[go: up one dir, main page]

JPS63200343A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS63200343A
JPS63200343A JP3263887A JP3263887A JPS63200343A JP S63200343 A JPS63200343 A JP S63200343A JP 3263887 A JP3263887 A JP 3263887A JP 3263887 A JP3263887 A JP 3263887A JP S63200343 A JPS63200343 A JP S63200343A
Authority
JP
Japan
Prior art keywords
film
magnetization
curie point
magnetic field
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3263887A
Other languages
Japanese (ja)
Other versions
JP2751154B2 (en
Inventor
Katsuhisa Araya
勝久 荒谷
Kenjiro Watanabe
健次郎 渡辺
Junichi Iwai
順一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62032638A priority Critical patent/JP2751154B2/en
Publication of JPS63200343A publication Critical patent/JPS63200343A/en
Application granted granted Critical
Publication of JP2751154B2 publication Critical patent/JP2751154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To permit easy overwriting by a method for modulating an external magnetic field by forming a 1st rare earth-transition metal alloy film which has a Curie point TC1 and in which the auxiliary lattice magnetization of the rare earth is dominant right below TC1 and the same kind of the alloy film having the Curie point TC2 higher than TC1 directly adjacently to each other in such a manner that the films make exchange coupling with each other. CONSTITUTION:This magneto-optic disk 17 is constituted of the laminate of a transparent substrate 13, an interference film 14, a perpendicular magnetized film 10, and a protective film 15. The film 10 in this constitution is constituted of a thin amorphous TbFeCoCr film and is formed of a 1st magnetic film 11 having different compsn. ratios of Tb to FeCoCr and a 2nd magnetic film 12 sandwiching the same by a two-dimensional magnetron sputtering method using a Tb target and FeCoCr alloy target. The Curie point TC2 of the magnetic film 12 is made higher than the Curie point TC1 of the magnetic film 11 at this time. The magnetic film 12 is functioned as a magnetically thin single-layer film by the difference in the Curie point at the time of projecting laser light to the medium. The external magnetic field necessary at the time of recording and erasing is thereby lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体、特に希土類−遷移金属合金
膜を有する光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium, particularly a magneto-optical recording medium having a rare earth-transition metal alloy film.

〔発明の概要〕[Summary of the invention]

本発明は、希土類−遷移金属合金膜を有して成る光磁気
記録媒体において、互いに異なるキュリー点TC1及び
TC2 (TCI<TIJンを有し且つ組成を異にする
第1及び第2の希土類−遷移金属合金膜を有し、第2の
希土類−遷移金属合金膜が第1の希土類−遷移金属合金
膜に直接隣接して交換結合するように配して垂直磁化膜
を構成することによって、弱い外部磁場下で記録・消去
を可能にした光磁気記録媒体を構成する。
The present invention provides a magneto-optical recording medium having a rare earth-transition metal alloy film, in which first and second rare earth metals having different Curie points TC1 and TC2 (TCI<TIJ) and having different compositions are used. A perpendicularly magnetized film is formed by having a transition metal alloy film and arranging the second rare earth-transition metal alloy film directly adjacent to the first rare earth-transition metal alloy film to be exchange-coupled. Construct a magneto-optical recording medium that enables recording and erasing under an external magnetic field.

〔従来の技術〕[Conventional technology]

従来の光磁気記録媒体を構成する希土類−遷移金属合金
膜(垂直磁化膜)は、通常単一組成の磁性層によって構
成されている。
A rare earth-transition metal alloy film (perpendicular magnetization film) constituting a conventional magneto-optical recording medium is usually composed of a magnetic layer having a single composition.

第13図は、従来構造の光磁気記録媒体、例えば光磁気
ディスクの要部の断面構造を示すもので、この例では、
夫々一方の面に記録トラック位置検出用の溝が形成され
た対の透明基板(1)が用意され、これら谷溝が構成さ
れた面に、非晶質希土類−遷移金属合金よりなる垂直磁
化l@ (21が被着形成されてこれら垂直磁化膜(2
)を内側にして両基板(1)を、接着剤(3)によって
接合するという構造が採られる。
FIG. 13 shows a cross-sectional structure of the main part of a conventional magneto-optical recording medium, such as a magneto-optical disk.
A pair of transparent substrates (1) each having grooves for detecting the recording track position formed on one surface are prepared, and a perpendicular magnetization l made of an amorphous rare earth-transition metal alloy is provided on the surface where these grooves are formed. @ (21 is deposited and these perpendicular magnetization films (2
) is on the inside and both substrates (1) are bonded using an adhesive (3).

(4)は各垂直磁化膜(2)と基板(1)との間に被着
形成した干渉膜、(5)は垂直磁化膜(2)の表面に被
着形成した保護膜である。
(4) is an interference film deposited between each perpendicular magnetization film (2) and the substrate (1), and (5) is a protective film deposited on the surface of the perpendicular magnetization film (2).

