒両者を降温する方法がとられてい
る。In the ion exchange method, a substrate is made of glass containing at least l@ monovalent cations, the surface of this substrate is covered with an ion permeation prevention mask material leaving an opening of a specific shape, and a high temperature molten salt is brought into contact with this surface. By exchanging ions in the substrate glass with ions in the molten salt through the mask opening, the refractive index of the substrate glass is partially changed to increase the refractive index. During the above ion exchange treatment, if a glass substrate at room temperature is brought into direct contact with a molten salt kept at a predetermined high temperature, it will cause deformation of the substrate, an abnormality in the refractive index distribution, etc. The temperature of both is gradually raised, and after reaching a predetermined ion exchange treatment temperature, it is held for a certain period of time, and then the temperature of both is lowered.
しかしながら上記の従来方法では、一定温度のもとでの
溶融塩と基板ガラスとの接触処理時間を、理論的に必要
な交換時間に正確に合せても、実際には上記処理以前あ
るいは以後の昇温あるいは降温過程でもイオン交換によ
り屈折率変化を生じており、実効的なイオン交換時間の
正確な制御が困難であるという間顆があった。However, in the conventional method described above, even if the contact treatment time between the molten salt and the substrate glass at a constant temperature is precisely matched to the theoretically required exchange time, the actual The refractive index changes due to ion exchange even during heating or cooling processes, making it difficult to accurately control the effective ion exchange time.
即ち自然イオン交換の場合は設定時間よりも実避けられ
なかった。That is, in the case of natural ion exchange, it was actually unavoidable than the set time.
上記従来の問題点を解決するために、本発明は光学素子
形成のためのイオン交換処理の前あるいは後における基
板の昇温ある・いは降温を、上記処理用溶融塩とは異な
る基板ガラスの屈折率に実質的に変化を与えない溶融塩
へ基板を浸漬することにより行なうようにした。In order to solve the above-mentioned conventional problems, the present invention raises or lowers the temperature of the substrate before or after the ion exchange treatment for forming an optical element, using a substrate glass different from the molten salt for the treatment. This is done by immersing the substrate in a molten salt that does not substantially change the refractive index.
本発明で使用する基板の昇温あるいは降温用の溶融塩は
、基板ガラスとの間にイオン交換を実質上止じない組成
である必要はなく、イオン交換が生じても基板ガラスの
屈折率が実質上変化しない組成であればよい。The molten salt for heating or cooling the substrate used in the present invention does not need to have a composition that does not substantially prevent ion exchange with the substrate glass, and even if ion exchange occurs, the refractive index of the substrate glass will change. It is sufficient if the composition does not change substantially.
上記方法によると、昇温ないしは降温過程で光学素子の
特性に影響を与える屈折率変化がほとんど生じなくなり
、一定温度のもとての溶融塩との接触処理時間が実効的
なイオン交換時間とほぼ一致するため、イオン交換時間
を正確に制御することが可能になる。According to the above method, there is almost no change in the refractive index that affects the characteristics of the optical element during the temperature raising or cooling process, and the contact treatment time with the original molten salt at a constant temperature is almost the effective ion exchange time. The coincidence makes it possible to precisely control the ion exchange time.
またガラス基板は昇温もしくは降温中に溶融塩と接触し
ているので、空気中にさらされている場合に比べ、熱シ
ョック等の表面劣化原因をかなりの程度除くことができ
る。In addition, since the glass substrate is in contact with the molten salt while the temperature is rising or falling, causes of surface deterioration such as thermal shock can be eliminated to a considerable extent compared to when the glass substrate is exposed to air.
以下本発明の実施例を図面に基づいて詳細に説明する。 Embodiments of the present invention will be described in detail below based on the drawings.
第1図において、電気加熱炉l内に第1の容器2と第2
の容器≠が置かれ、一方の容器2には第1の溶融塩3が
、又他方の容器lには第2の溶融塩jがそれぞれ貯えら
れている。In FIG. 1, a first container 2 and a second container are placed in an electric heating furnace l.
Containers ≠ are placed, one container 2 stores the first molten salt 3, and the other container l stores the second molten salt j.
第1の溶融塩3は、ガラス基板の昇、降温用で第2の溶
融塩jはイオン交換処理用であり、ガラス基板6は第一
の溶融塩jへの浸漬による所定のイオン交換処理に先立
ち、第1の溶融塩3中に浸漬保持される。The first molten salt 3 is for raising and lowering the temperature of the glass substrate, the second molten salt j is for ion exchange treatment, and the glass substrate 6 is subjected to a predetermined ion exchange treatment by immersion in the first molten salt j. First, it is immersed and held in the first molten salt 3.
基板6は、5i02.BzO3及び2価陽イオン酸化物
の他に、イオン交換のために約10%のNa2Oと約3
%のに20を含有する組成のガラスから成る。The substrate 6 is 5i02. Besides BzO3 and divalent cation oxides, about 10% Na2O and about 3
It consists of a glass with a composition containing 20%.
基板乙の片面は所定の光導波路パターンの開口を残して
Ti薄膜で被覆しである。One side of the substrate B is coated with a Ti thin film, leaving an opening for a predetermined optical waveguide pattern.
第1の溶融jfiJは、NaNO3:KNO3−/ 0
: 3の割合で調合した混合塩であり、溶融した状態
でガラス基板6と接触してもNa:にの比がガラス基板
を中のNa:にの比と同一であるため、実質的にイオン
交換は生じない。第1の溶融塩3としては、上記組成の
他に、例えイオン交換が生じてもガラス基板乙の屈折率
を実質上変化させないNaNO3とKNO3の混合塩等
が使用できる。The first melt jfiJ is NaNO3:KNO3−/0
: It is a mixed salt prepared at a ratio of 3:3, and even if it contacts the glass substrate 6 in a molten state, the Na:to ratio is the same as the Na:to ratio inside the glass substrate, so it is substantially ion-free. No exchange occurs. As the first molten salt 3, in addition to the above composition, a mixed salt of NaNO3 and KNO3, etc., which does not substantially change the refractive index of the glass substrate B even if ion exchange occurs, can be used.
またガラス基板6として、TI!やOs等の屈折率を増
加せしめるイオンを酸化物で含有するものを使用する場
合には、第1の溶融塩3としてTlやCsの硫酸塩や硝
醗塩を含んだ溶融塩を使用すれば良い。望ましくは、第
1の溶融塩3の組成はガラス基板中に含まれるイオン交
換可能な1価陽イオンの含有比とほぼ同一の含有比でそ
れら陽イオンを含有するものであるのが良い。In addition, as the glass substrate 6, TI! When using an oxide containing ions that increase the refractive index, such as or Os, a molten salt containing sulfate or nitrate of Tl or Cs can be used as the first molten salt 3. good. Preferably, the composition of the first molten salt 3 is such that it contains cations in substantially the same content ratio as the monovalent cations that can be ion-exchanged contained in the glass substrate.
上記のような第1の溶融塩3中に基板乙を浸漬した状態
で加熱炉l内を昇温させ、所定のイオン交換処理温度に
到達したら第2図に示すように基板6を第2の溶融塩!
内に移し替える。With the substrate B immersed in the first molten salt 3 as described above, the temperature inside the heating furnace L is raised, and when the predetermined ion exchange treatment temperature is reached, the substrate 6 is immersed in the second molten salt 3 as shown in FIG. Molten salt!
Move inside.
第2の溶融塩!はTlNO3:NaNO3−2:ざの割
合で調合した混合塩であり、溶融した状態でガラス基板
6と接触すると主としてガラス基板6中のNaと溶融塩
j中のTlとが一部イオン交換して屈折率が増加する。Second molten salt! is a mixed salt prepared in the ratio of TlNO3:NaNO3-2:. When it comes into contact with the glass substrate 6 in a molten state, mainly Na in the glass substrate 6 and Tl in the molten salt j partially undergo ion exchange. The refractive index increases.
第2の溶融塩jとしては上記組成以外に、ガラス基板乙
の屈折率を増加もしくは減少させるイオンを含む種々の
混合塩が使用できる。In addition to the composition described above, various mixed salts containing ions that increase or decrease the refractive index of the glass substrate B can be used as the second molten salt j.
そして溶融塩j中へ一定時間浸漬して所定のイオン交換
処理を行なった後は、再び基板!を第1の 仏溶融塩
3内に戻し、加熱炉/内を降温させる。Then, after immersing it in the molten salt for a certain period of time and performing the prescribed ion exchange treatment, the substrate is reused! is returned to the first French molten salt 3 and the temperature inside the heating furnace is lowered.
上述した実施例では昇温および降温の両過程で、イオン
交換処理用とは異なる組成の溶融塩に浸漬するようにし
たが、昇温または降温のいずれか一方の過程でのみ上記
J!i!種溶融塩溶融塩漬を行なうようにしてもよい。In the above-mentioned example, the molten salt was immersed in a molten salt having a composition different from that for ion exchange treatment during both the temperature raising and temperature lowering processes, but the J! i! Seed molten salt molten salt pickling may also be performed.
またガラス基板6としては前述の組成以外に例えばTI
!20を含有したボロシリケートガラスなども使用可能
であり、組成K特に制限は無い。さらに、イオン交換用
の1価イオンとして前述のNa1K、TJのほかO8,
Rb、Agも使用可能である。In addition to the above-mentioned composition, the glass substrate 6 may be made of, for example, TI.
! A borosilicate glass containing K.20 can also be used, and the composition K is not particularly limited. Furthermore, as monovalent ions for ion exchange, in addition to the aforementioned Na1K and TJ, O8,
Rb and Ag can also be used.