この垂直磁化膜(2)の飽和磁化Ms(以下磁化MSと
記述)は第14図に模式的に示すように、希土類金属の
副格子磁化MR1+と遷移金属の副格子磁化MTMの差
1MRg−MTM+で与えられる。
The saturation magnetization Ms (hereinafter referred to as magnetization MS) of this perpendicular magnetization film (2) is, as schematically shown in FIG. is given by

この垂直磁化膜(2)に対する記録、例えばキュリー点
記録による場合は、第13図に示すように、その記録部
に磁界発生手段(6)によって外部磁界を与え、この状
態でレーザ光(7)を集光レンズ系(8)を介してその
記録を行おうとする一方の垂直磁化II! (21に基
板(11側の背面よりこの垂直磁化膜(2)にフォーカ
シングするように照射して此処における温度をキュリー
点に加熱し、外部磁界によって磁化の向きを反転させる
ことによってその記録を行う。
When recording on this perpendicularly magnetized film (2), for example by Curie point recording, as shown in FIG. One perpendicular magnetization II! is to be recorded through the condenser lens system (8). (On the substrate 21, the perpendicularly magnetized film (2) is irradiated from the back side on the 11 side in a focused manner to heat the temperature here to the Curie point, and the direction of magnetization is reversed by an external magnetic field to record. .

このような非晶質希土類−遷移金属合金による単層膜を
有する光磁気ディスクでは、記録及び消去時に200〜
3000e程度の外部磁場を必要とする。
In a magneto-optical disk having a single layer film made of such an amorphous rare earth-transition metal alloy, the
An external magnetic field of about 3000e is required.

この外部磁場を低減することができれば、マグネットの
小型化及び外部磁場変調法によるオーバライド(先に書
き込まれた情報を重ね書きによって新しい情報に書き換
える)を容易に行うことが可能になる。
If this external magnetic field can be reduced, it becomes possible to easily miniaturize the magnet and perform overwriting (rewriting previously written information with new information by overwriting) using an external magnetic field modulation method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、記録及び消゛去時の必要外部磁場が低くなる
ような磁化膜を得るには (i)記録時の必要外部磁場Hwと消去時の必要外部磁
場HgがHw=−Hgとなるようにすること、 (ii)IH曹I及び1Hilを低減すること、が必要
である。
By the way, in order to obtain a magnetized film in which the required external magnetic field during recording and erasing is low, (i) the required external magnetic field Hw during recording and the required external magnetic field Hg during erasing become Hw = -Hg. (ii) to reduce IH SoI and 1Hil.

しかし、従来の上述した垂直磁化膜では、一般にIHυ
1くlHg1であり、lHg1を与えるマグネットを用
いており、記録時と消去時でその方向を切り替えている
。なお、外部磁場変調法によるオーバーライドではHW
−−H区とすることができればマグネットのコイルを流
れる電流の直流分を零に、あるいは交流分を低減するこ
とができ、コイル駆動電源の小型化、コイルの発熱防止
に寄与する。しかるに従来lHwl<lHg1となるの
は、レーザ照射時に照射位置近傍の’r<’rc(TC
:キュリー温度)の領域からの浮遊磁場が原因である。
However, in the conventional perpendicular magnetization film mentioned above, IHυ
A magnet that provides lHg1 is used, and its direction is switched between recording and erasing. In addition, when overriding by external magnetic field modulation method, HW
--If it is possible to set the H section, the direct current component of the current flowing through the magnet coil can be reduced to zero or the alternating current component can be reduced, contributing to miniaturization of the coil drive power source and prevention of heat generation in the coil. However, conventionally lHwl<lHg1 is due to 'r<'rc(TC
This is caused by stray magnetic fields from the region of

叩ち第15図は垂直磁化膜(2)にレーザ光(7)を照
射して、部分aをキュリー点に加熱した状態を示すもの
で、このとき、この部分aでは例えばキュリー点では磁
化が消失するが、ここにその周囲の磁化MOによって浮
遊磁場Hs〆が与えられる。したがって、今、この部分
aに外部磁場を与えて記録或いは消去を行うときはこの
浮遊磁場H3Fが影響する。すなわち、記録時の外部磁
場Hνは浮遊磁場H3Fと同方向であり、消去時の外部
磁場HEは浮遊磁場Hsrと逆方向であることから、消
去時には記録時より大きな外部磁場Hε (〉Hw)が
必要となる。
Figure 15 shows a state in which the perpendicularly magnetized film (2) is irradiated with a laser beam (7) to heat a portion a to the Curie point. However, a stray magnetic field Hs is given here by the magnetized MO around it. Therefore, when recording or erasing is performed by applying an external magnetic field to this portion a, this floating magnetic field H3F has an effect. That is, since the external magnetic field Hν during recording is in the same direction as the floating magnetic field H3F, and the external magnetic field HE during erasing is in the opposite direction to the floating magnetic field Hsr, the external magnetic field Hε (〉Hw) is larger during erasing than during recording. It becomes necessary.

単層膜の垂直磁化膜を用いる場合、この浮遊磁場を減少
させるためには、レーザ照射位置近傍の温度(TI <
 TC)で磁化が零、すなわちTL=TCOMP (T
CO)4P :磁気補償温度)とすればよいが、このよ
うな垂直磁化膜を炸裂することは容易ではなく、またT
C近傍の磁化も減少し外部磁場方向に磁化が向うとする
エネルギー(ゼーマンエネルギー)が減少してしまう。
When using a single-layer perpendicularly magnetized film, in order to reduce this stray magnetic field, the temperature near the laser irradiation position (TI <
TC), the magnetization is zero, that is, TL=TCOMP (T
CO)4P: magnetic compensation temperature), but it is not easy to explode such a perpendicularly magnetized film, and T
The magnetization near C also decreases, and the energy (Zeeman energy) that causes the magnetization to move in the direction of the external magnetic field decreases.

次にl11w1及びlHg1を低減するには次の方法が
考えられる− キュリー温度以上に加熱された磁化膜が、冷却され、再
びキュリー温度となり磁化が発生する場合、どのような
磁区構造(回転磁化ではなく磁壁移動により磁化反転が
生じる膜を対象とする)となるかは、ゼーマンエネルギ
ー22%反磁場による静磁エネルギーEd及び磁壁エネ
ルギーEψにより決められる。これらの中で磁化に関す
るエネルギーであるゼーマンエネルギーEzと静磁エネ
ルギーEdを考える。ゼーマンエネルギーEzは磁化が
外部磁場(浮遊磁場が存在する場合には、この磁場を加
えたものとなる)方向へ向こうとするエネルギーであり
、この点から磁化は大きい方が有利となる。しかし磁化
が大きくなると反磁場による静磁エネルギーEdが増加
し多磁区状態(熱消磁状態)となる。ところでゼーマン
エネルギーEz及び反磁場による静磁エネルギーEdは
、共に膜厚りの関数であり膜厚りが薄いほど大きな磁化
に対しても多磁区状態より単磁区状態の方が安定となる
。したがって多磁区状態とはならず、大きな磁化を有す
る膜としては膜厚が薄いことが有効となる。
Next, the following method can be considered to reduce l11w1 and lHg1 - If a magnetized film heated above the Curie temperature is cooled and reaches the Curie temperature again and magnetization occurs, what kind of magnetic domain structure (in rotational magnetization It is determined by the magnetostatic energy Ed due to the Zeeman energy 22% demagnetizing field and the domain wall energy Eψ. Among these, Zeeman energy Ez and magnetostatic energy Ed, which are energies related to magnetization, are considered. Zeeman energy Ez is energy that causes magnetization to move in the direction of an external magnetic field (if a floating magnetic field is present, this magnetic field is added), and from this point of view, it is advantageous to have a larger magnetization. However, as the magnetization increases, the magnetostatic energy Ed due to the demagnetizing field increases, resulting in a multi-domain state (thermally demagnetized state). By the way, the Zeeman energy Ez and the magnetostatic energy Ed due to the demagnetizing field are both functions of the film thickness, and the thinner the film is, the more stable the single domain state is than the multidomain state even against large magnetization. Therefore, a thin film is effective for a film that does not have a multi-domain state and has large magnetization.

しかし、単N膜の場合、’rc直下(TCより低い温度
)で大きな磁化を有する薄い磁化l1l(<200人)
を作ることは信頼性(表面酸化、腐食等)の点で困難で
ある。
However, in the case of a single N film, a thin magnetization l1l (<200 people) with large magnetization just below 'rc (temperature lower than TC)
It is difficult to make such a material in terms of reliability (surface oxidation, corrosion, etc.).

本発明は、上述の点に鑑み、外部磁場で記録、消去が可
能な光磁気記録媒体を提供するものである。
In view of the above-mentioned points, the present invention provides a magneto-optical recording medium that can record and erase information using an external magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、キュリー点TC1を有しTC1直下で希土類
副格子磁化が優勢な第1の希土類−遷移金属合金膜(1
1)と、Taxより高いキュリー点TC2を有しTC1
直下で遷移金属副格子磁化が優勢な第2の希土類−遷移
金属合金膜(12)とを有し、第2の希土類−遷移金泥
合金膜(以下第2の磁性膜という)(12)が単独に第
1の希土類−遷移金属合金膜(以下第1の磁性膜という
)  (11)に直接隣接して交換結合するように配さ
れた垂直磁化膜(10)を構成する。
The present invention provides a first rare earth-transition metal alloy film (1
1) and has a Curie point TC2 higher than Tax and TC1
Directly below the second rare earth-transition metal alloy film (12) in which transition metal sublattice magnetization is dominant, the second rare earth-transition gold alloy film (hereinafter referred to as the second magnetic film) (12) is independent. A perpendicularly magnetized film (10) is arranged directly adjacent to and exchange-coupled with a first rare earth-transition metal alloy film (hereinafter referred to as the first magnetic film) (11).