本発明によれば、イオン交換時間な正箔に制御すること
ができるとともに、昇温あるいは降温に要する時間とは
無関係に実質的なイオン交換時間を充分に短かくするこ
とができ、したがって従来のイオン交換法では製造が不
可能であった単−モード光導波路の如く極めて微小な断
面積の光学素子も高精度で基板中に形成することができ
る。According to the present invention, the ion exchange time can be controlled to a positive value, and the actual ion exchange time can be sufficiently shortened regardless of the time required to raise or lower the temperature. Optical elements with extremely small cross-sectional areas, such as single-mode optical waveguides, which could not be manufactured using the ion exchange method, can also be formed in a substrate with high precision.
図面は本発明の一実施例を示し、第1図はイオン−交換
処理に先立つ基板昇温のための溶?7塩浸漬段階を示す
断面図、第2図はイオン交換処理の段階を示す断面図で
ある。
/・・・・・・加熱炉 コ、II・・・・・・溶1i!
!壊容器3・・・・・・基板の昇温(又は降温)用溶i
!l!塩j・・・・・・イオン交換処理用溶融塩6・・
・・・・ガラス基板The drawings show one embodiment of the invention, and FIG. 1 shows a solution for heating a substrate prior to ion-exchange treatment. 7 is a sectional view showing the salt immersion stage, and FIG. 2 is a sectional view showing the ion exchange treatment stage. /... Heating furnace Ko, II... Molten 1i!
! Broken container 3...Metal i for raising (or lowering) the temperature of the substrate
! l! Salt j... Molten salt for ion exchange treatment 6...
・・・Glass substrate
Claims (1)
高温の溶融塩を接触させ、前記イオンとガラス中のイオ
ンとの交換により基板ガラス内の特定領域の屈折率を変
化させて基板中に光学素子を一体的に形成するイオン交
換による光学素子の製造方法において、 前記溶融塩との接触によるイオン交換処理の前または(
及び)後における基板の昇温または(及び)降温処理の
少なくとも一部を、該基板の屈折率に実質的変化を与え
ない他の溶融塩へ基板を浸漬して行なうことを特徴とす
るイオン交換による光学素子の製造方法。[Claims] A high-temperature molten salt containing at least one type of monovalent cation is brought into contact with the surface of the glass substrate, and the refractive index of a specific region within the glass substrate is changed by exchanging the ions with ions in the glass. In a method for manufacturing an optical element by ion exchange, in which an optical element is integrally formed in a substrate by changing the ion exchange temperature, the ion exchange treatment by contacting with the molten salt or (
and) an ion exchange characterized in that at least part of the subsequent temperature raising or (and) temperature lowering treatment of the substrate is performed by immersing the substrate in another molten salt that does not substantially change the refractive index of the substrate. A method for manufacturing an optical element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62034354A JPS63201042A (en) | 1987-02-17 | 1987-02-17 | Production of optical device by ion exchange |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62034354A JPS63201042A (en) | 1987-02-17 | 1987-02-17 | Production of optical device by ion exchange |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63201042A true JPS63201042A (en) | 1988-08-19 |
Family
ID=12411814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62034354A Pending JPS63201042A (en) | 1987-02-17 | 1987-02-17 | Production of optical device by ion exchange |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63201042A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02271936A (en) * | 1989-04-12 | 1990-11-06 | Nippon Sheet Glass Co Ltd | Ion-exchange treatment of optical glass |
-
1987
- 1987-02-17 JP JP62034354A patent/JPS63201042A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02271936A (en) * | 1989-04-12 | 1990-11-06 | Nippon Sheet Glass Co Ltd | Ion-exchange treatment of optical glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4913717A (en) | Method for fabricating buried waveguides | |
US3419370A (en) | Method of producing a photochromic glass and resulting article | |
US3873408A (en) | Method of producing a refractive index gradient in glass | |
US5007948A (en) | Essentially colorless silver-containing glasses through ion exchange | |
US3843228A (en) | Production of light-conducting glass structures with refractive index distribution | |
US4259406A (en) | Method for producing selectively tinted photochromic glass lens and products | |
JPH0466828B2 (en) | ||
JPS60150003A (en) | Optical device and manufacture thereof | |
JPS6259556A (en) | Optical wave guide produced from special base glass by ion exchange of cs(+) ion | |
JPS63201042A (en) | Production of optical device by ion exchange | |
CN112110646B (en) | Glass material, gradient refractive index glass and manufacturing method thereof | |
US3764444A (en) | Glass ceramic and process therefor | |
US4108621A (en) | Process of producing soft aperture filter | |
CN112079565B (en) | Glass composition, gradient index glass and manufacturing method thereof | |
JPS63169601A (en) | Distributed index type optical element | |
US4851024A (en) | Process for producing optical glass | |
JPS63212906A (en) | Preparation of embedded flat waveguide element | |
US5139557A (en) | Method of performing an ion exchange of optical glass | |
JPH0462644B2 (en) | ||
JPS57179055A (en) | Manufacture of refractive index distribution type lens | |
JPH0353263B2 (en) | ||
RU2385845C1 (en) | Method of making glassceramic lens with refraction index gradient | |
JPH0341406A (en) | Production of optical waveguide | |
JPS582243A (en) | Surface protective treatment of glass article | |
JPS61201639A (en) | Plate lens |