この垂直磁化膜(10)としては、例えば第1図に示す
ようにキュリー点TC及び磁化M、の膜厚方向の分布を
方形波的に変化させたいわゆる多層膜構造とする場合、
或いは後述する第5図〜第7図に示すようにキュリー点
TC及び磁化M9の膜厚方向の分布を連続的に変化させ
た膜構造とすることができるも、先ず、本発明の理解を
容易にするために、第1図に示す第1及び第2の磁性膜
(11)及び(12)を交互に積層して57if膜構造
とした場合を例にとって説明する。
For example, when the perpendicular magnetization film (10) has a so-called multilayer structure in which the distribution of the Curie point TC and magnetization M in the film thickness direction is changed in a square wave manner as shown in FIG.
Alternatively, as shown in FIGS. 5 to 7, which will be described later, it is possible to have a film structure in which the Curie point TC and the distribution of magnetization M9 in the film thickness direction are continuously changed. In order to achieve this, a case will be explained taking as an example a case where the first and second magnetic films (11) and (12) shown in FIG. 1 are laminated alternately to form a 57if film structure.

第1の磁性膜(11)及び第2の磁性膜(12)は、T
b、Gd、Dy、Ho・・・・等の希土類金属と、F 
e * Co + N t・・・・等の遷移金属との各
一種以上の非晶質合金(他の元素を少量添加してもよい
)によって構成する。この場合、第1の磁性膜(11)
については補償組成より希土類金属を多量にし、第2の
磁性膜(12)については同様の補償組成より遷移金属
を多量にすることによって、第2図に矢印MRE及びM
TMで示すように第1の磁性膜(11)においては、希
土類金属副格子磁化MR,が支配的に作用して第1図に
示す磁化M1を発生し、第2の磁性膜(12)において
は遷移金属副格子磁化M TMが支配的に作用して逆向
きの磁化M2を生ずるようにする(磁化M1.M2はT
CIより低い温度耶ちTC1直下の温度での磁化方向を
表わす)。このとき、第1図に示す磁化分布については
各磁性膜(11) 、  (12)の磁化が全体(トー
タル)としてできるだけ小さく、即ち互いに打消し合う
ようにするが、副格子磁化についてみれば、第2図に示
すように各磁性19! (11) 、  (12)に関
して同一副格子磁化M鵠同志、MTM同志が揃うように
平行に配列されることが必要であり、このような構造は
、概略として各磁性膜(11)及び(12)の保磁力よ
り各磁性膜(11)及び(f2)間の交換結合による実
効的磁場が大きい場合に達成することができる。
The first magnetic film (11) and the second magnetic film (12) are T
Rare earth metals such as b, Gd, Dy, Ho..., and F
It is composed of one or more amorphous alloys with transition metals such as e*Co+Nt... (a small amount of other elements may be added). In this case, the first magnetic film (11)
For the second magnetic film (12), by making the amount of rare earth metals larger than the compensation composition and making the amount of transition metals more than the same compensation composition for the second magnetic film (12), arrows MRE and M are shown in FIG.
As shown by TM, in the first magnetic film (11), the rare earth metal sublattice magnetization MR acts dominantly to generate the magnetization M1 shown in FIG. 1, and in the second magnetic film (12), is such that transition metal sublattice magnetization M TM acts dominantly to produce magnetization M2 in the opposite direction (magnetization M1.M2 is T
(represents the magnetization direction at a temperature just below TC1, which is lower than CI). At this time, regarding the magnetization distribution shown in FIG. 1, the magnetization of each magnetic film (11) and (12) is made as small as possible as a whole (total), that is, they cancel each other out. However, regarding the sublattice magnetization, As shown in Figure 2, each magnetic field 19! Regarding (11) and (12), it is necessary that the same sublattice magnetization M and MTM are arranged in parallel so that they are aligned, and such a structure is roughly equivalent to each magnetic film (11) and (12). This can be achieved when the effective magnetic field due to exchange coupling between each magnetic film (11) and (f2) is larger than the coercive force of ).

第1図では垂直磁化膜(lO)において、第1層、第3
層及び第5Nがキュリー点TC1の第1の磁性膜(11
)で構成され、第2層及び第4層がTCIより高いキュ
リー点TC2の第2の磁性膜(12)で構成される。こ
のような垂直磁化膜(10)を透明基板(13)に形成
し、この垂直磁化IFJ(10)にレーザ光(7)を集
光して照射すると、第3図において各位置における温度
及び磁化方向を示すように、温度TがTC1以下の所で
は隣接する各層の磁化Ml。
In Figure 1, in the perpendicularly magnetized film (lO), the first layer, the third layer
The layer and the 5th N are the first magnetic film (11
), and the second and fourth layers are composed of a second magnetic film (12) having a Curie point TC2 higher than TCI. When such a perpendicularly magnetized film (10) is formed on a transparent substrate (13) and a laser beam (7) is focused and irradiated onto this perpendicularly magnetized IFJ (10), the temperature and magnetization at each position are shown in Fig. 3. As shown in the direction, when the temperature T is below TC1, the magnetization Ml of each adjacent layer.

M2の方向が逆向きとなり、この領域から発生する浮遊
磁場は小さく或いはほとんど零となる。叩ち記録時と消
去時の必要外部磁場HW + HEは■(曹−HEとな
る。又7’>TCtの領域では、第2層及び第4層が磁
気的に膜厚の薄い単層膜となる。従ってこの温度領域で
の磁化が大きくなるように膜材料、組成を定めれば、第
4図Aに示すように弱い外部磁場Hex(即ちHw又は
HE)に対しても容易に磁化は外部磁場方向へ冷却時に
向(。
The direction of M2 is reversed, and the stray magnetic field generated from this region is small or almost zero. The required external magnetic field HW + HE during striking recording and erasing is ■(C-HE).In addition, in the region 7'>TCt, the second and fourth layers are magnetically thin single-layer films. Therefore, if the film material and composition are determined so that the magnetization becomes large in this temperature range, the magnetization will be easily suppressed even by a weak external magnetic field Hex (i.e. Hw or HE) as shown in Figure 4A. Direction during cooling in the direction of the external magnetic field (.

この状態から冷却され、第4図B (TCI< T <
 TC2までの冷却)を経てT = T CLとなった
場合第4図Cに示すように第1層、第3層及び第5層の
磁化方向は第2層あるいは第41’!との交換結合力に
より定められる。これにより弱い外部磁場での記録、消
去が可能となる。
From this state, it is cooled down, and as shown in Fig. 4B (TCI<T<
When T = T CL after cooling to TC2), the magnetization directions of the first, third and fifth layers are the second layer or the 41'! as shown in FIG. 4C. It is determined by the exchange bonding force with. This allows recording and erasing with a weak external magnetic field.

本発明で使用される磁化膜のキュリー温度は80℃〜2
50℃の範囲が好ましく、キュリー点記録により記録さ
れる。キュリー点及び磁化は膜材料、組成により制御さ
れる。
The Curie temperature of the magnetized film used in the present invention is 80°C to 2
A range of 50° C. is preferred and is recorded by Curie point recording. The Curie point and magnetization are controlled by the film material and composition.

垂直磁化11(10)としては第1及び第2の磁性15
1(11)及び(12)を交互に配して多1’if膜構
造とした場合には2層以上、好ましくは3層以上の多層
膜とするを可とする。
As perpendicular magnetization 11 (10), first and second magnetism 15
1(11) and (12) are arranged alternately to form a multi-1'if film structure, it is possible to form a multilayer film of two or more layers, preferably three or more layers.

又、垂直磁化膜(10)としては、キュリー点及び磁化
の膜厚方向の分布状況が方形波的に変化する多層膜構造
(例えば第1図参照)の他、例えば第5図A、 B、第
6図A、 B、或いは第7図A。
In addition, the perpendicularly magnetized film (10) may include a multilayer film structure in which the Curie point and magnetization distribution in the film thickness direction changes in a square wave manner (see, for example, Fig. 1), as well as, for example, Figs. 5A, B, Figure 6A, B or Figure 7A.

Bで示すようにキュリー点及び磁化が膜厚方向に連続的
に変化させるように構成することもできる。
It is also possible to configure the Curie point and magnetization to change continuously in the film thickness direction, as shown by B.

なお、上述のキュリー点TC1(膜厚方向で最も低いキ
ュリー点)直下とはキュリー点TC1から冷却の過程に
おいて磁化の向きが決まってしまう温度であって、TC
1からTCt−70℃程度(好ましくはTCL  10
℃〜30℃程度)低い温度までのことを指す、また上述
の垂直磁化III!(10)の全体(トータル)の磁化
とは膜厚方向の磁化の平均値を表わすもので、従って全
体の磁化は各層の磁化の大きさ、方向及び膜厚で制御さ
れる。
Note that the temperature directly below the Curie point TC1 (the lowest Curie point in the film thickness direction) is the temperature at which the direction of magnetization is determined during the cooling process from the Curie point TC1.
1 to about TCt-70°C (preferably TCL 10
℃ to 30℃) refers to low temperatures, and the above-mentioned perpendicular magnetization III! The total magnetization in (10) represents the average value of magnetization in the film thickness direction, and therefore, the total magnetization is controlled by the magnitude, direction, and film thickness of each layer's magnetization.

垂直磁化膜(10)として、キュリー点が膜厚方向に方
形波的に変化する多層膜構造の場合、高いキュリー点T
C2の第2の磁性膜(12)は、その膜厚を300Å以
下、好ましくは100Å以下とするを可とし、キュリー
点付近での磁化が大きい遷移金属多量の希土類−遷移金
属合金膜が有効である。
If the perpendicular magnetization film (10) has a multilayer film structure in which the Curie point changes in a square wave manner in the film thickness direction, the Curie point T is high.
The second magnetic film (12) of C2 can have a film thickness of 300 Å or less, preferably 100 Å or less, and a rare earth-transition metal alloy film containing a large amount of transition metal, which has large magnetization near the Curie point, is effective. be.

また、多層膜構造の場合、第1及び第2の磁性膜(11
)及び(12)の磁化M1及びM2の関係は、TCL直
下の温度でみたときMz>Mxとするを可とする。
In addition, in the case of a multilayer film structure, the first and second magnetic films (11
) and (12), the relationship between the magnetizations M1 and M2 allows Mz>Mx when viewed at the temperature directly below the TCL.

〔作用〕[Effect]

上述したように本発明においては、キュリー点TCIを
有しTCI直下で希土類副格子磁化が優勢な第1の希土
類−遷移金属合金膜(11)及びTC1より高いキュリ
ー点TC2を有しTC1直下で遷移金属副格子磁化が優
勢な第2の希土類−遷移金属合金It!fl(12)を
互いに交換結合するように直接隣接するようにしたもの
であり、これによって、浮遊磁界を零ないしは極めて少
なくすることができ、且つレーザ光照射時キュリー点の
差によって第2の希土類−遷移金属合金膜(12)が磁
気的に膜厚の薄い単Iil膜となるので、記録、消去時
の必要外部磁場を低減することができる。
As described above, in the present invention, the first rare earth-transition metal alloy film (11) has a Curie point TCI and has a dominant rare earth sublattice magnetization immediately below TCI, and the first rare earth-transition metal alloy film (11) has a Curie point TC2 higher than TC1 and has a dominant rare earth sublattice magnetization immediately below TC1. A second rare earth-transition metal alloy It! with dominant transition metal sublattice magnetization. fl (12) are arranged directly adjacent to each other so as to be exchange-coupled with each other, thereby making it possible to reduce the stray magnetic field to zero or extremely small, and to make the second rare earth element - Since the transition metal alloy film (12) becomes a magnetically thin single Iil film, the required external magnetic field during recording and erasing can be reduced.

〔実施例〕〔Example〕

第8図及び第9図に示す光磁気ディスク(17)及び(
18)を作製し、その記録特性の外部磁場依存性を評価
した。夫々の光磁気ディスク(17)及び(1日)は透
明基板(13)と干渉膜(14)と垂直磁化膜(10)
と保護膜(15)から成る。
The magneto-optical disk (17) and (
18) was prepared and the dependence of its recording characteristics on external magnetic field was evaluated. Each magneto-optical disk (17) and (1st) has a transparent substrate (13), an interference film (14) and a perpendicular magnetization film (10).
and a protective film (15).

第8図の光磁気ディスク(17)は、垂直磁化膜(10
)を非晶質Tb Fe Co Cr薄膜より構成し、T
bターゲット及びFe Co Cr合金ターゲットを用
いた2元DCマグネトロンスパッタリング法によりTb
対Fe Co Cr組成比が異なる第1の磁性膜(11
)と第2の磁性膜(12)による3N構造となるように
して作製した。
The magneto-optical disk (17) in FIG. 8 has a perpendicular magnetization film (10
) is composed of an amorphous Tb Fe Co Cr thin film, and T
Tb was deposited by a binary DC magnetron sputtering method using a b target and a Fe Co Cr alloy target.
The first magnetic film (11
) and the second magnetic film (12) to form a 3N structure.

第9図の光磁気ディスク(18)は、垂直磁化膜(10
)を、第8図と同様に非晶質Tb Fe Co Cr薄
膜より構成し、そのTb対Fe Co Cr組成比が異
なる第1の磁性膜(11)と第2の磁性膜(12)によ
る5ii1構造となるようにして作製した。
The magneto-optical disk (18) in FIG. 9 has a perpendicular magnetization film (10
) is composed of an amorphous Tb Fe Co Cr thin film as shown in FIG. It was made to have a structure.

第1の磁性膜(11)は室温からキュリー温度に至る迄
いわゆるTb多を膜であり、そのキュリー温度が130
℃、室温での保磁力が2K Oeである。
The first magnetic film (11) is a so-called Tb-rich film from room temperature to the Curie temperature, and the Curie temperature is 130
The coercive force at room temperature and temperature is 2K Oe.

第2の磁性膜(12)は室温からキュリー温度に至る迄
いわゆる鉄族多量膜であり、キュリー温度が160℃、
室温での保磁力が2K Oeである。第1の磁性膜(1
1)の磁化と第2の磁性膜(12)の磁化の比は100
℃で約3対1であるため、この温度付近でのトータルの
磁化を零とするため、第1の磁性■臭(11)のトータ
ル膜厚臭厚を600人とし、第2の磁性膜(12)のト
ータル膜厚を200人とした。また、キュリー温度の高
い第2の磁性I!1(12)の各膜厚を夫々 100人
とした。
The second magnetic film (12) is a so-called iron-rich film from room temperature to the Curie temperature, and the Curie temperature is 160°C,
The coercive force at room temperature is 2K Oe. First magnetic film (1
The ratio of the magnetization of 1) and the magnetization of the second magnetic film (12) is 100.
℃, so in order to make the total magnetization around this temperature zero, the total film thickness of the first magnetic film (11) was set to 600, and the second magnetic film ( 12), the total film thickness was 200 people. In addition, a second magnetic I! with a high Curie temperature! 1 (12), each film thickness was 100 people.

かかる第8図及び第9図の光磁気ディスク(17)及び
(18)に対し、搬送波周波数2.7MHz、線速度3
.8va/secの条件下での記録特性の外部磁場依存
性を評価した。またこれらの光磁気ディスク(17)(
18)と従来の光磁気ディスクとを比較するため、磁性
単層膜として記録時の浮遊磁場が比較的少ない、室温か
らキュリー温度の間に磁気補償温度を有するTb Fe
 Co Cr単N膜(膜厚800人)の光磁気ディスク
の評価も行った。第10図は、第8図の光磁気ディスク
(17)の評価結果、第11図は、第9図の光磁気ディ
スク(18)の評価結果、第12図は従来の光磁気ディ
スクの評価結果を示す。第10図及び第11図から明ら
かなように垂直磁化膜を多層構造(本発明)とした光磁
気ディスクの場合には約±1000eの外部磁場で完全
な記録、消去状態となる。これらに対して、第12図で
示すように従来の磁性単層膜の光磁気ディスクの場合に
は+1000eの外部磁場で記録し、 3000eの外
部磁場で消去状態となる。従って垂直磁化膜を本発明の
多層構造とすることにより、記録、消去に要する外部磁
場を従来に比べて約半分に低減できる。
For such magneto-optical disks (17) and (18) in FIGS. 8 and 9, a carrier wave frequency of 2.7 MHz and a linear velocity of 3
.. The dependence of the recording characteristics on the external magnetic field under the condition of 8 va/sec was evaluated. In addition, these magneto-optical disks (17) (
18) and a conventional magneto-optical disk, we used TbFe, which has a magnetic compensation temperature between room temperature and the Curie temperature, which has a relatively small stray magnetic field during recording as a magnetic single layer film.
We also evaluated a magneto-optical disk made of a CoCr single N film (thickness: 800 mm). Figure 10 shows the evaluation results for the magneto-optical disk (17) in Figure 8, Figure 11 shows the evaluation results for the magneto-optical disk (18) in Figure 9, and Figure 12 shows the evaluation results for the conventional magneto-optical disk. shows. As is clear from FIGS. 10 and 11, in the case of a magneto-optical disk in which the perpendicularly magnetized film has a multilayer structure (the present invention), a complete recording and erasing state can be achieved with an external magnetic field of approximately ±1000 e. On the other hand, as shown in FIG. 12, in the case of a conventional magneto-optical disk with a single magnetic layer, recording is performed with an external magnetic field of +1000e, and the data is erased with an external magnetic field of 3000e. Therefore, by forming the perpendicularly magnetized film into the multilayer structure of the present invention, the external magnetic field required for recording and erasing can be reduced to about half compared to the conventional one.

なお、キュリー温度がほぼ同一の鉄族多量膜(200人
)及びTb多1111J (600人)からなる磁気デ
ィスクの場合には、従来の磁性fR層膜の光磁気ディス
クに比べても、記録特性が劣り、約−50000印加し
なければ消去を行うことができなかった。
In addition, in the case of a magnetic disk made of an iron-rich film (200 layers) and a Tb-rich layer of 1111J (600 layers), which have almost the same Curie temperature, the recording characteristics are better than that of a conventional magneto-optical disk with a magnetic fR layer film. was inferior, and erasing could not be performed unless approximately -50,000 voltage was applied.

〔発明の効果〕〔Effect of the invention〕

本発明による光磁気記録媒体によれば、浮遊磁場の発生
をなくし、且つ磁気的に薄い単Nl!ifとなることに
よって、記録、消去時の必要外部磁場を低減することが
できる。従って外部磁場変調法によるオーバライドを容
易に行うことができる。
According to the magneto-optical recording medium according to the present invention, the generation of stray magnetic fields is eliminated, and the magnetically thin single Nl! If, the required external magnetic field during recording and erasing can be reduced. Therefore, overriding using the external magnetic field modulation method can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光磁気記録媒体の垂直磁化膜の自
発磁化を模式的に示す図、第2図は第1図の磁化の状態
を形成する副格子磁化の配列を模式的に示す図、第3図
及び第4図A−Cは垂直磁化膜の動作説明に供する図、
第5図乃至第7図は夫々本発明垂直磁化膜の他の例を示
す膜厚方向に関するキュリー温度及び磁化の分布図、第
8図及び第9図は本発明の記録特性の評価に用いた光磁
気ディスクの実施例、第10図は第8図の光磁気ディス
クの評価結果の図、第11図は第9図の光磁気ディスク
の評価結果の図、第12図は従来の光磁気ディスクの評
価結果の図、第13図は従来の光磁気記録媒体の断面構
造図、第14図はその磁化状態の説明図、第15図は浮
遊磁界発生の説明図である。 (10)は垂直磁化膜、(11)は第1の磁性層、(1
2)は第2の磁性層である。
FIG. 1 is a diagram schematically showing the spontaneous magnetization of the perpendicularly magnetized film of the magneto-optical recording medium according to the present invention, and FIG. 2 is a diagram schematically showing the arrangement of sublattice magnetization that forms the magnetization state of FIG. 1. , FIG. 3 and FIG. 4 A to C are diagrams for explaining the operation of the perpendicular magnetization film,
Figures 5 to 7 are Curie temperature and magnetization distribution diagrams in the film thickness direction showing other examples of perpendicularly magnetized films of the present invention, respectively, and Figures 8 and 9 are diagrams used to evaluate the recording characteristics of the present invention. Examples of magneto-optical disks, FIG. 10 is a diagram of the evaluation results of the magneto-optical disk of FIG. 8, FIG. 11 is a diagram of the evaluation results of the magneto-optical disk of FIG. 9, and FIG. 12 is a diagram of the conventional magneto-optical disk. FIG. 13 is a cross-sectional structural diagram of a conventional magneto-optical recording medium, FIG. 14 is an explanatory diagram of its magnetization state, and FIG. 15 is an explanatory diagram of the generation of a stray magnetic field. (10) is a perpendicular magnetization film, (11) is a first magnetic layer, (1
2) is the second magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] キュリー点T_C_1を有し該T_C_1直下で希土類
副格子磁化が優勢な第1の希土類−遷移金属合金膜と、
上記キュリー点T_C_1よりも高いキュリー点T_C
_2を有し上記T_C_1直下で遷移金属副格子磁化が
優勢な第2の希土類−遷移金属合金膜とを有し、上記第
2の希土類−遷移金属合金膜が単独に上記第1の希土類
−遷移金属合金膜に直接隣接して交換結合するように配
されて成ることを特徴とする光磁気記録媒体。
a first rare earth-transition metal alloy film having a Curie point T_C_1 and having a dominant rare earth sublattice magnetization immediately below the T_C_1;
Curie point T_C higher than the above Curie point T_C_1
_2 and a second rare earth-transition metal alloy film in which the transition metal sublattice magnetization is dominant directly under the T_C_1, and the second rare earth-transition metal alloy film is solely connected to the first rare earth-transition metal alloy film. A magneto-optical recording medium characterized in that it is arranged directly adjacent to a metal alloy film so as to be exchange-coupled.
JP62032638A 1987-02-16 1987-02-16 Magneto-optical recording medium Expired - Fee Related JP2751154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032638A JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032638A JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63200343A true JPS63200343A (en) 1988-08-18
JP2751154B2 JP2751154B2 (en) 1998-05-18

Family

ID=12364394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032638A Expired - Fee Related JP2751154B2 (en) 1987-02-16 1987-02-16 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2751154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192137A (en) * 1990-11-26 1992-07-10 Mitsubishi Electric Corp Magneto-optical recording body
US5593790A (en) * 1994-12-29 1997-01-14 Imation Corp. Interference super-resolution using two magnetic layer construction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193351A (en) * 1987-02-06 1988-08-10 Canon Inc Magneto-optical recording medium and recording system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193351A (en) * 1987-02-06 1988-08-10 Canon Inc Magneto-optical recording medium and recording system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192137A (en) * 1990-11-26 1992-07-10 Mitsubishi Electric Corp Magneto-optical recording body
US5593790A (en) * 1994-12-29 1997-01-14 Imation Corp. Interference super-resolution using two magnetic layer construction

Also Published As

Publication number Publication date
JP2751154B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US4955007A (en) Thermomagnetic recording method applying power modulated laser on a magnetically coupled double layer structure of perpendicular anisotropy film
EP0225141B1 (en) Magneto-optical recording media
US5224068A (en) Recording method for magneto-optic memory medium
JPH0695404B2 (en) Magneto-optical recording method
EP0361970A2 (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium
JP2809991B2 (en) Magneto-optical recording medium and method of reproducing information recorded on the medium
JP2503708B2 (en) Magneto-optical recording medium and device
JPS63200343A (en) Magneto-optical recording medium
Greidanus et al. Magneto‐Optical Recording and Data Storage Materials
JP2829970B2 (en) Thermomagnetic recording medium
US5106704A (en) Over write capable magnetooptical recording medium
JP2805070B2 (en) Thermomagnetic recording method
US5627777A (en) Magneto-optical recording medium
JPH0536141A (en) Magneto-optical recorder
JP2621630B2 (en) Magneto-optical recording medium
JP3395189B2 (en) Magneto-optical recording method
JP2886199B2 (en) Magneto-optical recording method and magneto-optical recording medium
JP3613267B2 (en) Magneto-optical recording medium
JP2805787B2 (en) Magneto-optical recording method
KR930010474B1 (en) Manufacturing method of optical magnetic materials
JP2869449B2 (en) Magneto-optical recording method and magneto-optical recording medium
JP2809224B2 (en) Thermomagnetic recording device
JP3381960B2 (en) Magneto-optical recording medium
JPH05182267A (en) Magneto-optical recording medium and recording method thereof
JPS61243977A (en) Photomagnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees